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134 D. N. de G. Allen and R. V.-Southwell

Example 3

10. Figures 9 and 10 (corresponding with figures 7 and 8) show the same problem
solved for a stress system which is partly plastic, partly elastic, so that the contours
exhibit ‘refraction’ at a plastic-elastic interface. The stress system is that induced
by tension applied along ‘the horizontal centre-line of a symmetrical specimen
having two semicircular notches which form a ‘waist’. The computed stress-
components, being based on a particular hypothesis regarding plastic strain,
are open to question; but this is of no importance to the present paper, which is
concerned solely with the graphical representation of a specified stress.
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On the theory of point-particles
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It is deduced from the conservation of the energy-momentum tensor that if the flow of energy
and momentum into a tube surrounding a time-like world-line, on which the field is singular,
become singular as the size of the tube is contracted to zero, then the singular terms are
necessarily perfect differentials of quantities on the world-line with respect to the proper time
along the world-line. The same can be proved of any other tensor, as, for example, the
angular-momentum tensor, which is conserved. It isproved from this that for any point-par-
ticle whatever having charge, spin or other properties, which need not be specified, it is
always possible to deduce exact equations of motion which are finite.

. It is proved further that if the energy-momentum tensor is altered by the addition of
2K [3a°, where KM is any tensor antisymmetric in' v and o, then the equations of motion
are unaltered, but it is possible to choose K in such a way as to make the flow of energy
and momentum into a given tube non-singular.

By a point-particle is understood a particle whose field-producing and inertial
properties are all located at a point. The particle may have a finite charge and a
finite mass, but the charge density and mass density are exactly zero at every point
of space other than the point at which the particle is located at that instant of time.

The motion of the particle through space-time is therefore described by a time-like
world-line. If the particle possesses a dipole or a higher multipole moment, then this

is described by a suitable co-ordinate having a given value at each point of the
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world-line, but it is again assumed that the dipole density is exactly zero at all
points of space-time not lying on the world-line. Thus the motion of the particle
through space-time is completely described by a time-like world-line with the values
of the co-ordinates describing the spin and other properties of the particle given
at each point of it.

It has been shown by Dirac (1938) that an exact theory of a point electron moving
in an electromagnetic field can be set up free from singularities, and Bhabha (1940)
and Bhabha & Corben (1941) have shown that a similar theory free from singularities
can be set up for a point dipole. It has been shown further by one of us (Bhabha
1939, 1941) that the theory can be extended to point-particles interacting with meson
fields. These cover all the cases of practical interest, but a general demonstration that
it is always possible to set up an exact classical theory for point-particles interacting
with any field has not so far been given. This will be done in the present paper.

In all the work referred to above, the method used for finding the equations of
motion of the point-particle is the same. From the field equations we calculate the
field produced by the point-particle, or more exactly, we take that solution of the
homogeneous field equations which has a singularity of the required type on the
world-line. We now surround a finite length of the world-line by a world tube whose
radius is ultimately made to tend to zero, and calculate the flow of energy, momen-
tum and angular momentum into the world tube from outside by using the usual
energy-momentum and angular-momentum tensors of the field. For brevity we
shall refer to the quantities so calculated as the inflow. The equations of motion are
now found from the condition that conservation of energy, momentum and angular
momentum require that the flow of all these quantities into the tube must only
depend on conditions at the two ends of the tube, that is, it must only be a function
of the co-ordinates of the particle and their higher derivatives and also possibly of
the field quantities at the two ends of the tube. Since the field is singular on the
world-line, the usual energy-momentum tensor is also singular, and in consequence
the flow of energy and momentum into the tube is likewise singular. That in spite of
this it has always been possible to derive finite equations for the motion of the point-
particles has always depended on the circumstance that the singular parts of the
inflow over an infinitesimal length of the tube are always perfect differentials. We
shall prove that this is a general property which is a consequence only of the con-
servation of the energy-momentum tensor and therefore that finite equations for
the motion of a point-particle of any type whatsoever can always be derived.

We shall also show that it is always possible to modify the energy-momentum
tensor by the addition of the divergence of a tensor of higher rank in the manner
suggested by Pryce (1938) so that the inflow over a tube of given shape becomes
finite. But the inflow would not necessarily be finite over a tube of any other shape.
That it is always possible to modify the tensor in the same way as to make finite the
inflow over tubes of any arbitrary shape, as also the energy and momentum integrals
over arbitrary space-like surfaces is shown by one of us (H.-C.) in the paper which
immediately follows this.
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1. We use the same notation as in the previous papers by one of us (H.J.B.).
We take the metric tensor to have the form gy, = —¢y; = —¢ap = — ¢33 = 1 with
9w = 0 for p#v. The world-line of the particle is described by four co-ordinates
z#(1) which are functions of the proper time 7 measured from some point along it.
The other co-ordinates of the particle, if any, need not be specified for the present
work. A dot denotes differentiation with respect to 7, and V# = £# is used to denote
the velocity of the particle. 2* denotes a point of space, s#=a#—2#(1,) the distance
from any point of space to the retarded point 7, on the world-line defined by

5,8t =0. (1)

If 7, be kept fixed then equation (1) is also the equation of the light cone whose
apex is at 7,. We further introduce a quantity « as a function of the co-ordinates

a# defined by
K=8,0M(T,). (2)

The energy-momentum tensor is denoted by 7. It satisfies the conservation
equation
oTmw
e ®)
It is necessary to find the generalization of Gauss’s theorem to four-dimensional

hyperbolic space. Let
&) = a (4)

be a closed three-dimensional surface S surrounding a four-dimensional volume V
such that the surface {%(x*) = a— Aa for positive Aa is contained inside (4) and lies
wholly in the volume V. Let £, {2 and {3 be parameters defining the position of a
point on the surface S. Then, if X# be any tensor, the generalization of Gauss’s
theorem reads

0X> 0g0

T2 A0 dat dac? dac® = v 95 “1ge1deedes 5

S et di e waw|%aﬁ, (5)

where D is the determinant of the transformation from the z’s to the {’s and the
surface is covered in such a way that d{, d¢2?, d¢® are always positive:
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080%/oxr is the normal to the surface 8. For a displacement (0£°/0x#)Al in the direction
of this normal with positive Al the change 4£° of £ is

ago = 2% 4y

o0t ox 4

This is positive if 0£0/dx# is a time-like vector and negative if it is space-like. Thus
on the space-like portions of the surface the normal to the surface on the right-hand
side of (5) is directed outwards, and on the time-like portions it is directed vnwards.

0 »
By writing dS, = g:—i; | D |~*d§rdg2dEs for an element of the surface S with its normal
directed in the sense defined above, the right-hand side of (5) can be written

f X¥ds,. 1)

Ficure 1

Consider a portion of the world-line between the points 7, and 7, and surround it
by a world-tube of any arbitrary shape. We consider the ends of the tube to be given
by the two two-dimensional surfaces where it intersects the future light cones from
the points 7, and 7, respectively. The flow of energy and momentum into the tube
is then given by

J Tmds,, (8)
the normal to the surface being directed outwards. For conservation, (8) must be
put equal to a function of the form A#(r,) — A#(t,), where A#(t) is a function of v*
and the other co-ordinates of the particle, possibly also of the field quantities, and
their higher derivatives at the point 7 only. On differentiating this equation

d (7 .

JR— yid = »

I nT dsS, = AXT). 9)
This is not a mathematical identity but furnishes the equations of motion of the
point-particle. It should be noted at once that the equations derived in this way are
independent of the shape of the tube. For if the given tube is surrounded by another
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of some other shape, then it follows from (3) and (5) that the difference in the
integral (8) over the two tubes is just equal to the integral over the portions of the
light cones at 7,-and 7, intercepted between the two tubes. In the limit when the
size of both tubes is made to tend to zero, the integrals over the light cones just
‘become functions of the conditions at r; and 7, respectively, and hence the difference
in (8) calculated over two tubes of different shape is identically of the form
A'M(1y) — A'#(1;). This difference can be absorbed into the right-hand side of (9),
and hence it does not affect the equation of motion which can be so derived. One
may therefore work with whatever tube is most convenient.

Consider now a volume V lying between the two light cones § and 8§’ starting
from. the points 7’ and 7’ +dr’ respectively, and between the two tubes P and @
defined by k = ¢ and k = 7, as shown in figure 1. The boundary of V so defined can
be characterized by the equation {0 = 0, where £ is a discontinuous function chosen

in the following way:
(T—(*'+dr’) on &',

go K—-”\ on Q,
€—K on P,
T'—7 on S.

Since (3) holds inside this volume V' it follows from (5) that

T=7"+d7’ T=17 K=¢€

£ K=1
the normals to the light cones being taken in the direction of increasing 7 in both
cases, and towards the world-line on the two world-tubes. To evaluate the second
integral on the left it is convenient to take {* = «, {# = s? and {* = s® in addition to
{° = 7. As shown in the previous papers, it follows from (1) and (2) that

=
oxt Kk’ )
aK S,u ’ ’ .
=Ky = vﬂ_E(l—K ), where «'=v,s", (12)
082 s
083 $
i = 8,3—03;". (14)

The right-hand sides of (11)—(14) have to be inserted as the columns of the matrix
on the right of (6). Since the determinant of a matrix vanishes if it has any two
columns identical, it follows that we may omit all except the first terms on the
right-hand sides of (11)—(14) and get ‘

D= ‘i«;”r’;é’lﬂx (15)
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Therefore

f TwdS, = fff”Tﬂvsl - — | ds?ds3dk = J‘J‘”T’“’ﬁ'd-Qdk, (16)
T=const. € K € K

So¥1— 817,

df2,being the element of surface of a sphere of radius « in the ‘rest system’ in which
vy = 1, v; = v, = vy = 0. Similarly,

J Twds, = f dr f Twk, dQ. (17)

(10) now becomes ;—T{fﬂf T/“’S—,:deK} = f Trk,d2 — Trk,d8. (18)
€J K K=¢ k=7

It is important to note that the left-hand side of (18) is not a perfect differential.
The integral does not depend in general only on conditions on the world-line at the
point 7. Differentiating this equation with respect to ¢, we get

d d Sy 1y
%LT/‘ KVdQ+ZE_fKT/‘ ;d.Q = 0. (19)

As k—>0 the second term in (19) becomes a perfect differential, and hence if there are
any singular terms in the first term of (19) these must be perfect differentials and be
compensated identically by those in the second term. (19) is the exact statement
that the singular part of the inflow is a perfect differential. In case the energy
tensor can be expanded as a series in ascending powers of k for sufficiently small
values of k starting with some negative power of «, then (19) shows that all the terms
except the term independent of « in the inflow must be perfect dlfferen‘mals

The singular terms being perfect differentials can always be compensated by the
addition of suitable terms to 4# in (9) and therefore play no part in determining the
motion of the point-particle. The term independent of « is not a perfect differential,
and by putting it equal to a suitable perfect differential as in (9) the equation of
translational motion of the point-particle is obtained. It is seen that to determine
the equation of a point-particle it is only necessary to calculate that part of the
inflow which remains finite as k — 0. The rest can be ignored.

It is clear that the same argument holds if two of the boundaries of the volume V
are taken as any two surfaces passing through the points 7 and 7 + dr instead of the
light cones. The argument also holds for any other tensor which satisfies a con-
servation law of the type (3); and therefore for the angular-momentum tensor of
the field. In finding the rotational equations of the particle it is therefore only
necessary to calculate the finite part of the inflow of angular momentum and to
put this equal to a suitable perfect differential.

2. Let X® be a tensor antisymmetric in # and v. Let us suppose that the co-
ordinates £° ¢, % and &3 of the last section are so cliosen that {! = £ with constant §

* This result is implicit in Mathisson’s paper (1940) and can be derived from his variational
equations, but it is much more cumbersome and indirect to prove it by his method.
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represents a closed two-dimensional surface » forming the boundary of a portion
S’ of the three-dimensional surface {° = a, and assume that {* = §— 44 (44 positive)
is a two-dimensional surface lying entirely within the three-dimensional surface so
enclosed. Then it is well known that

vo'> 0
ox 2X L0

g 0x° v = 5 0X° O’

| D|-tdgidgage = f X agv gi | D|tdgde.  (20)
In this formula let.us msert a tensor K47 antisymmetric in » and o in place of X,
and take for the surface {° the surface of the tube x = ¢ between the points 7,
and 7,. It is convenient in this case to take as the variables §, {® = k, {1= 7, {2 = &2,
{3 = %, and we obtain, as in the last section, remembering (11)—(15),

f f OB 1Qdr = f Koo, —‘—’d.Q

T1

= f Kwo v,,-lgd.Q , (21)
on account of the antisymmetry of K#7in vand o. Differentiating this with respect
tor

4 pvo
a‘;{ ka0 ="2 f Kwoy, % 40, (22)

The inflow of 9K#7 9z over an infinitesimal portion of a world-tube of any arbitrary
shape can similarly always be shown to be identically a perfect differential. Hence,
if the energy-momentum tensor 7'# is replaced by a new one 7"# defined by

oK wo

T/‘V'—T'lw"' ao.:

(23)
which obviously also satisfies a conservation equation like (3), then the inflow is
only altered by the addition of perfect differentials, and these do not alter the equa-
tions of motion since they can be compensated by the addition of suitable terms
to A#in (9).

Denote by B that part of the inflow, calculated by using the original tensor 7',
which is a perfect differential. B# depends only on the variables at 7. Then taking

T lB Y Q0" o oV
K» —E—(vs —v7s”) (24)

and inserting it into (22), we get, remembering (1), (2),

DK wo

e 2 =~ B (25)

Since it has been shown that the singular parts of the inflow are always perfect
differentials they can be included in B, and it has therefore been proved that it is
always possible to find a tensor K#v such that the inflow calculated from the
modified tensor (23) is finite over the particular world-tube chosen.
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The tensor (24) is by no means uniquely defined. Thus
1 B~
Vvoe — —bKM (4 o0 __ )0 oV
Kwo pr— (178" —v78”) (26)

could equally well have been taken, with b a positive constant and » a number
greater than the highest order of singularity in B#. This tensor would in fact have
the advantage over (24) that its integral over any surface at infinity would always
vanish.

The integral of the modified tensor over any arbitrary three-dimensional surface
is not necessarily finite, nor is the inflow finite over a tube of any other shape than
the one chosen above. The general properties of the energy tensor 7% are investi-
gated in more detail in the paper by one of us (H -C.) which follows this, and it is
shown there that it is always possible to find a tensor K# such that the modlﬁed
tensor has no singularities of order higher than the third.
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