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Abstract. Screening of a moving infinite color sheet source is examined in a quark plasma
at finite temperature. The classical chromohydrodynamic equations for quarks are integrated,
to obtain profiles for quark current density, which in turn are used to solve the SU(2) Yang-Mills
equations numerically. This provides a classical but non-perturbative treatment for the
screening of a moving source in quark plasma.

The results show two interesting features. We observe that if the test source is at rest the
screening does not depend on the color dynamics and the behavior is very similar to that in
Coulomb plasma. When the test source is moving with non-relativistic velocity the non-abelian
features manifest themselves by weakening the screening and also by exhibiting an oscillatory
profile with distance. :
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1. Introduction

The screening of a color electric field in quark gluon plasma (QGP) s of considerable
interest since it is a reflection of collective behaviour of the system and also because
it leads to signatures for detecting the formation of QGP in the laboratory. For
example, it was proposed that if the plasma is produced in heavy ion collisions, then
due to screening effects charge anti-correlations [1] between pions of similar rapidity
and production [2] of J /¥ (cc) mesons would be suppressed.

Early estimates of the static screening length have been based on perturbative
QCD [3] and classical kinetic theory of abelian plasmas [4]. One obtains standard
results at bare 1-loop level in QCD and the linearized calculational level in classical
theories. Static screening phenomenon has been studied non-perturbatively using
lattice methods [5] and one finds the usual form of the screened potential. Screening
of moving charges in a quark-gluon plasma is a problem of great interest because
of its direct relevance to signatures (J/¥ suppression) from heavy-ion collisions.
However, such calculations have so far been done only in the abelian limit [6] by
using the methods of classical Coulomb plasma physics [7]. It is therefore of
considerable interest to extend these classical calculations into the non-abelian
non-perturbative regime. This is especially important because presently there are no
known quantum field theoretic techniques which can be used to study this problem.

In this paper we analyze the non-abelian screening of a moving test source in a
classical quark plasma. We restrict our attention to test particles travelling with

non-relativistic velocities V2 /c? « 1. This is justified for considering J/\ screening in
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current experiments (such as NA38 experiment) where the transverse momenta of
the particles is peaked around pZ. ~ 0-6(GeV)*/c? « m;,,, [8]. We have also not included
effects due to the energy loss dE/dx of the test particles. As shown by Gyulassy and
Thoma [9] recently, this effect is also negligible for a slowly moving heavy particle.
We may now emphasize at the outset that for studying the screening problem it is
not essential to use kinetic equations. In fact in Coulomb plasmas it is standard
practice to use fluid equations [7]. Moreover to simplify the calculations further one
often uses slab geometry [7]. We basically follow this approach in order to carry
out a non-perturbative study of screening in quark matter. For this purpose we have
extended the color hydrodynamic (CHD) equations for quarks derived by Kajantie
and Montonen [10] by adding a pressure gradient term in the momentum balance
equation and coupling it to an equation of state for the massless quark gas. The self-
consistent Yang-Mills equations in the presence of the test source are then solved in
the slab geometry. We find that non-perturbative color precession effects produce a
significant weakening of the screening of a moving color sheet source.

It ought to be mentioned that in a classical non-abelian theory there is an inherent
difficulty in studying the screening of a test charge, because the charge of the test
source can flow into gauge fields and vice-versa. This question has not been adequately
addressed in earlier classical studies of screening in QGP. Consequently, in this
paper, we use the expression for an effective Debye length to define a gauge invariant
charge to study the non-abelian screening,

Section 2 contains a description of the basic equations used for studying the
screening. In § 3 we discuss the screening for a static and a moving source, and present
numerical results for a few sample cases, from amongst a large number of investigations
that we have carried out. It must be pointed out that the broad qualitative features
of oscillations and of weakened screening of a moving source, are present in all our
numerical studies having different boundary conditions and values of parameters.
Finally, §4 contains a brief summary and conclusions.

2. Basic equations for screening

The CHD equations [10] describe the quark matter fluid in terms of three dynamical
quantities, the gauge invariant number density n(x, t), the gauge invariant velocity
field V(x,t) and gauge covariant color charge I,(x, ). Gauge transformation properties
of these hydrodynamic variables and the CHD equation have been discussed in [11].
" As mentioned earlier wé have extended these equations by including a pressure
gradient term in the force equation, and an equation of state relating pressure with
temperature. The equation of state is chosen in such a manner that it account for
the ultrarelativistic internal motions of the plasma particles. The basic equations are,

on,

A Vm,V,)=0 1
” 4V 4) f)
ov 4 1
myl ——+V,VV, =91Aa[Ea+VAXBa]“'“VPA )
ot ny
l 4, 0
o +V, Vi, |= —geabc[Ab —VA-Ab]IAC | (3)

where m, and P, denote the mass and the pressure of particles of specie 4 and the
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- components of color electric and magnetic fields E, and B, are respecti
i ; ; 1C al e . pectively defined
by E{ = Fi® and B, = — 1g*FI* Here F* is the color field tensor
Fit = 00 A} = " AL+ e,y ALY @
with Lorentz indipes p V= 0,1,2,3 and (SU(2)) color indices a =1,2,3. In (2), there
wop1§1 be a term _1nvolv1ng collisions between particles belonging to different species.
This is neglected in the present work and the justification for it is given in Appendix A.
The color fields are governed by the Yang-Mills equation
0,F + gy A Fv =], (5)

abc’ " b

where the quark (four) current j is expressed in terms of the quark fluid variables
according to

jg:ggnﬂ,‘a, _ 6)

Jo= ggnAVAIAa' ' N

Using (1), (3), (6) and (7) one can readily show that the covariant current continuity
equation is identically satisfied [8]. In the absence of any perturbations, the plasma
is assumed to satisfy a color neutrality condition Z,n 0] 4a, = 0. This strictly follows
work of Kajantie and Montonen [10] and physically assumes that each color is
separately giving color neutrality because of several compensating species in
equilibrium. This color neutrality permits a wide class of non-abelian phenomena
[10, 11]. Tt is true that a more general form of color neutrality may be essential in a
baryon rich QGP. We have not investigated this more general class of non-abelian
problem due to their complexity.

For the equation of state (eos) and number density we choose the ideal relativistic
gas equations, ‘

P,=hN,T} | )
n,=dN,T} | ©)

where N, is the number of degrees of freedom and h and d; are factors which depend
upon the statistics. For an SU(2) massless quark gas of a single flavor N;=4,

_7 = _314)
hs = g\ig‘(‘)] and ds—-4[ n2 ]

The above equations have been written for the quark component of QGP. It _has
recently been pointed out by Elze and Heinz [12] that gluons can also have 91assmal
dynamic equations similar to those of quarks (i.e. Eqs (1)~(3)). If such equations are
included in the treatment, the contribution of gluons will simply add to that from
quarks and define a new plasma frequency and a new screening le.ngth.' We thus
expect that for the non-abelian problem also the addition of new species (Viz. gluons)
is not going to change the qualitative conclusions significantly. .

The basic problem we wish to consider is the screening of a moving test charge

that is introduced in the QGP. For simplicity, we consider 2 moving infinite sheet
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charge as the test source; this reduces the problem to 1-d (z) variations (for similar
simplifications in Coulomb plasmas see ref, (7)). The test charge polarizes the plasma
and we solve the self consistent Yang-Mills field equations coupled with the plasma
response to analyze the screening effects. We consider a plasma consisting of two
species (particles and antiparticles) and go to a frame in which the test source is at
rest but the plasma is moving. In this frame when no perturbation is introduced, the
two species move with equal velocity ¥, in the z-direction and have equilibrium
density n,. The color neutrality condition in equilibrium is I, = —I,,; and hence

. 0
the equilibrium current is zero. We consider a steady-state ( P 0 ) and drop the

coupling to magnetic sector (A} = A% =0) since the’ velocity of the test source is
assumed to be non-relativistic (V, « 1). Finally, we make the gauge choice A2=0
and write the equations for screening as

4240 |
dzza = — 9;",114‘1 —4ngK 5(z), (10)
dA°
gsabcAS d_zc = g;”A VAIAa’ ' (1 1)
g )
E;(n,i Vi) =0, (12)
dA° 1dP, _
Tg,—2=—— "2 13
9l dz n, dz (13)
dl
VA—EZ'E = — g8, A, . (14)

In (10) K, is the color charge component of the test sheet source. An interesting
non-abelian feature is seen in (11) (Ampere’s law) where, unlike the Coulomb (abelian)
plasma, the steady state currents, affect the static potential in the non-abelian plasmas.
In writing (13), we have ignored the mean energy of each specie compared to the
thermal energy of that specie i.e. m VAT 1~ This is justified as the thermal velocity
of the plasma particle is comparable to the velocity of light (due to the choice of €0s).
The covariant current conservation equation for the present case takes the form

d . :
d_;-]a +g8abcAl?Jc(') = O

Note from (10) and (11) that j0 = — d2 A}/dz* and j = g€, Ay dA° /dz (remembering

that the test charge K, being at rest in the frame of calculation, contributes to 70

but not toj ). Substitution in the above equation shows that it is identically satisfied.
Equation (12) may be readily solved to yield '

nVi=nV,=n,V, , ’ :I(15)

Combining (15) and (11) one can find

1 dA?
Ila+12a=n % SabcAgE
0’0

(16)
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Classical quark plasma

We can now express {,,, T, and n in terms of I, , and A? and obtain the final
equations for screening in the dimensionless form

d*A4 1 pd dA4 pd 3
¢ =1,(I,A 4= (I Ap) — gy Ay — —— -

iz (I5Ap) 3 4h, (IpAp)” — oteg b4z [1+4hsIsAb:| S
(17)

dIa 6ds :

—d—iz —a[l —"4—h—‘SIbAb} aabcAbIc' (18)

We define
3N d? '
AI;Z:\:-—————ZZ S:lgzigTé (19)

which can be identified as the linear (‘perturbative’) Debye length and the scaled
variables are Z =z/A,, A,=aj A%, I,=ig'1,, where a, i,, T, are normalizing
factors and S, is the source term. We also introduce the dimensionless parameters
=gaOAD and ﬁ:gioao ,
0 0
ratio of ‘average’ potential energy per particle to average kinetic energy and as in

Coulomb plasmas is given by = Jlofo

o

. The dimensionless parameter j essentially measures the

~(nA3)~'. The parameter o characterizes

0

the strength of the non-abelian terms in Egs (17 and 18) and may also be written as
gaoAp oAbe, |2 , . Vi

o == ” =gf| —= where ¢ is the mass density, akh‘:mno—-z— and g, the

0 kin

thermal energy of plasma particles. For a typical QGP that might be produced in

heavy ion collisions A ~ 1/4—1/3fm, g, ~2—5 GeV/fm? and with V,, <04, we find

B~10"'—10"2and a =g 1072

3. Screening effects for static and moving sources

First we consider the screening of a moving test charge. Equations (17) and (18) may
be combined to generate an equation for I,A4,, viz.

d2(I,4,) d4, 6
dz? N [Iﬁ - 6a91a6“bcAb—dE] [1 ¥ ?(IbAb)z (I,A4,) =S (20)

where 0 = %f The ‘potential’ energy 1,4, is a gauge invariant quantity in the static

s

(g =O> case and the equation above shows that it is screened by a non-abelian
t
Debye length Apy,, which is a dynamical quantity given by the gauge invariant

expression

A2 —'[12—6a91 e, A %:l [1+0—2~(I A )2] | (21
DNA — a a“abc bdZ 3 B“h :

From (23) we may also define a gauge invariant charge Q2 = I2 — 606l £, 4,(d4,/dZ)

inv
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which takes into account exchange of color charge with the gauge fields. This
expression is similar to that obtained in earlier studies [13] of color screening in
classical Yang-Mills theories with an external source.

Next we demonstrate that for static charges (V;, V, = 0) we recover the usual abelian
screening results. From (15) we note that since n, and n, are finite even when Vo—0,
Vo/V 4 must also stay finite in this limit. If we now mutiply (16) by V, or V, and then
take limit V,, ¥, -0, we get the constraint conditions,

dA4,

vag = 0. | (22)

e, A

abc

In this limit A, and (d4,/dZ) are vectors parallel in color space. Consequently, the
non-abelian term disappears from (20) and the right hand side will become function
of 1,4, only. Thus, in solving (20) the dynamics of I, (Eq. (18)) is redundant and the
screening behavior is similar to that of a Coulomb plasma. It should be noted that
the covariant continuity equation for quark current would give, in the limit V,—0,
e ApI. = 0. However, as we have used both Gauss and Ampere’s equations, the
constraints arising from the continuity equation are not neccessary. Finally on
integration, (20) gives (for ¥, —0) the well-known Debye screening result with the’
Debye length A, given by the “perturbative’ expression, Eq. (19).

In order to study (17 and 18) further, we first look for conservation laws. We find

Y. I? = constant, (23)

dd, 7 6 ‘
Z[dz ] - (IbAb)2 - F(IbA‘b)‘t =E, (24)
Y e M? — %Ibe =M, L)

- where M_ =¢, A,(dA /dZ) and M is a constant. Equation (23) is an obvious reflection
of SU(2) color algebra and allows precession of color charge I keeping its magnitude
constant. Equation (24) may be interpreted in terms of field energy and thermal
energy of the particles. Unlike an oscillatory solution where there is a conservation
law for the sum of field and particle energies we get for a screened system, an invariance
of the difference in energies. It implies that the particle and the field energies are
simultaneously large or small so as to preserve the difference. As regard (25) we note
that M, M, and M are related to color charge fluctuations of the Yang-Mills fields.
The second term of right hand side of (25) is a consequence of the exchange of color
charge between the fields and particles.

We would like to emphasize that all the important quantities described above and
subsequently used below in numerical calculations viz. ILE, ILA,, Q% and the
conserved quantities are gauge invariant under the class of static gauge transformation
U = U(x) as A° transforms covariantly. The gauge invariance of Q2  has been explicitly
demonstrated for general case in [13].

To fully investigate the novel qualitative and quantitative features of non-abelian
screening we must solve eqs (17) and (18) numerically. Before proceeding with the
numerical solutions we must specify the boundary conditions on the variables A,
1,, (dA4,/dZ) etc. However, all these variables are gauge dependent. To study the
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screening in a gauge invariant manner, we construct useful gauge invariant quantities
such as potential energy, the force I E_, the gauge invariant charge Qizm, and use these
and the three invariant given by eqs (23-25) to specify the boundary conditions. As
the fields are screened at large distances, we expect the non-abelian field strength to
vanish at distances large compared to Debye length and to have I E —»0,1 A —0
and Q2 —I% as Z— 0. o o

In figures 1 and 2 we have plotted the gauge invariant force (-— I d{—lﬂ =IE ) on
“dz

a color charged quark fluid element as a function of distance from the test source.
This way of studying the screening has advantage over the usual potential vs. distance
plots. This is because two different sets of boundary conditions related say by a global
gauge transformation can give very different behaviour in the potential vs. distance
plots [14] while IE vs. distance plots remain invariant. For this reason the non-abelian
screening can be studied uniquely in terms of physically meaningful gauge invariant
quantities.

In order to study the effect of the velocity of test source on the screening, we vary
the parameter . Clearly a change in the value of a will alter the values of the gauge
invariant charge (eq. (21)) and the conserved quantity M (eq. (25)) at the boundary.
To ensure that the six gauge invariant physical quantities mentioned above remain
fixed at the boundary we vary the boundary values of gauge dependent quantities
A,, and (d4,/dZ). Indeed, it is found that under the transformations a —o' =0 +d
and A,— A, where,

1-— d I,A,dA, o
¢ w+d IE dZ o+d

(26)

a

IE
>
T

0
-15 -1.0 -0.5 00 05 1.0 15 20
Z

Figure 1. The screening of the force I1E(=I,E,) acting on a fluid element at a
distance z from the infinite sheet test charge. z is in units of “perturbative” Debye
length. The value of the parameter f is 0-1.

The upper curve repesents o = 15 case and the lower curve corresponds to a =2
case with the boundary values of the gauge invariant quantities /,4, = (-8569683,

I,(dA,/dZ)= — 085696827 and Q2 =(0:9961094. The values of the conserved

inv

quantities are E = 0002824, M = 11-49416 and Y, 12 =0:9961.
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Figure 2. Caption same as figure 1. The upper curve represents the case o = 15
and the lower curve corresponds to o =2 case with the boundary values of the
~ gauge invariant quantities I,A4,=09901809, I,(dA4,/dZ)= —0-8162973 and
Q% =1-101744. The values of the conserved quantities are E= —0-37477,

M =1546753 and ), I?=1-1.

all the physical quantities at the boundary remain fixed. Further it clearly shows that
when d — oo (i.e. V;—0), A, become parallel to (d4,/dZ) as should be the case.

The numerical approach we adopt is the fourth order Runge-Kutta method, with
variable step size. The conserved quantities defined in (23)—(25) are used as checks
for accuracy of the numerical integration scheme. In the numerical integration, it is
necessary to specify the boundary conditions with high accuracy (i) to make certain
that the equations give a screening (not an exponentially increasing) solution and (ii)
to ensure that the constancy of conserved quantities is good to several significant
places. :

Figure 1 shows the force for two values of a viz. a=2 and a=15; higher «
corresponds to slower moving particles. In order to compare the abelian screening
with the non-abelian one, we integrate the equations backward from a point far away
from the charge. The value of I E, at this location (Z = 2 in the figure which is two
abelian Debye lengths from origin) be the same. As we integrate the equations towards
the source we go up to value of Z where I, E, again takes the same values. This is
because we expect the I, E, near a source to have the same magnitude. Thus we
notice from the figures that the source for the non-abelian case (lower curve) is located
at a farther distance from Z = 2. First we note that the force shows typical screening
behavior. Treating fall-off distance of IE as measure of scrgening length we find that
screening is weaker for higher velocity (lower a) by 38%&0 Figure 2 shows similar
results for a different set of boundary conditions and again shows a significant
weakening of screening (62%) as a function of particle velocity V,. It is also noted
that non-abelian effects lead to a novel oscillatory behavior of IE over and above
the mean screening effects (clearly seen in figures 1 and 2). These new features may
be understood in terms of non-abelian effects that lead to a precession (see (14)) of
the color charge vector of the fluid element. As a result its orientation is not always
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opposite to the color vector of the moving charge, and therefore a larger distance is
needed to screen the field of a moving test source. These are qualitatively new effects
and have not been described before. It is clear that as « increases (and velocity
diminishes), the oscillatory behavior should diminish and screening becomes more
and more abelian. This is demonstrated by our numerical results.

It should be emphasized that over many different sets of boundary conditions, the
numerical solutions have been studied and it was found that the qualitative features
of the solutions are similar. Hence, the general features of our results are independent
of any specific choice of parameters and the boundary. conditions. The numerical
results presented are merely representative of a large set of parameter choices and
boundary conditions.

4, Summary and conclusions

To summarize, we have investigated the dynamic screening of an infinite color sheet
source, moving in quark matter. We find that non-abelian effects lead to a significant
modification of the screening of a moving test source. Firstly, there are oscillations
in the screening behavior and secondly and miore importantly there is significant
weakening of the mean screening. The former effect is similar in nature to non-abelian
longitudinal plasma oscillations discovered recently by the authors [11]. The latter
is a consequence of the precession of the color charge vector of the screening plasma
fluid, which weakens its screening effects.

It ought to be made clear that the well-known non-perturbative, non-abelian
problem of magnetic mass [15], that would remove the infrared divergences [15],
in perturbative QCD at finite temperature has not been examined by us. As pointed
out by Nadkarni [16], due to the infrared problem, a non-perturbative study is
required even for the static screening of a color source. Thus, our omission of the
magnetic effects has prevented us from studying this question. All the same, we have
shown that, for moving sources, there are new non-abelian effects in the purely electric
sector due to precession of color charges. A full treatment of the screening problem
would include these new effects together with other non-abelian features arising from
the magnetic sector. . ' _ ,

Finally, it is interesting to speculate that, the weakening of screening due to
non-abelian effects found by us, may also contribute to the increase of survival
probability of J/¥ with pr that is experimentally observed [8].

Appendix A

If two species interpenetrate, there would be some transfer of momentum from one
~ specie to another. In this situation, the equation of motion for the two species can
be (phenomenologically) written as

av VP,
m[ atl +V1'VV1:| = gllu[Ea +V1 X B“] - —;;—I— B vm(vl —V2)= (27)
1

: VP
R R R R A
2 .

 Here v is the collision frequency, which is related to the mean free path and the
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thermal velocity (¥, by the formula v=(¥,>/l. In the equations above, one can
take the length scale for the pressure gradient term to be of the order of screening

mlVo>

length Ap. Thus, we may neglect the collision term if n—r; > V, where, V, is
D ‘
the hydrodynamic velocity.

We take the Debye length A ~ 1/4 — 1/3fm, and the mean free path [17] I = 0-5fm
for a QGP with energy density ¢=2 GeV/fm?, so that Ap/I~ 1. Now for a high
temperature plasma, in which the test particle has a large rest mass (m, > T) we have
{Vy>/Vy> 1. Thus, for the model studies discussed in this work the neglect of the

collision term is justified.
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