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On the fields and equations of motion of point particles

By H. J. BraBuA, F.R.S. AND HARISH-CHANDRA

Cosmic Ray Research Unit, Indian Institute of Science, Bangalore

(Received 1 November 1944)

The investigation covers point particles possessing a charge, dipole and higher multipole
moments interacting with fields of any spin satisfying the generalized wave equation (8). It
is shown that the radiation field defined as the retarded minus the advanced field and all its
derivatives is always finite at all points including those on the world line of the point par-
ticles. The symmetric field, defined as half the sum of the retarded and advanced fields, is
shown to contain a part expressible as an integral along the world line from minus to plus
infinity, which is continuous and finite everywhere. This integral vanishes if y = 0. The
modified symmetric field is defined as the symmetric field minus this integral. The actual
field is expressed as a sum of the modified symmetric field plus the modified mean field
defined as half the sum of the ingoing and outgoing fields plus the integral just mentioned.
It is proved that the part of the stress tensor of the field quadratic in the modified symmetric
field plays no part in determining the equations of motion of the point particle. Being con-
served by itself, it can always be subtracted away, thus defining a new stress tensor which is
free from all the highest singularities in the usual stress tensor. The equations of motion of
the particle are shown to depend only on the usual ‘mixed terms’ in the inflow with the
modified mean field substituted for the ingoing field. The formulation for several particles is
given.

The different fields associated with point particles are investigated and certain
general properties established from which results about the general form of the
equations of motion of the point particles can be deduced. The investigation covers
generalized wave fields* of all spin, the usual scalar and vector meson or generalized
Maxwell fields being only particular cases. Similarly, the field producing properties
of the point particle can also be treated with great generality, and the particle may
possess a charge, dipole or higher multipole moment or any combination of these.
The retarded field is defined by the boundary condition that it vanishes at all
points on and before an infinitely extended space-like surface. Usually this surface
is taken to be in the infinitely distant past. The advanced field is correspondingly
defined by the boundary condition that it vanishes everywhere on and after an
infinitely extended space-like surface which is usually taken to be in the infinitely
distant future. Both these fields are unsymmetrical with respect to the past and the
future by definition. They are both singular on the world line of the particle. In
general theory it is more convenient to use two other fields derived from these,
namely, the radiation field, defined as the retarded minus the advanced field, and
the symmetric field, defined as half the sum of the retarded and advanced fields.
* The expression generalized wave field is used to cover any field the components of which
satisfy the generalized wave equation (8) in free space, and covers fields of all integral spin.
The expression meson field, which has been used in the previous literature, is inaccurate,
since the meson having a spin of 0 or 1 unit is but a particular case. The fields with ¥ = 0 are

included in the above as limiting cases, but when it is necessary to distinguish these from the
more general fields for which x 30, we shall refer to them as specialized wave fields.
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The radiation field changes its sign when the direction of the time axis is reversed,
while the symmetric field is left unchanged.

- The symmetric and radiation fields have important properties near the world
line. The symmetric field is made up of a part consisting of terms depending on
conditions at the retarded and advanced points on the world line only, and a part
composed of two integrals along the world line from minus infinity to the retarded
point and from the advanced point to infinity respectively. The latter vanish for a
specialized wave field (y = 0). Itis convenient to combine the latter into one integral
from minus infinity to plus infinity, and to add a compensating integral from the
retarded to the advanced point to the first part of the symmetric field. The integral
from minus infinity to plus infinity is now a finite, continuous and differentiable
function of the field point even on the world line of the particle, and satisfies the
homogeneous generalized wave equation at all points of space. It is important for
the theory to be developed here to introduce the modified symmetric field defined as
the symmetric field minus the integral from minus to plus infinity just mentioned.
The modified symmetric field contains all the singularities of the symmetric field,
and its value at any pointis independent of portions of the world line lying in the past
or future light cones of the point. This is an important feature of the modified
symmetric field which differentiates it from the symmetric field. Moreover, if from
any point in space near the world line we drop a perpendicular to the world line, and
call its length ¢, then it will be shown that the modified symmetric field can be
expanded in an ascending series containing only odd powers of e, the highest
singularity depending on the highest multipole possessed by the particle. This result
has an important consequence in the form of the equations of motion of the point
particle.

Dirac (1938) has already shown that the radiation field satisfying the Maxwell
equations produced by a point charge is finite on the world line. It will be proved in
this paper quite generally that the radiation field and all its derivatives are always
finite on the world line for every type of point particle and every spin of the field.
The radiation field and each of its derivatives can always be written as the sum of
two parts, one containing terms depending on conditions at the retarded and
advanced points only, and the other containing two integrals along the world line.
The former can always be expressed near the world line as an ascending series in
even powers of ¢ only, starting with a term independent of ¢. For specialized wave
fields (y = 0) the two integrals vanish and the whole radiation field then becomes
expressible as a series in even powers of ¢.

The actual field at a point can be expressed, following Dirac, as follows:

actual field = retarded field + ingoing field
= advanced field + outgoing field
= gymmetric field + mean field,

where the mean field is defined as half the sum of the ingoing and outgoing fields.
In view of the simple property of the modified symmetric field mentioned above,
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which is not possessed by the symmetric field, it is important to split up the actual
field as follows: actual field = modified symmetric field + modified mean field,
where the modified mean field is defined as the mean field plus the integral from
minus to plus infinity which was subtracted from the symmetric field. Since this
integral is finite and continuous everywhere and satisfies the homogeneous general-
ized wave equation at all points, so also does the modified mean field. The stress
tensor, which is a homogeneous quadratic expression in the field quantities, now
falls into three parts, the first containing only the modified symmetric field, the
second containing the modified symmetric and mean fields, and the third part only
the modified mean field. It follows from the property of the symmetric field stated
above that the first part of the energy tensor must be expressible near the world
line as a series in even powers of ¢ only. It will be shown to follow immediately from
this that the contribution of this part to the flow of energy and momentum into a
thin tube of radius e surrounding the world line must be a series containing odd powers
of ¢ only. Now the theorem established in a previous paper (Bhabha & Harish-
Chandra 1944) states that if the rate of inflow* be expressed in the vicinity of the
world line in a series in powers of the radius of the tube then all the terms except the
one independent of the radius of the tube must be identically perfect differentials.
For brevity we shall refer to it as the inflow theorem. It follows that the part of the
stress tensor containing only the symmetric field contributes only perfect differ-
entials to the rate of the inflow of energy and momentum, which therefore have no
effect on the equations of motion of the point particle. The same can be proved of
the part containing only the modified mean field, which can in any case have no
effect on the equations since it is non-singular. The only part of the energy tensor
which determines the equation of motion of the particle is the mixed part. Since the
mixed terms in the inflow are formally the same as those that one would have if
radiation reaction were neglected, with the only difference that the modified mean
field is written in place of the ingoing field, and can in general be derived from a
Lagrangian, the process of finding the general equations for a point particle becomes
very simple. One has merely to obtain the usual mixed terms in the inflow, and then
substitute the mean field in place of the ingoing field. It will be shown by one of us
(H.C.) in the paper which follows this that the form of the mixed terms in the inflow
is completely determined by certain general considerations, and they can be written
down in any given case without any calculation.

Each of the three parts of the stress tensor mentioned above are conserved
everywhere except on the world line, and therefore it is possible to take as the
new stress tensor for the field the original tensor minus the first part containing
only the modified symmetric field. This removes all the worst singularities in the
stress tensor.

* This word is used in the same sense as in the paper mentioned.
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1. THE RETARDED, ADVANCED, RADIATION AND SYMMETRIC FIELDS

We use as far as possible the s~-ne notation as in the previous papers. The co-
ordinates of a point in space time are denoted by x* where a Greek index takes on
all values from 0 to 3, and the metric tensor is defined by

Joo=—911= —Ya2 = —Ygss = L.

A point on the world line is denoted by z#(r), T being the proper time on the world
line measured from some point on it. A dot denotes differentiation with respect to 7.
The velocity of the particle is v#= 2. The following symbols are used with the same
meaning as in the previous papers:

wh =gk — 2(T),

vh K =y ok K = u * ete. (1)

K=u ﬂ w

7

For every point x# near the world line a point called the ‘ contemporary’ point with
the proper time 7, can be defined on it by the equation

(K)o = (& —2(7,)) v,(Tc) = O. (2)

The suffix ¢ attached to a symbol will be used to denote that it refers to the con-

temporary point. Write -
=t —2(1,), € =-—1,10r (3)

where ¢ is real and positive. Then
ou?
) o= — 2w ), =
( - )c 2(u,), = 0, (4)

so that the distance from the point 2# to a point on the world line is stationary at
the conterhporary point. 9, will be used to denote 9/dx*. We note the following
relations which will be required later:

Vu
OuTe = (1 - K’)J

avl'u = 8#"'( vﬂvv/) ’
1-«'/,
8,62 = —20,3,lr = — 21, (5)

The right-hand sides of all three equations are finite and continuous on the world
line, and all higher derivatives of them also remain finite and continuous. The same
is true of any positive even power of e, which can be differentiated an unlimited
number of times without the higher derivatives becoming singular as ¢~ 0. On the
contrary, the differentiation of an odd power of ¢ a sufficient number of times can
certainly lead to a term singular as e 0. For example,

“
00,6 = — Ofe~t— Il e 3+ (3)&,) e L
1—-«'/,
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The retarded point on the world line associated with the point x# is defined as
the point for which
(w,u),= (2, —2,(7,)) (¥ —2(1,)) = 0 (6)

with 20 —2%(7,) > 0. The suffix » will be used to denote that the quantities refer to the
retarded point. The advanced point is determined by the solution of the equation
(6) for which «°—2%r,) < 0. The suffix a will be used to denote quantities referring
to this point.

Let S, where the dots stand for any arbitrary number of tensor indices, be a
tensor defined at all points of the world line and finite and continuous on it. It may
be considered as a continuous function of 7. Let 7, be a fixed point on the world line.
Then the field function defined by

Oret (i) = ( ) f S 1(X’LL (7)
for 7, > 7, and identically zero for 7, < 7, satisfies the generalized wave equation
(0, 0+ x5U =0 (8)

at all points of space not on the world line. y is a constant characteristic of the field
and Jj is the first order Bessel function. For later use we note that the nth order
Bessel function is defined by

w\ 28
7 = (3) 2 (03 - (9)
The dots affixed to O stand for the same tensor indices as appear in S_.

Take a fixed point 7,> 74 on the world line and draw the two-dimensional surface
around it generated by all points satisfying (2) and (3) with constant €. This surface
forms a sphere around the point 7, in the rest system of the point, that is, in the
Lorentz frame in which the velocity v# at the point has the components 1, 0, 0, 0.
If we denote by df2 an element of solid angle subtended by an element of the two-
dimensional surface of the sphere at its centre at 7,, then an element of the surface
with its normal directed outwards and perpendicular to the world line is FPedQ.
Given an arbitrary continuous function ¢ of position inside the sphere expansible
in a Taylor series about the point 7,, then it can be shown easily that

e_)()fgb (0, 0% lPed$2 = eL_:‘;) f¢(a—a€ Of‘_e_“-) e2d = —4mp (S ),. (10)
The expression (7) is completely and uniquely defined by the requirement that it
satisfies (¢) the equation (8) at all points not on the world line, (b) the limiting con-
dition (10) at the world line, and (¢) the condition that it vanishes at all points on
and prior to an infinite space-like surface passing through the point 74. We shall
call it the fundamental retarded solution. Usually the condition (c) is imposed on a
surface in the infinitely distant past, i.e. 7, —0c0, and we shall henceforth consider
only this case.
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All retarded solutions can be derived from (7) by inserting the appropriate
tensors for S, by differentiating with respect to the co-ordinates z* a certain number
of times and by contraction of tensor indices with those of the differentiations. The
tensors S may have to satisfy different symmetry conditions in their indices in
different cases, but this does not concern us here. For example, if the field under
consideration is the scalar field, then the retarded potential for a point charge is
simply given by

Uret. — g1 Oret.’ (11a)

with S a scalar function on the world line and g, a constant. The retarded potential

for a dipole is
Uret. — gza/»()f‘et., | (115)

where g, is a constant and we have to write S, for S in (7). S, gives the direction of
the dipole moment. '

If the field under consideration is a vector meson field then the retarded potentials
for a point charge are given by

Ut = g, Onete, (11c)

where we now have to write v, for 8. The corresponding retarded potentials for
a dipole are
U;;et. =g, ovOret. ; (11 d)

wo

and S,, has to be written for S_. Every other tensor field and higher multipole
moment for the particle can be treated correspondingly. The general retarded
potentials for a point particle can therefore be written in the form

Uret = DOeH], (12)

where the operator .D denotes a sum of terms each one of which consists of a different
number of differentiations of the fundamental solution (7) with appropriate tensors
written for § _and contraction of indices. The dots written as suffixes to U denote a
number of tensor indices and determine the spin of the field. The number of un-
contracted indices in all the terms must be the same asin U .

The function which is uniquely and completely defined by the three conditions
that it (@) satisfies the equation (8) at all points of space not on the world line, (b)
fulfils the condition (10) at the world line, and (c) vanishes at all points on and after
an infinite space-like surface cutting the world line at the point 75 is given by

S 5o Ji(xw)
dve — __ LTS . 1
02v- = (K) XLS‘.. o dr (13)

for 75> 1, and zero for 75 <7,. This is the fundamental advanced solution and all
advanced potentials can be expressed in terms of it by

Usdv. = D[0*V], (14)
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where D is the same operator as in (12). The radiation field introduced by Dirac

(1938) is defined by
U}-.ad. — Uf'?f"—— Usidv.

= D[OzH— 0%, (15)
We therefore investigate first the fundamental radiation solution defined by
Of'f"d' = (Qret. Ofxdv.

= (i>r+ ('_S_)a_ X " S Sx) dT—i—Xf:S_” J—l—%@ dr. (16a)

K K —w U

It is convenient to introduce the modified fundamental radiation solution O’rad:
defined by

0'rad. — Ofﬁd'—XJ'w Smtﬁ(;(u) dr

= (%) + (%)~ 8 M [ 5 Aar aen)

K

For later use we introduce explicitly the radiation solution for the specialized wave

equation (y = 0) ) 9 g
=) o5,

K K

Let the field point x# be kept fixed for the moment. The value of u? at a point 7
on the world line can be expressed by a Taylor series in powers of Ar=1—71, for
sufficiently small values of A7,

ou? 1 [0%2u?
u? = (u? +(—) AT+—(—) AT+ ... 17a
e+ (57 ) A+ 55w (47 (17a)

It can be seen at once that none of the coefficients (07u?/077), of this series is singular.
Using (1)-(4) we get in particular

auz aZuZ \
2) — g2 — = — = e = —K!
@ ==et (57) =-2=o0 (55) =20 K)“’[
03u? ” a4u2 _ ‘ 9 m
(o), =2 (5), =200 |
Now at the advanced and retarded points 4? = 0 by definition, and A7 takes on one

of the two values A1, =7,—~7, or A1, =7,— 7, respectively which satisfy the equation
obtained by putting (175) into (17a)

(17b)

€? = (1—K"), (A7)2 — 3 (A7) — 5 (92 + k") (A7) + ... (18a)

The essential feature of equation (18a) is that the coefficient of A7 on the right is
zero since the distance u from the point 2# to the world line is stationary at 7,, and
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the coefficient of (47)2 is rational and tends to 1 as a# approaches the world line.

Taking the root of both sides of (18a) we get
€ 1 " , 1 [o*4+k" 1 k"

i\/(l—Kl) N AT_EI—K’ (Ar) T 24| 1—« +§(1 —k')2

where we have omitted thesuffix ¢ for brevity. This clearly shows that for the advanced

point A7, is obtained by taking the positive sign on the left, while 47, is got by taking

the negative sign. Reverting equation (18b) by successive approximation we obtain

1 K"€? 1 %8 .
Ara \/(1 et aagoep T 0
= e+ Lek’ + Zex? + 1k"e? + L% + O(et). (19)

} (47)3, (185)

We get A7, by reversing the sign of ¢ in (19), as follows directly from (18b). Hence
(41,)" + (41,)™ is expressible as a series in even powers of € only, while (A*rr)" —(dT,)*
is expressible as a series in odd powers of e.

Similarly, expressing the value of « at the point 7 by a Taylor series in powers
of At we get, using the last three of the equations (175),

K =—(1=K") AT + 3k (AT)2+ L(0* + ") (AT)3+.... (20)
The essential feature of this series is again that the coefficient of A7 is rational and
tends to 1 as e 0. It follows that k", where » is an integer, can be expanded as a
series in ascending powers of A7 starting with (47)~", the coefficients of the series
being rational and non-singular functions of /* and the particle variables at the
contemporary point.

Any function of position on the world line expressible as a sum of terms con-
taining only positive integral powers of I# and the particle variables at 7, and positive
or negative integral powers of x can therefore be expressed as a series in ascending
powers of A7 the coefficients of which are rational and non-singular functions of I#
and the particle variables at 7,. If the highest negative power of x be k~™ then the
series commences with (47)~™, thus

farn = 5 f0n) @n, (21)

where f,, is a rational function of /# and the particle variables at 7,. f,, cannot therefore
contain an odd power of e=,/(—1 .*), but may contain an even power of ¢. Denoting
by (f),and (f), the values of f at the retarded and advanced points respectively, we get

Dot Da= 3 fuls 1) {(Ar )+ (A7)

n=—1m .
= ascending series in even powers of ¢, (22)

and (f)r - (f)a, = _Z_: fn(l'ui Tc) {(AT,)” - (ATa)n}
= ascending series in odd powers of ¢. (23)

All functions with which we have to deal in this paper satisfy the conditions laid
down for f.

Vol. 185. A. 17
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The result (23) can be applied at once to (16¢) to show it must be expressible as
a series in even powers of € only. For the Maxwell field of a point charge this fact
has already been noted by Dirac (1938). The series can have no negative powers of
¢ since the greatest singularity in either of the terms on the right of (16¢) is of the
order ¢, and this cannot appear in the series since it is an odd power. Substituting
the value of 7, given by (19) into (20) we get
k"€ 1 92%8

Ky = —€\/(1— K)+§l P Ty - )§+0(e) (24)

Similarly, the Taylor expansion of S gives in conjunction with (19)

(8.)a= (8. )+ (8., )\/ +3(8., Jeq ,+0(€3) (25)
Whence
(%):—‘% _8 18 ’% —8 (§5€f+3x 1326)—3'_“,«—%3__6,+0(e2),

(26)

where we have separated terms of different orders in ¢ by a comma. Reversing the
sign of € to obtain (S _ k), we get

(S_---)T.F (i)a —-— 2S’___, —28 k"~ 28k, + O(e2). (27)

K K

The specialized radiation solution (16¢) is therefore finite as e 0.

The two integrals on the right of (16a) remain finite as the point # approaches

the world line since the integrands always remain finite on account of the well-known
property of the Bessel function

J,(u) 1

u—>0 W = 2np !

(28)

which follows from (9). Hence the fundamental radiation solution given by (16a)
of the generalized wave equation (8) is always finite on the world line. The same is
also obviously true of the modified radiation solution (16b).

Since the right-hand side of (27) only contains even powers of e starting from zero
with coefficients which are rational integral functions of I# and the particle variables,
it follows from the equations (5) that all successive derivatives of this series with
respect to x# can be series containing only positive even powers of € none of the
coefficients of which are singular. All successive derivatives of the left-hand side
of (27) therefore remain finite and unambiguous as the field point approaches the
world line.

Further, by a well-known property of the Bessel function which can be deduced
immediately from (9), we have, for fixed 7,

p gyt
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Ji(xu)
Hence 0,0, ... lu (30)

is always finite even on the world line, whatever the number of differentiations.
Writing 9,, . for this expression for brevity and remembering that

u U
a = [_# ) a = (_# , 3]_
#Ta ( K )a wTr (K )r (B1)
we get

a/t{_f‘:’ws...avp...d‘r_l—ff SaﬂpdT}

u u T , )
= (7‘” S avp...)r'_ (7” S avp...)a'_J‘_.ooS...a/wp...dT +f7aS...aﬂVp...dT' (32)

Both of the first two terms on the right are finite on the world line, and being of the
general form of the right-hand side of (22), all their successive derivatives are also
finite. The two integrals on the right are also finite by (30), so that it can be deduced
by induction that all derivatives of the two integrals on the right of (16a) are finite
on the world line. We have therefore proved that O™d- and all its derivatives are
finite on the world line, and hence the same must be true for Urad- and all its deri-
vatives. The radiation field with all its derivatives is always finite on the world line.
The same is true of the modified radiation field.
From (15) it follows that we can write

[red. — [rad. _ f " D[S___ J_—l(jfu)] dr+ x J wD[Sﬁ_ ﬂ%@] dr, (33)

where U'#d- contains only the sum of terms taken at the retarded and the advanced

points and is expressible as a series in even powers of ¢. It should be noted that

Urad- 2 D[O*a4-] but contains additional terms like the first two on the right of (32).
Now consider the fundamental symmetric solution O™ defined by

Osvym. = %ﬂ( Oret. + Oa,dv.)

2\« ), 2 2),.

Writi raym. = LS _L(8L) Lx([™g Jilxw)
Writing O'sym =§(7)T——2—(7)a+§ ,,S"‘TdT’ (35)
Osym. — Ofiym._zzéfw S-..Jl(jfu) dr. (36)

Although u? is negative and » purely imaginary for points on the world line between
7, and 7,, since J,(yu)/u™ is a series in ascending powers of > as shown by (9), the
integrand of all the integrals is real at every point of the world line and varies con-
tinuously along it.

17-2
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The first two terms on the right of (35) are of the general form (23) and must be
expressible as a series in odd powers of ¢ with rational integral coefficients. All
derivatives of this part must have the same form, though they may be singular to
a higher degree.

Similarly the integral in (35) can be expressed as a series in odd powers of €. For
the value of the integrand at the point 7 can be expanded in a Taylor series.
Denoting the integrand by i(r) for brevity, and writing A7 = 7— 17, as before,

i =% L (24 (arye (37
=3 —l=| dr

n=07! (87% ¢ ’
(9) shows that ¢ is an ascending series in positive powers of u2. All derivatives of it
with respect to T remain series in positive powers of %2, and hence every coefficient
(0m/or™), is a series in positive powers of €2. On integration we get

o & i G2 -,
As proved earlier, each term in curly brackets is a series in odd powers of ¢ only.
The series on the right of (37) must therefore be expressible as an ascending series
in odd powers of € the coefficients of which are non-singular and integral functions
of the variables at the contemporary point. Hence, in the neighbourhood of the
world line O’*v can be expressed as an ascending series in odd powers of €. (For the
Maxwell field of a point charge this fact has also been noted by Dirac (1938).) It is
singular on the world line. It follows by using (5) that O™ and all its successive
derivatives are also and always expressible as ascending series in odd powers of €, each
having a higher singularity than the previous one.

The integrand of the integral in (36) is continuous along the world line. Hence it
follows from (30) that the integral and all its derivatives are finite even on the world
line. Further

© J(yu e J (yu
@) [~ 5. 2% ar f _wS...<aﬂ6ﬂ+x2>wl(§ ir

_ 92 0 J(xu)

since the Bessel function satisfies just the equation obtained by putting the integrand
equal to zero. Hence it follows from (36) that O’s™- satisfies equation (8) at all
points of space not on the world line, and condition (10) on it. All its derivatives
therefore also satisfy equation (8) at any point not on the world line.
Following Dirac we write for the actual potential U2t at a point
[Jact. — Uret. 4 Uin. — padv. | pjout. (39)
Introducing the mean field defined by

Umen= (U + U (40)
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we can also write it Uact: = [sym. 4 [Jmean
= U4 Umesn, (41)
where 7 mesn - mesn_X f ’ D[SWJI—(;‘M)] dr, (42)

the operator D being the same as in (12), (14) and (15). It is clear from (38) that
U’mean gatisfies the equation (8) at all points of space and is continuous and finite
everywhere. We call it the modified mean field.

2. THE EQUATIONS OF MOTION

Certain general results about the form of the equations of motion of the point
particles can be deduced at once from the properties of the radiation and symmetric
fields established above. The equations of motion of the point particle are obtained
by using the stress tensor of the field to calculate the flow of energy and momentum
into a thin tube surrounding the world line. The inflow along an infinitesimal length
of the tube must then be put equal to a perfect differential for conservation of energy
and momentum, and this provides the equation of motion of the point particle.

Let the tube be defined by I = —¢? with constant e. The element of three
dimensional surface of this tube with its normal directed outwards is given by

lPe(1 —«}) dQdr, (43)

d{2 being the element of solid angle about the contemporary point in its rest system
introduced in the previous section. The flow of energy and momentum into a portion
of the tube of length dr is

T,Ve(l1—k;)dQ)dr="T,dr. (44)
i }

The equations of translational motion are then given by putting
T, =4, (45)

where A4 , is some function of the variables describing the state of the particle and
the field at the point 7 and their derivatives.

The stress tensor 7),, is a homogeneous quadratic expression in the potentials and
the field strengths which are linear derivatives of them. We denote by 7,,(U#, U
the more general expression that is obtained from it containing two independent
fields U4 and UZ by replacing one U in each term by U4 and the other by UZ and
then making the expression symmetric in U4 and UE. The resulting expression is
thus linear in U4 and UZB separately and quadratic in the two. The original stress
is just 7,,(U_, U ) in this notation.

For example, the stress tensor for the generalized Maxwell field is

47TT - G G +4gﬂva0Gpd+X (U U 2g,qup Up)’
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the field strengths @, being derivatives of the potentials U,. Then,
4T, (UL, UB) =361, G20 + 307, G4 + 19, G7s G5
+ %Xz( U/‘f UVB + U/I;Uf - g,uv Uﬁ UBp)’

G4, being the field strengths corresponding to the potentials U
Returning to the general tensor for any field, we have, using (41),

L,y =Ty (V2S5 U2k = 1, (U7 U o, 17570 17 mem)
= (U, U5 4 2, (U7, U/ e0) 4, (U7, U/me0m). - (46)

Corresponding to this splitting up we get for the inflow

T,u — T;tsym._l_ T/’umix._,_ T;mean’ , (47)

where 5= f T, (U svm, U5y Pe(1 — k,) A2, (48)
i g f (75w, 7 meom) (1 — ) A2 (49)

and T mean — fT”"( U’mean [7'mean) ve(] — k7)) dL2. (50)

Since U™ and its derivatives can be expressed near the world line as series in
odd powers of ¢ only, it follows that 7,,(U” 5™, U’™) is a series in even powers of
¢ only. As far as the integration with respect to df2 is concerned, ¢ is a constant, and
the only quantities which vary are I” and terms containing it like x,=0"9,, k;, = I,
etc. The integral of a product of say s factors I’l* ... vanishes from symmetry if s is
odd, and gives ¢* multiplied by a constant if s is even. Hence, as a result of the factor
€ which appears explicitly in (43) and (48), 7",5™ is a series in odd powers of ¢ only,
the coefficients of which are just functions of the particle variables on the world
line at the point 7,. The inflow theorem (Bhabha & Harish-Chandra 1944) states that
if the rate of inflow be expanded in a series in powers of ¢, the coefficients of all the
terms except the one independent of ¢ must be perfect differentials. 7"~™ being a
series in odd powers of ¢ has no such term independent of ¢, and hence must be
identically a perfect differential. It has also been proved that the inflow through
two tubes of different shape can only differ by a perfect differential. 7",*¥™ therefore
plays no part in the equations of motion since it can always be eliminated by adding
an identical term in 4. Thus the part of the stress tensor containing only the modified
symmetric field contributes nothing to the equations of motion.

Since U’™ean iy a continuous and non-singular function at all points, 7"™°*® must
tend to zero as ¢—>0 and hence it cannot contain any term independent of e. Ob-
viously, it can play no part in the equations of motion. It also follows from the
inflow theorem that 77" is identically a perfect differential. This can be easily
verified by direct calculation.
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The only significant contribution to the right-hand side of (45) comes from the
terms in 772 independent of €, which we denote by [7"™*],. The equation of
motion must therefore be of the form

A, =[T7>],. (51)
We note that the right-hand side of (51) can only contain U’™®" and its derivatives
multiplied by functions of the particle variables at the point 7, and is linear in them.
Another proof of this result which does not depend on an expansion of the symmetric
field in powers of e is given below.

For a point charge and a dipole the highest singularity in U’5™ is of the order
€2, Since the integration over d of a function multiplied by the factor (43) gives
at least a factor €3, no term containing U’™¢" can appear in the equations. The
equations only contain the field strength G"™®n and its derivatives. This result is
quite general and true also for higher multipoles, as is proved by one of us (H.C.)
in the paper which follows this.

Since U’™¢n contains an integral from — oo to co it might appear as if the motion
of the particle at 7, depended not only on the motion of the particle in the past, but
also in the future. Using (42), (40), (39) and (33) we see, however, that on the
world line

@z, = o+ vy, =27 p[8, A or

= @)+ 3 - v, X[ 7 D5, A | gr

- @+ 4 -x [ [ 5,29 ar

= (UR)o+ (U 2T, (52)
which clearly shows that the motion only depends on the actual motion of the
particle at 7, and in the past. Itis reasonable to interpret 3(T*d"), as the field giving
the effects of radiation reaction, and the last integral as an addition to the ingoing
field due to the particle’s own motion in the past. It has already been mentioned
that U™ is not just D[O*4-] but contains in addition the terms which result from
the differentiation of 7, and 7, in (16a) with respect to x#, as, for example, the first

two terms on the right of (32).
We also note that

U’sym. —_ Usym._}_chw D[S Jl(Xu)] dT
oen .o 2 w cess U
- oe—jue+ X[ pfs A g,
= Ureh— U, (53)
The last term is continuous everywhere. Hence

2rxd, = [ 2 [k vy e -y a2 ] (54)
0
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This gives precisely the mixed terms calculated in the previous papers with U’mesn
substituted in place of the U™ which appeared in them. The process of finding the
actual equations of motion therefore becomes very simple. We merely calculate the
term independent of ¢ in the inflow using the mixed part of the stress tensor, and
then substitute U’ ™ given by (52), in place of U™, The only part of the calculation
which is at all cumbersome is the evaluation of U™ required in (52). A convenient
way of calculating this part is given by Harish-Chandra in the paper which follows
this.

The general results established above hold also for the rotational equations. To
calculate these use has to be made of the angular momentum tensor M, ,, instead
of the stress tensor. Since

My =03 Ty — 2, Ty, = (LT, —1 T)lv)+(z)\ w— 2T (65)

we see at once that precisely the same arguments hold as before and the same result
follows. Using (51) we have

[ fMAﬂV U/sym Ulmean) l”e(l Kc) d‘Q:l [Mlmlx ]0 {zA[T/mix ]0_ 2 [T’mlx ]0}

, d
= [M/\ﬁﬂx']o‘*‘;i‘;(zAAp—zﬂAA)—(”AAp—”ﬂAA)’ (56)
where

s 'mmlo—[ j{la (D775, [yrmesn) _ 7, (T77svm. {77menn) fre(1 — k) dQ. (57)

The rotational equation must therefore have the form
By, +mnd,—v, 4, = [ ME],. ; (58)

We give an alternative proof of (51) which depends upon the symmetry existing
between the retarded and the advanced points. This method of proof avoids the
necessity of expanding the various quantities involved in series and therefore has
the advantage of compactness. The retarded and advanced points are defined by
(6) and indeed 7, is that solution of (6) for which (U,),> 0 and 7, that solution for
which (u,), < 0. It is clear therefore that in every equation which does not explicitly
utilize the condition (u,), > 0 or (%,), < 0 we can always replace r by a and vice versa,
because whatever holds for 7, would also hold for 7, and conversely. In particular
this symmetry is exhibited in differentiation :

u U
0,7, = (?ﬂ) 0,7, = (7/‘)“

2uw), = 03— (" 4y

K

2u)a = 07-("27) . (59)

K
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Now if we interchange @ and r in (35) O’5Y™- changes sign. O’5™- is therefore anti-
symmetric in the indices @ and r. From the symmetry shown by (59) in @ and r it

follows that
U = D[OS™]

is also antisymmetric in @ and r. On the other hand, the modified radiation field
(16b) remains unaltered by an interchange of @ and r. Therefore 0'*d- and con-
sequently U’ is symmetric in @ and r. The same holds for U’™® ag is obvious
from (42).

We calculate the inflow into two tubes surrounding the world line, called the
retarded and the advanced tubes respectively, defined by the equations

k,= €=¢, (retarded tube), } (60)

Kk, =—€e=¢, (advanced tube),

where ¢ is a positive constant. The intersection of these two tubes with the future
and the past light cones starting from 2#(7) respectively are called similarly the
‘retarded’ and the ‘advanced’ spheres of radius € at 7. The three dimensional surface
elements of the two tubes with the normals outwards can be written as

48 = ok, dQ,dr (for retarded tube), } (61)

sy, = — 0k, d2,dr (for advanced tube),

where df2, is an element of surface of the two dimensional retarded sphere of radius
€ at 7 and similarly d©, is an element of the surface of the corresponding advanced
sphere. The difference in sign in the two equations in (61) is important and arises
from a similar difference in (60), where increasing € corresponds to increasing ,
and decreasing k.

For brevity put fT/“’(U 4 UB)3,k,dQ,=THUA,UB), (62a)

f Tw(U4, UE) 3, k,dQ,=THUA, UP). (625)

Let I# denote the rate of inflow calculated on the retarded tube and I# that on the
advanced tube. For the equations of motion the significant part of the inflow is the
part of these independent of ¢, which we denote by [1#], and [14], respectively. Then
by (46) and (62) we get

[ L4y = [THU ™, U)o+ [2TH(U™, Ul (63)
and U5l = —[THUE™, U] — 2T (U™, U0, (64)

For calculating 7T#U’Sm- U’sym) and THU'S™-, U’s¥™) we have to put
U4 = UB = U’ in (62). Since U’*¥™ is antisymmetric in @ and r it follows that
T,(U’ s, U™ is symmetric in @ and 7. Thus it is easy to see from (62) that if we
interchange* a and r in the calculation of 7#( U’ V™, U’#V™-)we get T( U’ 5™, U’ 57m-),

* This interchange also implies interchange of €, and ¢,.
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But [TH(U’sv=- U’sym.)], is independent of € and is a function only of the particle
variables at 7 so that the interchange of a and r does not affect it. Therefore we

must have
[TH U™, U]y = [THU ™, U™, (65)

On the other hand, since U’'™®" js symmetricin @ and r while U’*"™ is antisymmetric,
it follows that 7'»(U’svm. [J'mean) must be antisymmetric in @ and r. Therefore by
an analogous reasoning

[THUZE™, Ulmeem)]y = — [TRUZE, UTem)],. (66)

Therefore on subtracting (64) from (63) we get
[L4lo—[18]o = 2§ THUT™, UT57™)). (67)

The left side being the difference between the rates of inflow on two tubes is a perfect
differential and therefore so also is the right side. From this (51) follows immediately.
Since U’#v™- gatisfies the wave equation (8) at all points not on the world line, it
follows that
oL, (U™, U5 = 0,

except on the world line. We can therefore take for the modified stress tensor of
the field, _
T;w = T/w - T/,w( Ufﬁym.> U,Sym)
= 20, (U5, U meen) + T, (U7 een, U7mean). (68)

This tensor satisfies the conservation equation except on the world line and leads to
the same equations of motion as the original tensor. It has the advantage that the
worst singularities of 7, which are contained in the part 7),(U’*™, U’*™) are
absent from it. It does not contain in particular, the infinite static field energy of
the point particle. The new angular momentum tensor is then defined by (55) with
T, in place of 7T,,.

The theory given above can be generalized immediately to the case of several point
particles. The modified symmetric field U’57™-© of the sth particle is defined pre-
cisely as in (35). The actual field can then be split into

U?ft‘ — Uf‘r!nean + §1U’ ﬁYm~(S), (69)
s=
n © (s)
where [//mean — 1([Jin. 4 [yout.)_ ¥ 72_< J‘ D S(s)'fl(?)f—gs):l dr®
s=1 —
- U+ R AU, (70)

u® denotes the distance from the point 2# to the point 249 on the world line of the
sth particle. The equation of the sth particle is then

AP = [T, (Um0, U/ meno)],, (T
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where Ufflean(s) = Uf.xfuean 4 2 Uf iym.(t)
t*s
— Uact. _ U/ sym.(s)

= [in. + Z Uret.® +%U’rad.(s)
e T

— Uin.+ 2 Uret.(t)+ %ﬁr&d.(s)_xjw D[S(s) JI(X(Z)(S):I AT, (72)
wh s e 0 Y T e
It has already been shown that 7),(U’s™-@), ' #-6)) has no effect in determining the
motion of the sth particle. Since U’5™-® ig certainly finite and continuous on the
world line of the other particles, it is clear that this part of the stress tensor also

has no effect in determining the motion of the other particles. Hence we can take
as the modified stress tensor

n
T;W = T/‘,, — EIT'W( U7sym. @) []78ym. ()
s§=

= 31, mm, sy 3 3, (R0, U, (1)
s=1

s>t=1

This tensor is conserved and gives the same equations of motion for each particle
as T,,. It also has the advantage that it does not contain the worst singularities
contributed by the static field energies of the individual particles.

Finally, it may be mentioned that a ‘Wenzel’ field can be introduced in the
general theory treated here just as in the case of a point charge moving in a Maxwell
field (Dirac 1939). We take the world line of the particle to extend from —oo to a
point 75. Now define the fundamental Wenzel solution for the particle by

( T
—ij S__.:Il%é@dT for r5<7,,

oY (z#) = (%—) —thr S_"%d’r for 7,<Tp<T,,

S.. ‘S_ b Ji(xu) JTB Ji(xu)
-(?)r+( pe )a—xf_wS_“——u—dT-i—x . S—u dr for r,<7p. (74)

The first condition is satisfied when the point x# lies in the future light cone of the
point 75, the second when it lies dutside the light cone, and the third when it lies in
the past light cone. This field is clearly just O*% — 0347 ag given by (7) and (13) for
a world line that extends from — oo to 75 only. With the help of the Green’s function
given by one of us in an earlier paper (Bhabha 1939), which is a generalization of the
relativistic delta-function of Jordan and Pauli, O% can be written in the form

0" = f 8 Greau)dr, (75)
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where { 20(u?) — Xil(—i@ for u?> 0, u,> 0,
Grad (2] = | 0 for u? < 0.
| —20(u?) + X‘ll(—;@ for u2> 0. (76)

G4 gatisfies the generalized wave equation (8) at all points not excepting u# = 0,
and hence O satisfies (8) at all points including those on the world line. Define the
generalized Wenzel potential by

U¥ =Ux+D[OY]. (77)
Now if A* be a small time-like vector, then it is easily seen that

Lt U (24(r )+ A) 4 UV ({1 ) — M)} = U™(24) + T80 ()
A—>0
~x[™ D[ 8.2 ar = vrmeanien. (79

This is precisely the field (52) which enters into the equation of motion (51) of the
point particle.

If n particles are present we have simply to define the generalized Wenzel
potential by

Uv — Uin 1 3 U0, (79)
s=1
where U6 = D[OVY)],
and it follows at once that
Lt H{UW (249 A1)+ UV (219 — A#)} = U 1moanis), (80)

A—>0

which is the field that determines the motion of the sth particle.

REFERENCES

Bhabha 1939 Proc. Roy. Soc. A, 172, 384—-409.

Bhabha & Harish-Chandra 1944 Proc. Roy. Soc. A, 183, 134-141.
Dirac 1938 Proc. Roy. Soc. A, 167, 148-169.

Dirac 1939 Ann. Inst. Poincaré, 9, 13-49.

Harish-Chandra 1944 Proc. Roy. Soc. A, 185, 269-287.


http://rspa.royalsocietypublishing.org/

