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On the fields and equations of motion of point particles 259
Ji(xu)
Hence 0,0, ... lu (30)

is always finite even on the world line, whatever the number of differentiations.
Writing 9,, . for this expression for brevity and remembering that

u U
a = [_# ) a = (_# , 3]_
#Ta ( K )a wTr (K )r (B1)
we get

a/t{_f‘:’ws...avp...d‘r_l—ff SaﬂpdT}

u u T , )
= (7‘” S avp...)r'_ (7” S avp...)a'_J‘_.ooS...a/wp...dT +f7aS...aﬂVp...dT' (32)

Both of the first two terms on the right are finite on the world line, and being of the
general form of the right-hand side of (22), all their successive derivatives are also
finite. The two integrals on the right are also finite by (30), so that it can be deduced
by induction that all derivatives of the two integrals on the right of (16a) are finite
on the world line. We have therefore proved that O™d- and all its derivatives are
finite on the world line, and hence the same must be true for Urad- and all its deri-
vatives. The radiation field with all its derivatives is always finite on the world line.
The same is true of the modified radiation field.
From (15) it follows that we can write

[red. — [rad. _ f " D[S___ J_—l(jfu)] dr+ x J wD[Sﬁ_ ﬂ%@] dr, (33)

where U'#d- contains only the sum of terms taken at the retarded and the advanced

points and is expressible as a series in even powers of ¢. It should be noted that

Urad- 2 D[O*a4-] but contains additional terms like the first two on the right of (32).
Now consider the fundamental symmetric solution O™ defined by

Osvym. = %ﬂ( Oret. + Oa,dv.)

2\« ), 2 2),.

Writi raym. = LS _L(8L) Lx([™g Jilxw)
Writing O'sym =§(7)T——2—(7)a+§ ,,S"‘TdT’ (35)
Osym. — Ofiym._zzéfw S-..Jl(jfu) dr. (36)

Although u? is negative and » purely imaginary for points on the world line between
7, and 7,, since J,(yu)/u™ is a series in ascending powers of > as shown by (9), the
integrand of all the integrals is real at every point of the world line and varies con-
tinuously along it.
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The first two terms on the right of (35) are of the general form (23) and must be
expressible as a series in odd powers of ¢ with rational integral coefficients. All
derivatives of this part must have the same form, though they may be singular to
a higher degree.

Similarly the integral in (35) can be expressed as a series in odd powers of €. For
the value of the integrand at the point 7 can be expanded in a Taylor series.
Denoting the integrand by i(r) for brevity, and writing A7 = 7— 17, as before,

i =% L (24 (arye (37
=3 —l=| dr

n=07! (87% ¢ ’
(9) shows that ¢ is an ascending series in positive powers of u2. All derivatives of it
with respect to T remain series in positive powers of %2, and hence every coefficient
(0m/or™), is a series in positive powers of €2. On integration we get

o & i G2 -,
As proved earlier, each term in curly brackets is a series in odd powers of ¢ only.
The series on the right of (37) must therefore be expressible as an ascending series
in odd powers of € the coefficients of which are non-singular and integral functions
of the variables at the contemporary point. Hence, in the neighbourhood of the
world line O’*v can be expressed as an ascending series in odd powers of €. (For the
Maxwell field of a point charge this fact has also been noted by Dirac (1938).) It is
singular on the world line. It follows by using (5) that O™ and all its successive
derivatives are also and always expressible as ascending series in odd powers of €, each
having a higher singularity than the previous one.

The integrand of the integral in (36) is continuous along the world line. Hence it
follows from (30) that the integral and all its derivatives are finite even on the world
line. Further

© J(yu e J (yu
@) [~ 5. 2% ar f _wS...<aﬂ6ﬂ+x2>wl(§ ir

_ 92 0 J(xu)

since the Bessel function satisfies just the equation obtained by putting the integrand
equal to zero. Hence it follows from (36) that O’s™- satisfies equation (8) at all
points of space not on the world line, and condition (10) on it. All its derivatives
therefore also satisfy equation (8) at any point not on the world line.
Following Dirac we write for the actual potential U2t at a point
[Jact. — Uret. 4 Uin. — padv. | pjout. (39)
Introducing the mean field defined by

Umen= (U + U (40)
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we can also write it Uact: = [sym. 4 [Jmean
= U4 Umesn, (41)
where 7 mesn - mesn_X f ’ D[SWJI—(;‘M)] dr, (42)

the operator D being the same as in (12), (14) and (15). It is clear from (38) that
U’mean gatisfies the equation (8) at all points of space and is continuous and finite
everywhere. We call it the modified mean field.

2. THE EQUATIONS OF MOTION

Certain general results about the form of the equations of motion of the point
particles can be deduced at once from the properties of the radiation and symmetric
fields established above. The equations of motion of the point particle are obtained
by using the stress tensor of the field to calculate the flow of energy and momentum
into a thin tube surrounding the world line. The inflow along an infinitesimal length
of the tube must then be put equal to a perfect differential for conservation of energy
and momentum, and this provides the equation of motion of the point particle.

Let the tube be defined by I = —¢? with constant e. The element of three
dimensional surface of this tube with its normal directed outwards is given by

lPe(1 —«}) dQdr, (43)

d{2 being the element of solid angle about the contemporary point in its rest system
introduced in the previous section. The flow of energy and momentum into a portion
of the tube of length dr is

T,Ve(l1—k;)dQ)dr="T,dr. (44)
i }

The equations of translational motion are then given by putting
T, =4, (45)

where A4 , is some function of the variables describing the state of the particle and
the field at the point 7 and their derivatives.

The stress tensor 7),, is a homogeneous quadratic expression in the potentials and
the field strengths which are linear derivatives of them. We denote by 7,,(U#, U
the more general expression that is obtained from it containing two independent
fields U4 and UZ by replacing one U in each term by U4 and the other by UZ and
then making the expression symmetric in U4 and UE. The resulting expression is
thus linear in U4 and UZB separately and quadratic in the two. The original stress
is just 7,,(U_, U ) in this notation.

For example, the stress tensor for the generalized Maxwell field is

47TT - G G +4gﬂva0Gpd+X (U U 2g,qup Up)’
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the field strengths @, being derivatives of the potentials U,. Then,
4T, (UL, UB) =361, G20 + 307, G4 + 19, G7s G5
+ %Xz( U/‘f UVB + U/I;Uf - g,uv Uﬁ UBp)’

G4, being the field strengths corresponding to the potentials U
Returning to the general tensor for any field, we have, using (41),

L,y =Ty (V2S5 U2k = 1, (U7 U o, 17570 17 mem)
= (U, U5 4 2, (U7, U/ e0) 4, (U7, U/me0m). - (46)

Corresponding to this splitting up we get for the inflow

T,u — T;tsym._l_ T/’umix._,_ T;mean’ , (47)

where 5= f T, (U svm, U5y Pe(1 — k,) A2, (48)
i g f (75w, 7 meom) (1 — ) A2 (49)

and T mean — fT”"( U’mean [7'mean) ve(] — k7)) dL2. (50)

Since U™ and its derivatives can be expressed near the world line as series in
odd powers of ¢ only, it follows that 7,,(U” 5™, U’™) is a series in even powers of
¢ only. As far as the integration with respect to df2 is concerned, ¢ is a constant, and
the only quantities which vary are I” and terms containing it like x,=0"9,, k;, = I,
etc. The integral of a product of say s factors I’l* ... vanishes from symmetry if s is
odd, and gives ¢* multiplied by a constant if s is even. Hence, as a result of the factor
€ which appears explicitly in (43) and (48), 7",5™ is a series in odd powers of ¢ only,
the coefficients of which are just functions of the particle variables on the world
line at the point 7,. The inflow theorem (Bhabha & Harish-Chandra 1944) states that
if the rate of inflow be expanded in a series in powers of ¢, the coefficients of all the
terms except the one independent of ¢ must be perfect differentials. 7"~™ being a
series in odd powers of ¢ has no such term independent of ¢, and hence must be
identically a perfect differential. It has also been proved that the inflow through
two tubes of different shape can only differ by a perfect differential. 7",*¥™ therefore
plays no part in the equations of motion since it can always be eliminated by adding
an identical term in 4. Thus the part of the stress tensor containing only the modified
symmetric field contributes nothing to the equations of motion.

Since U’™ean iy a continuous and non-singular function at all points, 7"™°*® must
tend to zero as ¢—>0 and hence it cannot contain any term independent of e. Ob-
viously, it can play no part in the equations of motion. It also follows from the
inflow theorem that 77" is identically a perfect differential. This can be easily
verified by direct calculation.
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The only significant contribution to the right-hand side of (45) comes from the
terms in 772 independent of €, which we denote by [7"™*],. The equation of
motion must therefore be of the form

A, =[T7>],. (51)
We note that the right-hand side of (51) can only contain U’™®" and its derivatives
multiplied by functions of the particle variables at the point 7, and is linear in them.
Another proof of this result which does not depend on an expansion of the symmetric
field in powers of e is given below.

For a point charge and a dipole the highest singularity in U’5™ is of the order
€2, Since the integration over d of a function multiplied by the factor (43) gives
at least a factor €3, no term containing U’™¢" can appear in the equations. The
equations only contain the field strength G"™®n and its derivatives. This result is
quite general and true also for higher multipoles, as is proved by one of us (H.C.)
in the paper which follows this.

Since U’™¢n contains an integral from — oo to co it might appear as if the motion
of the particle at 7, depended not only on the motion of the particle in the past, but
also in the future. Using (42), (40), (39) and (33) we see, however, that on the
world line

@z, = o+ vy, =27 p[8, A or

= @)+ 3 - v, X[ 7 D5, A | gr

- @+ 4 -x [ [ 5,29 ar

= (UR)o+ (U 2T, (52)
which clearly shows that the motion only depends on the actual motion of the
particle at 7, and in the past. Itis reasonable to interpret 3(T*d"), as the field giving
the effects of radiation reaction, and the last integral as an addition to the ingoing
field due to the particle’s own motion in the past. It has already been mentioned
that U™ is not just D[O*4-] but contains in addition the terms which result from
the differentiation of 7, and 7, in (16a) with respect to x#, as, for example, the first

two terms on the right of (32).
We also note that

U’sym. —_ Usym._}_chw D[S Jl(Xu)] dT
oen .o 2 w cess U
- oe—jue+ X[ pfs A g,
= Ureh— U, (53)
The last term is continuous everywhere. Hence

2rxd, = [ 2 [k vy e -y a2 ] (54)
0
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This gives precisely the mixed terms calculated in the previous papers with U’mesn
substituted in place of the U™ which appeared in them. The process of finding the
actual equations of motion therefore becomes very simple. We merely calculate the
term independent of ¢ in the inflow using the mixed part of the stress tensor, and
then substitute U’ ™ given by (52), in place of U™, The only part of the calculation
which is at all cumbersome is the evaluation of U™ required in (52). A convenient
way of calculating this part is given by Harish-Chandra in the paper which follows
this.

The general results established above hold also for the rotational equations. To
calculate these use has to be made of the angular momentum tensor M, ,, instead
of the stress tensor. Since

My =03 Ty — 2, Ty, = (LT, —1 T)lv)+(z)\ w— 2T (65)

we see at once that precisely the same arguments hold as before and the same result
follows. Using (51) we have

[ fMAﬂV U/sym Ulmean) l”e(l Kc) d‘Q:l [Mlmlx ]0 {zA[T/mix ]0_ 2 [T’mlx ]0}

, d
= [M/\ﬁﬂx']o‘*‘;i‘;(zAAp—zﬂAA)—(”AAp—”ﬂAA)’ (56)
where

s 'mmlo—[ j{la (D775, [yrmesn) _ 7, (T77svm. {77menn) fre(1 — k) dQ. (57)

The rotational equation must therefore have the form
By, +mnd,—v, 4, = [ ME],. ; (58)

We give an alternative proof of (51) which depends upon the symmetry existing
between the retarded and the advanced points. This method of proof avoids the
necessity of expanding the various quantities involved in series and therefore has
the advantage of compactness. The retarded and advanced points are defined by
(6) and indeed 7, is that solution of (6) for which (U,),> 0 and 7, that solution for
which (u,), < 0. It is clear therefore that in every equation which does not explicitly
utilize the condition (u,), > 0 or (%,), < 0 we can always replace r by a and vice versa,
because whatever holds for 7, would also hold for 7, and conversely. In particular
this symmetry is exhibited in differentiation :

u U
0,7, = (?ﬂ) 0,7, = (7/‘)“

2uw), = 03— (" 4y

K

2u)a = 07-("27) . (59)

K
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Now if we interchange @ and r in (35) O’5Y™- changes sign. O’5™- is therefore anti-
symmetric in the indices @ and r. From the symmetry shown by (59) in @ and r it

follows that
U = D[OS™]

is also antisymmetric in @ and r. On the other hand, the modified radiation field
(16b) remains unaltered by an interchange of @ and r. Therefore 0'*d- and con-
sequently U’ is symmetric in @ and r. The same holds for U’™® ag is obvious
from (42).

We calculate the inflow into two tubes surrounding the world line, called the
retarded and the advanced tubes respectively, defined by the equations

k,= €=¢, (retarded tube), } (60)

Kk, =—€e=¢, (advanced tube),

where ¢ is a positive constant. The intersection of these two tubes with the future
and the past light cones starting from 2#(7) respectively are called similarly the
‘retarded’ and the ‘advanced’ spheres of radius € at 7. The three dimensional surface
elements of the two tubes with the normals outwards can be written as

48 = ok, dQ,dr (for retarded tube), } (61)

sy, = — 0k, d2,dr (for advanced tube),

where df2, is an element of surface of the two dimensional retarded sphere of radius
€ at 7 and similarly d©, is an element of the surface of the corresponding advanced
sphere. The difference in sign in the two equations in (61) is important and arises
from a similar difference in (60), where increasing € corresponds to increasing ,
and decreasing k.

For brevity put fT/“’(U 4 UB)3,k,dQ,=THUA,UB), (62a)

f Tw(U4, UE) 3, k,dQ,=THUA, UP). (625)

Let I# denote the rate of inflow calculated on the retarded tube and I# that on the
advanced tube. For the equations of motion the significant part of the inflow is the
part of these independent of ¢, which we denote by [1#], and [14], respectively. Then
by (46) and (62) we get

[ L4y = [THU ™, U)o+ [2TH(U™, Ul (63)
and U5l = —[THUE™, U] — 2T (U™, U0, (64)

For calculating 7T#U’Sm- U’sym) and THU'S™-, U’s¥™) we have to put
U4 = UB = U’ in (62). Since U’*¥™ is antisymmetric in @ and r it follows that
T,(U’ s, U™ is symmetric in @ and 7. Thus it is easy to see from (62) that if we
interchange* a and r in the calculation of 7#( U’ V™, U’#V™-)we get T( U’ 5™, U’ 57m-),

* This interchange also implies interchange of €, and ¢,.
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But [TH(U’sv=- U’sym.)], is independent of € and is a function only of the particle
variables at 7 so that the interchange of a and r does not affect it. Therefore we

must have
[TH U™, U]y = [THU ™, U™, (65)

On the other hand, since U’'™®" js symmetricin @ and r while U’*"™ is antisymmetric,
it follows that 7'»(U’svm. [J'mean) must be antisymmetric in @ and r. Therefore by
an analogous reasoning

[THUZE™, Ulmeem)]y = — [TRUZE, UTem)],. (66)

Therefore on subtracting (64) from (63) we get
[L4lo—[18]o = 2§ THUT™, UT57™)). (67)

The left side being the difference between the rates of inflow on two tubes is a perfect
differential and therefore so also is the right side. From this (51) follows immediately.
Since U’#v™- gatisfies the wave equation (8) at all points not on the world line, it
follows that
oL, (U™, U5 = 0,

except on the world line. We can therefore take for the modified stress tensor of
the field, _
T;w = T/w - T/,w( Ufﬁym.> U,Sym)
= 20, (U5, U meen) + T, (U7 een, U7mean). (68)

This tensor satisfies the conservation equation except on the world line and leads to
the same equations of motion as the original tensor. It has the advantage that the
worst singularities of 7, which are contained in the part 7),(U’*™, U’*™) are
absent from it. It does not contain in particular, the infinite static field energy of
the point particle. The new angular momentum tensor is then defined by (55) with
T, in place of 7T,,.

The theory given above can be generalized immediately to the case of several point
particles. The modified symmetric field U’57™-© of the sth particle is defined pre-
cisely as in (35). The actual field can then be split into

U?ft‘ — Uf‘r!nean + §1U’ ﬁYm~(S), (69)
s=
n © (s)
where [//mean — 1([Jin. 4 [yout.)_ ¥ 72_< J‘ D S(s)'fl(?)f—gs):l dr®
s=1 —
- U+ R AU, (70)

u® denotes the distance from the point 2# to the point 249 on the world line of the
sth particle. The equation of the sth particle is then

AP = [T, (Um0, U/ meno)],, (T
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where Ufflean(s) = Uf.xfuean 4 2 Uf iym.(t)
t*s
— Uact. _ U/ sym.(s)

= [in. + Z Uret.® +%U’rad.(s)
e T

— Uin.+ 2 Uret.(t)+ %ﬁr&d.(s)_xjw D[S(s) JI(X(Z)(S):I AT, (72)
wh s e 0 Y T e
It has already been shown that 7),(U’s™-@), ' #-6)) has no effect in determining the
motion of the sth particle. Since U’5™-® ig certainly finite and continuous on the
world line of the other particles, it is clear that this part of the stress tensor also

has no effect in determining the motion of the other particles. Hence we can take
as the modified stress tensor

n
T;W = T/‘,, — EIT'W( U7sym. @) []78ym. ()
s§=

= 31, mm, sy 3 3, (R0, U, (1)
s=1

s>t=1

This tensor is conserved and gives the same equations of motion for each particle
as T,,. It also has the advantage that it does not contain the worst singularities
contributed by the static field energies of the individual particles.

Finally, it may be mentioned that a ‘Wenzel’ field can be introduced in the
general theory treated here just as in the case of a point charge moving in a Maxwell
field (Dirac 1939). We take the world line of the particle to extend from —oo to a
point 75. Now define the fundamental Wenzel solution for the particle by

( T
—ij S__.:Il%é@dT for r5<7,,

oY (z#) = (%—) —thr S_"%d’r for 7,<Tp<T,,

S.. ‘S_ b Ji(xu) JTB Ji(xu)
-(?)r+( pe )a—xf_wS_“——u—dT-i—x . S—u dr for r,<7p. (74)

The first condition is satisfied when the point x# lies in the future light cone of the
point 75, the second when it lies dutside the light cone, and the third when it lies in
the past light cone. This field is clearly just O*% — 0347 ag given by (7) and (13) for
a world line that extends from — oo to 75 only. With the help of the Green’s function
given by one of us in an earlier paper (Bhabha 1939), which is a generalization of the
relativistic delta-function of Jordan and Pauli, O% can be written in the form

0" = f 8 Greau)dr, (75)
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where { 20(u?) — Xil(—i@ for u?> 0, u,> 0,
Grad (2] = | 0 for u? < 0.
| —20(u?) + X‘ll(—;@ for u2> 0. (76)

G4 gatisfies the generalized wave equation (8) at all points not excepting u# = 0,
and hence O satisfies (8) at all points including those on the world line. Define the
generalized Wenzel potential by

U¥ =Ux+D[OY]. (77)
Now if A* be a small time-like vector, then it is easily seen that

Lt U (24(r )+ A) 4 UV ({1 ) — M)} = U™(24) + T80 ()
A—>0
~x[™ D[ 8.2 ar = vrmeanien. (79

This is precisely the field (52) which enters into the equation of motion (51) of the
point particle.

If n particles are present we have simply to define the generalized Wenzel
potential by

Uv — Uin 1 3 U0, (79)
s=1
where U6 = D[OVY)],
and it follows at once that
Lt H{UW (249 A1)+ UV (219 — A#)} = U 1moanis), (80)

A—>0

which is the field that determines the motion of the sth particle.
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