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flow in heavy-ion collisions
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Abstract. The role of filamentation instability of quark-gluon plasma, in explaining collective
phenomena in relativistic heavy-ion collisions, has been analyzed. Using equations of SU(2)
two fluid color hydrodynamics it is shown that this instability can significantly enhance nuclear
stopping and might confribute to collective sideward flows.
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Recently certain models [1] of nuclear collisions have shown that collective effects
may become very significant in collisions of very heavy nuclei at relativistic energies.
Numerical studies have shown that for Pb—Pb collisions, complete stopping may
occur and collective sideward flow would be generated. The collision experiments of
very heavy nuclei at this energy (~ 200 GeVA) have not yet been performed [2] but
one tends to take the predictions of the models seriously because these models have
been successful in explaining experimental data and observed partial transparency
in collisions of light nuclei. A drawback of these models is that they require detailed
and involved microscopic description of nuclear collisions [3] which fails to give one -
an insight into the observed collective phenomena. As a complementary intuitive
picture, it is therefore important to look for a simple QCD based collective mechanism
which can exhibit similar specific features. In this paper we consider one such
mechanism viz. the filamentation instability.

If we assume in conformity with collisions of light nuclei, that transparency would
set in collisions of heavy nuclei at energy ~ 200GeVA, then the nuclear collision
may be regarded as counter streaming color fluxes. Under these conditions instabilities
related particularly with plasma streaming [4] are of interest. It is well-known that
for relativistic plasma streams, the most important instability is the so-called
filamentation instability [4], which leads to stratification of initially homogeneous
and oppositely directed plasma fluxes interacting via mean vector fields [4] (gluon
field for QGP). The mean fields are mixed waves (longitudinal + transverse) which
for strongest instability have the propagation vector in a direction perpendicular to
the stream velocity [4], We have used SU(2) color hydrodynamic [5] (CHD) equations
to describe the filamentation instability. Our work differs from earlier works [4] in .
that it describes both linear and non-linear aspects of filamentation instability and is
therefore able to address questions related to collective stopping and sideward flow
generation. We believe this is one of the first studies [6], which includes full non-
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abelian physics for examining dynamic collective phenomena of QGP in classical
limit. Basic CHD equations, which can be obtained from the QCD Lagrangian [7],
contain three continuous physical quantities: density n, velocity field V and color
charge vector I, (a=1,2,3) which are functions of space-time and their dynamics is
described by CHD equations [5]

Ong + V- (nyV4) =0, _ 1)
oV, +V,VV, =(g/m,)/1- ViIAa[Ea +V,xB -V, (V,'E))], (2
O p, + VoV, =— ggabc[Al? = VAl 3)

In (1)-(3) the suffix A and m, denote species label of color particles and mass of -
species A respectively. For light relativistic quarks mass m, is replaced by (enthalpy
density/number density) for the relevant quark fluid [57; this then reproduces well-
known perturbative QCD results. ¢,,_is the Levi-Civita tensor-and A5(u=0,1,2,3)
are SU(2) gauge potentials which satlsfy Yang-Mills equations 9, F3* + ge,, A, Fi* = Y =
b Here ,J» represents matter current which can be expressed in terms of CHD variables
asjo= gZ nJd,,and j, =gZ,n,V,I,, . Equations (1)~(3) together with Yang-Mills
equations form a closed set of Lorentz and gauge covariant equations [8] which
describe the evolution of the QGP self consistently. It should be noted that among
the CHD variables n, and V, are gauge invariant quantltles while the color vector
I,, transforms gauge covanantly [8].

We consider the simplest SU(2) color hydrodynamic model for the nuclear collision:
two species A= 1,2 having the same mass are counter streaming with velocity
+ Vo(~ 1) in the z-direction and their anti-particles are assumed to form an overall
static colour neutralizing background. This is a simplified model for the true dynamics
and its justification is given below. Both species are assumed to have homogeneous
equilibrium densities and colour charge vectors which are assumed to be equal. We
consider a filamentation mode propagating along x with electric field components
along x and z and magnetic field components along y. After linearizing the equations
and taking perturbations of the form exp[ — i (kx wt)] and making the gauge choice

A° —O we obtam the dlsperswn relation w? —k2/2[1 +\/ a+ 8w2k 2)] where,
co =g?p,I%,/m and p, is the equilibrium number density in the rest frame of color
stream. Clearly the negative root of the dispersion relation glves rise to an instability.
As w? increases with k, the most unstable modes have k> 2 and in the lowest
order in w?/k* one gets w? = — 2w?; this result is in agreement with linear kinetic
theory result obtained by Mrowczynski [4]. If all four species had been taken as
mobile, the space charge contributions simply add up and we get the same dispersion
relation as above with cuﬁ replaced by wa,. Thus we see that our simpler model
problem does not sacrifice significant physics. However, it gives us a considerable
reduction in the number of nonlinear differential equations to be solved and it is our
justification for using the simpler model. The linear analysis also shows that the color
electric field is always opposite to the stream current direction. This provides a
collective mechanism for deceleration of stream velocity as was also noted by Ivanov
[9] in the context of hadron plasma. The minimum time in which the instability can
grow is ¢, ~|w_|~*. If one uses finite temperature perturbative QCD value for w,
for temperature range 160-200 MeV one finds ¢t_, ~ 0-5-07fm/c. This estimate is
very conservative as smallness of g is assumed in the perturbative calculations.
However, non-perturbative estimate of w, may be higher [8] and ¢_,_ can be further
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reduced. We compare ¢, with the total interaction time between the two nuclei [4],

2M ) )
t ~2rg A |~—X where, 4 is the atomic number and r,=12fm. For U+ U
b

La :
collisions at E, , ~200GeVA one gets ¢, ~1-5fm/c. As¢t_, <t,  the filamentation
mode may indeed occur in RHIC (relativistic heavy ion collision) and drive up initial
fluctuations. Since the number of e-foldings (¢; /... ) is not very large, it is important
to ascertain the initial fluctuation level. This can be done by comparing the ratio of
field energy E, to thermal energy E, with the plasma parameter f,~ 1/ni}.

Estimating these quantities we obtain

E, w}A*? g*A? 8
E, T* T? P

and using typical values of Ap, n and T one gets gd/w, ~ 10~". Thus within a time
interval of a few t_, the perturbations will grow to a value where the analysis of the
non-linear state generated by the instability can become important for RHIC.

For the study of the non-linear state the basic equations constitute a set of eighteen
coupled non-linear partial differential equations which are very difficult to solve in
their generality. Therefore we look for special solutions of these equations which
are non-linear plane stationary waves [8]. Thus we assume that all the quantities
depend just on a single variable { = x + ft. Physically this means that we sacrifice
our desire to reproduce the evolution of a linear instability into its saturated nonlinear
state and instead focus on the question ‘are there nonlinear superpositions of various
wavelengths which give a state that is stationary in a moving frame?’. The implication -
is that if such nonlinear solutions exist, then the unstable waves are likely to saturate
into these states. The parameter f expresses the ratio of the phase velocity of the
nonlinear plane wave to the velocity of light and may take any value greater than
1. For a dilute plasma a value close to 1 may be assumed, although our calculations
show that results are not very sensitive to its choice. With this assumption it is
possible to integrate all the differential equations of hydrodynamics except those
which correspond to color dynamic equations of one specie. If we introduce
dimensionless variables T=Q (, A =a; 'A%, A, ,=a;'A;, I, =ig'l,, V, =
9!V and 'V, =07'V% where i, a,, 0 and Q, are some normalizing factors, then
the resulting equations can be written as '

. fOa
Ia =~B~N18abc[V1xAxb + Vlezb]Ic’ (4)
ﬂz A'xa - asabcAzb/izc + az [(Azb)zAxa - (Abezb)Aza] =jxa’ (5)
. (52 - 1)/'1.211 + “gabc [2Axb/izc + /ibezc] + dz [(Axb)2 Aza - (AxbAzb)Axa-—J =jza’

(6)

where N, = /(B -+ 0V,,) and dot denotes differentiation with respect to T. We have
introduced three dimensionless parameters 6 = giga,/m, Q,=w (1 — y23)~14 and
a=ga,/Q,. The parameter 6 essentially measures the ratio of canonical momentum
to mass and hence is related to the velocity which could have value ~ 107*. The
parameter o characterizes the strength of non-abelian terms in (6)-(8) and may be
expressed in terms of other physical parameters « = gija,/w, =g mnO(E)/cuf,) which
also have values in the same range as 6. Expressions for ¥, , V, interms of A4 , 4,
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etc. have been obtained but are too lengthy to be reproduced here. Equations (4)~(6)
are a set of nine coupled non-linear ordinary differential equations which have been
solved numerically, using a fourth order variable step size Runge-Kutta method of
sufficient accuracy. Energy and color charge conservation laws derived from the
equations have been used as a check on the numerical scheme.

Typical results obtained from (4)—(6) are depicted in figures 1 to 3. Figure 1 depicts
variation of V,, with T. It clearly shows that for a choice of the non-abelian parameter
o =0-5, the mean flow in the nonlinear saturated state is ~ — 0-3, well below the
value V,,,= — 9-0 that we start with at T=0. One may see the stream deceleration
as the nonlinear state sets up more clearly in figure 2, which depicts the
auto-correlation of V,,. Though the autocorrelation function oscillates a little, it
shows an overall decay which shows that the flow velocity fields become chaotic in
the nonlinear state. Figure 3 depicts the plot of V,, with T. The figure shows that
the transverse flow velocity is also chaotic in the nonlinear state but has acquired a
mean value around 0-3. It is to be noted that the generation of mean transverse flow
is a consequence of momentum conservation and growth of mixed wave propagating
transversely. Looked at another way, the excited nonlinear waves generate a mean
force in the transverse direction [(V, x Ey) terms etc.] which produces a mean
transverse flow. It must be emphasized that this feature of generation of transverse
flows is completely independent of choice of initial conditions. Our non-linear theory
assumes a given wave propagation direction and generates anisotropic flows. In an
experiment, however, the transverse waves and flows will be isotropically distributed.
THe rearrangement from the initial conditions to set up the nonlinear state leads to
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Figure 1. z-component of the flow velocity of specie 2 is plotted as function of
T. The values of parameters are f=1-1, 8 =01 and a« = 0-S5. The intial velocity
Vo = — 9 (in units of §). The initial conditions are I, = 1, (a=1,2,3), 4,,= 4;,=0
and A, =14, A,, =02, A3=03, A,; =02, A,,=—03, A,,=11 Mean
velocity = — 3-0.
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Figure 2. Auto-correlation of the velocity profile shown in figure 1.
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Figure 3. Transverse component of the flow velocity of specie 2 as a function of
T. The mean velocity =27 (in units of §). Values of parameters and initial
conditions are same as those in figure 1.
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a conversion of about 90 per cent of the energy in coherent flows into chaotic
oscillations and is characterized by a few plasma periods. Taking a typical plasma
frequency ~ 200 MeV, this corresponds to a time-scale of order 1-2fm/c which is
smaller than a plasma life time of order several fm/c. This is consistent with
thermalization time estimated by Shuryak [3]. Thus, (i) the linear growth times and
nonlinear interaction times needed for setting up a chaotic nonlinear state are well
within the plasma life-time, (ii) in the nonlinear plane wave states, the mean kinetic
energy along z is considerably reduced and a net mean V, is generated. Detailed
investigations have shown that these numerical results are relatively independent of
the choice of parameter § (i.e. phase velocity of nonlinear wave) and other initial
conditions. They do, however, critically depend on the non-abelian parameter a. For
o =0, we get prototype abelian plasma equations which when numerically integrated
show negligible reduction of the initial V, in the nonlinear state, and does not show
generation of significant mean V.. This seems to be related to the fact that in this
case, solutions tend to be coherent and V x B forces phase average to a negligible
value. Thus the collective stopping and transverse flow generation seems to be a
specifically non-abelian effect. It may be stressed that had we used four mobile species
instead of two, the coupled non-linear equations would still have exhibited similar
chaotic behaviour.

In conclusion, we have shown that starting with an assumption of transparency
one ends up in a non-linear state showing significant stopping due to non-abelian
collective effects. This indicates that one fluid description might be justified for
collisions of very heavy nuclei. Our results also indicate the presence of mean collective
flow in the transverse direction. Our analysis also indicates that due to the mechanism
we have considered baryon rich matter could be created in the central rapidity region.
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