Effects of poloidal sheared flow and active feedback on tokamak edge fluctuations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 Nucl. Fusion 33 1009
(http://iopscience.iop.org/0029-5515/33/7/004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 122.179.52.180
The article was downloaded on 22/02/2011 at 10:34

Please note that terms and conditions apply.
EFFECTS OF POLOIDAL SHEARED FLOW AND
ACTIVE FEEDBACK ON TOKAMAK EDGE FLUCTUATIONS

R. SINGH, P.K. KAW, A. SEN, G.C. SETHIA
Institute for Plasma Research,
Bhat, Gandhinagar, India

ABSTRACT. The influence of sheared poloidal flow and of a phase sensitive feedback source on the various edge
instabilities of tokamaks are investigated. The conditions for stabilization of the rippling mode, for the drift dissipative
mode and for the radiative condensation instability are obtained from detailed numerical solutions and from approximate
analytic solutions of the relevant eigenmode equations.

1. INTRODUCTION

It is widely believed now that the overall energy and
particle confinement in a tokamak discharge are strongly
influenced by fluctuations in the tokamak edge [1-3].
Methods to control the level of these fluctuations are
therefore of great interest in tokamak physics. Recent
experiments [4-6] have demonstrated that the introduc-
tion of a sheared poloidal flow, either by external biased
probes or by natural processes driving the H mode [7],
can have a significant stabilizing influence on fluctua-
tions in the tokamak edge. Similarly, the use of phase
sensitive feedback methods to stabilize low frequency
fluctuations in a laboratory plasma, has received wide
experimental verification [8]. However, such methods
have not yet been attempted in tokamaks, perhaps
because the tokamak edge turbulence is typically
broadband. Although the most appropriate method of
stabilizing such fluctuations using feedback would be
one of the recently developed chaos control techniques
[9], there are two reasons why the simpler feedback
techniques should be attempted and may lead to
interesting results. Firstly, it appears that the particle
confinement time is largely governed by a relatively
small band of low frequency long wavelength fluctua-
tions and this small band may be amenable to feedback
stabilization. Secondly, the edge region is readily
accessible to, for example, probes and limiter bias
potentials, and so feedback methods could be readily
implemented. Proposals to carry out such experiments,
therefore, already exist [10].

The important mechanisms that may be responsible
for the observed edge fluctuations in a tokamak are:

(i) Rippling instabilities that are driven by resistivity
gradients associated with temperature and/or impurity
density gradients in the plasma;

(ii) Radiative condensation instabilities that arise
owing to the dependence of the radiative capacity L
on
the density and temperature ($L \propto n^2$ and $\partial L/\partial T < 0$);

(iii) The drift dissipative instability driven by pressure
gradients and depending on the parallel resistivity to
give a phase difference between δ and ϕ (which is
necessary for wave growth).

In this paper we have examined the influence of
poloidal velocity shear and a phase sensitive feedback
source in the electron continuity equation (and hence in
the charge neutrality condition) on the linear growth of
the above mentioned three instabilities. Taking account
of magnetic shear, a simple model of velocity shear and
the dependence of ω, on x (the radial distance $r - rs$
from a mode rational surface), the slab model eigen-
mode equations have been set up in each case. These
equations are solved numerically, employing a shooting
technique. A detailed analysis of the mode stability is
presented. The numerical results are further supported
by analytical solutions obtained in limiting cases using,
for example, perturbation theory, the WKB approach,
mached asymptotic schemes. A preliminary account of
this work was presented in Ref. [11], where the basic
equations were derived and some analytic approxima-
tions worked out. Other related work, which has
recently appeared in the literature, is that of Sugama
et al. [12], where the authors have looked at the effect
of poloidal velocity shear on resistive interchange modes
that may be unstable in stellarators and heliotrons.

The paper is organized as follows: in Section 2, we
discuss the basic physical model and derive a generalized
set of equations governing the evolution of the rippling,
drift dissipative, and radiative condensation instabili-
ties. These modes are then individually analysed in
Sections 3.1, 3.2 and 3.3, respectively. In each case
the generalized equations of Section 2 are used to
obtain an eigenmode equation for the modes concerned which is then solved both numerically and analytically in certain limits. Detailed stability results including analytic expressions for modified growth rates are presented and conditions for stabilization discussed. Section 4 summarizes the main conclusions of our work.

2. BASIC EQUATIONS

We first give a general treatment for rippling, radiative condensation and drift dissipative instabilities, using the Braginskii two fluid equations [13]. For simplicity, we model the tokamak plasma in the straight cylindrical approximation with a periodicity in the z direction. The equilibrium density, temperature, magnetic shear, resistivity and Z_{eff} profiles are taken to have a radial variation. The equilibrium electric field is also assumed to be in the radial direction, that is $E = -C_0V_0$. For the low frequency modes we are considering and in the region of the tokamak edge plasma it is also appropriate to choose the ordering $\omega \ll \Omega_i, a_i \ll L, \nu_{ei} \ll \Omega_i$, where Ω_i is the ion gyrofrequency, $a_i = (c_i/\Omega_i)$ is the ion Larmor radius, c_i is the ion thermal velocity, ν_{ei} is the electron-ion collision frequency and L is a typical equilibrium scale length.

We assume the equilibrium ion and electron perpendicular fluid velocities to be of the order of the speed of sound. Then, from the momentum equations we obtain,

$$v_{ij} = \frac{C_i}{B} \left(\hat{b} \times \nabla \phi_0 + \frac{\hat{h} \times \nabla P}{e_jN} \right)$$ \hspace{1cm} (1)

where $\hat{b} = B/B_0$, ϕ_0 is the equilibrium electrostatic potential, N is the equilibrium plasma density and $j = \text{e(electrons)}, \text{i(ions)}$. The equilibrium parallel flow velocities may be approximated as

$$\hat{h} \cdot (v_e - v_i) = \left(\frac{e\hat{h} \cdot \mathbf{E}_L}{T_e} \right) \left(\frac{m_i}{m_e} \right) \left(\frac{\Omega_i}{\nu_{ei}L} \right)$$ \hspace{1cm} (2)

where $\hat{h} \cdot \mathbf{E}$ is the applied toroidal electric field, $a_i = C_i/\Omega_i$ and C_i is the sound speed. We take linear perturbations to vary as

$$\phi - \phi(x) \exp(-i\omega t + im\theta + il\phi)$$

where $x = r - r_i$ is the distance away from the mode rational surface $m - lq(r_i) = 0$ around which the modes are assumed to be localized. The parallel wave vector in a sheared magnetic field can be written as

$$\hat{n} \cdot \mathbf{v} = ik'_z x; k'_z = k'/L_s, L_s = q(r_i)R$$

We also neglect the effects of ion gyroviscosity and parallel ion viscosity on the grounds that

$$(\nu_{ij}/\omega)(a_i/x)^4 \ll 1$$

$$\left(\frac{\omega m_i}{\nu_{ei}m_e} \right) \left(\frac{L_s^2}{L_i^2} \right) \left(\frac{\omega}{\omega_s} \right)^2 \left(\frac{m_i}{m_e} \right) \left(\frac{x}{a_i} \right)^2 \ll 1$$

where $L_i^2 = -d \ln N/dr$. This is based on the assumption that the mode widths of the rippling, drift dissipative and radiation condensation modes are such that $x/a_i > 1$. We shall justify this fact a posteriori. For the low β edge plasma, it is also appropriate to neglect the magnetic field fluctuations. Taking the curl of the momentum equations and dotting with \hat{h} gives

$$a_i^2 \left(\frac{\partial}{\partial t} + v_e \cdot \nabla \right) - \frac{h}{N} \cdot \nabla (N\nu_{\text{sd}})$$

$$0 = \left(\frac{\partial}{\partial t} + v_e \cdot \nabla \right) \hat{\phi} + S_e(\omega) \hat{\phi} + \frac{1}{N} \hat{h} \cdot \nabla (N\nu_{\text{sd}})$$ \hspace{1cm} (3)

where $\hat{\phi} = e\phi/T_s, \hat{n} = n/N, v_i = -C_i(B)/\hat{E}_d = v_0$, $v_0 = \text{du}_i/dr_s = T_e/T_i$ and we have assumed the $E \times B$ and diamagnetic drifts to be the dominant perturbed velocities. In deriving the above equations we have used the ion continuity equation and the electron continuity equation in the presence of a phase sensitive feedback source term $S_e(\omega)$. In Eq. (4) the electron inertia term has been neglected.

The sum of the parallel electron and ion momentum equations yields

$$m_i N \left(\frac{\partial}{\partial t} + v_e \cdot \nabla \right) v_{il} = -P_e \nabla_e \left(\frac{\hat{P}_e + \hat{P}_i}{\tau} \right)$$ \hspace{1cm} (5)

and the parallel component of the electron momentum equation is

$$\nabla_e \hat{J_e} = -\frac{T_e}{e \zeta \eta} \nabla_e (\hat{\phi} - \hat{P}_e - 0.71 \hat{T}_e)$$

$$- \frac{J_i}{e \zeta \eta} \nabla (\hat{\eta}_{\text{sp}} + \hat{Z}_{\text{eff}})$$ \hspace{1cm} (6)

where $\hat{\eta} = \hat{\eta}_{\text{sp}} + \hat{Z}_{\text{eff}}, \hat{\eta}_{\text{sp}} = \eta_{\text{sp}}/\eta_{\eta_{\text{sp}0}} = -3 \zeta_e/2$ (subscript sp stands for Spitzer resistivity), $\hat{T}_e = t_e/T_s$, $\hat{Z}_{\text{eff}} = z_{\text{eff}}/Z_{\text{eff}0}$, $\eta_{\text{sp}} = 0.51 m_i v_{ei}/Ne^2$, $\hat{P}_i = P_i/P_{\text{th}}$, $\tau = T_e/T_i$ and $J_i = -eN\nu_{\text{sd}}$. The Z_{eff} dynamics can
be described by
\[
\left(\frac{\partial}{\partial t} + v_0 \cdot \nabla - \chi_l \nabla^2 \right) \tilde{Z}_{el} = - \frac{a_e C_i}{L_e} \frac{\partial}{\partial \theta} \tilde{\phi}
\]
where the χ_l is the impurity diffusivity [14] along the field lines. Finally, the electron and ion energy equations are
\[
\frac{3}{2} N T_e \left(\frac{\partial}{\partial t} + v_0 \cdot \nabla \right) \tilde{t}_e = - \frac{3}{2} N T_e \frac{a_e C_i}{|L_T|} \frac{\partial}{\partial \theta} \tilde{\phi}
+ P_e \frac{\nabla \tilde{t}_e}{e N} - P_e \nabla \tilde{V}_{el}
+ 0.71 P_e \frac{\nabla \tilde{t}_e}{e N} + T_e \chi_{le} \nabla^2 \tilde{t}_e
+ T_e \chi_{le} \nabla \tilde{t}_e - \frac{m_e v_{ei}}{\rho} P_e \left(\tilde{t}_e - \tilde{t}_i \right)
- P_e \left(\frac{2L}{NT_e} \tilde{h} + \frac{1}{N} \frac{\partial}{\partial \theta} \tilde{t}_e \right)
\]
and
\[
\frac{3}{2} N T_i \left(\frac{\partial}{\partial t} + v_0 \cdot \nabla \right) \tilde{t}_i = - \frac{3}{2} N T_i \frac{a_e C_i}{|L_T|} \frac{\partial}{\partial \theta} \tilde{\phi}
+ P_i \nabla \tilde{V}_{ei} - T_i \chi_{le} \nabla^2 \tilde{t}_i
+ T_i \chi_{le} \nabla \tilde{t}_i + 3 \frac{m_i v_{ei}}{m_i} P_i (\tau \tilde{t}_e - \tilde{t}_i)
\]
where the χ_i are the electron and ion thermal conductivities [13]. The above equations complete the model equations for the descriptions of the low frequency edge plasma modes. They can be combined and expressed in a non-dimensional form by the following set of equations:
\[
\nabla^2 \tilde{\phi} = - \frac{k_0}{\omega} \left(- \frac{a_i C_i}{L_i} v_0^2(\tilde{\xi}) + v_0^2(\tilde{\xi}) \right) \phi
+ i \frac{S}{\omega} \tilde{h} + i \frac{k_0^2}{\xi_R^2} \left(\phi - \tilde{h} - 1.71 \tilde{t}_e \right)
- a_i \xi_L \tilde{t}_e + g_i(\xi) a_2 \xi \tilde{\phi}
\]
\[
\tilde{h} = \nabla^2 \tilde{\phi} + \frac{k_0}{\omega} \left(- \frac{a_i C_i}{L_i} v_0^2(\tilde{\xi}) + v_0^2(\tilde{\xi}) \right) \phi + \frac{\omega}{\omega} \tilde{\phi}
+ \frac{k_0^2}{\xi_L^2} \left(- \tilde{h} + \frac{1}{\tau} + \frac{\tilde{t}_i}{\tau} \right)
\]
\[
\tilde{t}_e = \eta_e \frac{\omega}{\omega} \tilde{\phi} + \frac{2 k_0^2}{3 \xi_L^2} \left(\tilde{h} \left(1 + \frac{1}{\tau} \right) + \tilde{t}_i + \tilde{t}_e \right)
\]
where the prime means differentiation with respect to ξ, $S_\xi = |S_\xi| \exp(i\phi)$ is a phase sensitive feedback source in the continuity equation, $\xi = x/a_i$, $\nabla^2 \tilde{\phi} = \frac{\partial^2}{\partial \xi^2} + \frac{1}{\xi_R^2} (\phi - \tilde{h} - 1.71 \tilde{t}_e)$ takes account of impurity diffusion along the field lines, $\xi_L = a_L \omega v_{ei}(\xi)/k_0^2 C_i a_i^2$, $\omega = \omega - k_0 v_0(\xi)$, $a_1 = 3 J_i k_i a_i/2 e N \tilde{h}$, $a_2 = 2 (m_i/m_i) (v_0/\omega)$, and the definitions of the heat diffusion coefficients χ_{le} and χ_{li} follow from Braginskii [13]. Equations (10)-(13) may now be utilized to derive the eigenmode equations for the various instabilities in the plasma.

3. LINEAR MODE ANALYSIS

In this section we study the linear evolution of rippling, drift dissipative and radiative condensation instabilities in a plasma, in the presence of a phase sensitive feedback source in the continuity equation and a sheared poloidal flow. We examine analytically the slab eigenmodes of these instabilities in some limiting cases where a linear expansion of the poloidal velocity around the mode rational surface, namely $v_0(\xi) = v_0(\xi_0) + \xi v_0'(\xi_0)$, and $v_0'' = 0$ has been taken. We also investigate in detail the numerical solutions of the rippling and drift dissipative modes, taking a more realistic and general radial profile of the poloidal flow, namely $v_0(\xi) = v_0 \tanh(\xi/L_w) = v_0 f(\xi)$ where $\xi = 0$ corresponds to the mode rational surface, L_w is the velocity shear scale length and $L_w' = L_w/a_i$.
3.1. Rippling modes

We start with the simplest derivation of rippling modes driven by impurity gradients alone where \(\tilde{E}_r \rightarrow 0 \) because of large parallel thermal conductivity and \(\xi I \xi \ll 1 \) because the impurity parallel diffusion is ignorable. Taking \(|\omega| > \omega_* \), so that the pressure gradient effects may be neglected, Eq. (11) leads to the eigenmode equation

\[
\left(\frac{d^2}{d\xi^2} + \frac{b}{1 - \beta \xi} - \frac{ie\xi^2}{4(1 - \beta \xi)} - \frac{\tilde{\omega} \xi}{(1 - \beta \xi)^2} \right) \delta = 0
\]

(14)

where we have neglected finite Larmor radius terms, \(b = -(\omega_*/\omega)(v_0(\xi)/\omega_*) - i S_1 \omega_*/\tilde{\omega}^2 \)

\[\tilde{\omega} = \omega - k_x v_0(\xi), \]

\[v_0(\xi) = v_0(\xi)/L^2 \]

\[\beta = k_x v_0(\xi)/\tilde{\omega}, \]

\[\tilde{\omega}/4 = \omega_*/\tilde{\omega} \]

\[\tilde{\xi}_R^2 = (m_e/m_i)(v_0/\omega_*)(L^2/L_0^2)^2 \]

\[\tilde{\xi}_R^2 = (v_0/\omega_*)(\omega/\omega_*) \]

\[\tilde{\xi}_R^2 = (U_{le}/C_\beta)(L^2/L_0^2)(L^2/L_0^2) \]

\(U_{le} \) is the directed electron beam velocity and, as before, we have used a linear expansion of the fluid velocity around the mode rational surface: \(v_0 = v_0(r_0) + x v_0(r_0) \). In the absence of velocity shear \((\bar{v}_0 = 0) \) we take \(\beta = 0 \), and the linear mode width of the rippling instability can be obtained by balancing the \(\delta^2/\delta^2 \) and \(\xi^2/\xi^2 \) terms in Eq. (10). This gives

\[\xi_{Rip} = (m_e/m_i)(v_0/\omega_*)(\omega/\omega_*)(L^2/L_0^2)^2 \]

The eigenmode problem may be exactly solved to give

\[
\left(\frac{\gamma_{Rip}}{\gamma} \right)^{5/2} - \left(\frac{\gamma_{Rip}}{\gamma} \right)^{3/2} \left(\frac{v_0 m_e L_i^2}{\gamma_{Rip} m_i L_0^2} \right)^{1/2} \times \frac{|S_1|}{\gamma_{Rip}} e^{-(\pi/2 + \phi)} = 1
\]

(15)

where \(\gamma_{Rip} \) denotes the standard rippling mode growth rate \([15]\) in the absence of feedback sources. For \(\phi = \pi/2 \), the rippling mode growth is reduced, as may be seen by a perturbative calculation of \(\gamma \) as well as a limiting calculation in which \(|S_1| \) is so large that the unit magnitude of the RHS may be neglected. When \(\nu_0^* \neq 0, \nu_0^* = 0 \), we may solve the eigenvalue problem perturbatively to get the following dispersion relation:

\[
\left(\frac{\gamma_{Rip}}{\gamma} \right)^{5/2} = 1 - \tilde{b} e^{-\beta^{1/4}}
\]

\[- \frac{1}{\beta} \theta^{1/2}[2 + \delta^* + (\delta^* - 1)(\delta^* + 3)Z(\delta^*)] \]

(16)

where \(\delta^* = 1 + \theta^{1/4}/\beta, \theta = i \tilde{\omega}/\gamma \) and \(Z(\delta^*) \) is the plasma dispersion function with argument \(\delta^* \). The weak shear limit corresponds to \(\delta^* \rightarrow -\infty \), and we can use the asymptotic form of the \(Z \) function to show that mode stabilization occurs irrespective of the sign of the shear.

In the strong shear limit, we have carried out a detailed numerical analysis of the stability problem. Unfortunately, the simplified analytic approach described above (Eqs (14)-(16)) cannot be extended to the present regime of interest \((\omega \sim \gamma \sim \omega_*) \); hence, we have to be satisfied with the numerical results only.

FIG. 1. (a) Normalized growth rate \((\bar{v} = \gamma/\omega_*) \) of the rippling instability versus \(\bar{\delta} \) for \(v_0 = 0, \xi_0 = 1 \) and \(k = 0.1 \).

(b) Mode structure of the rippling mode for \(v_0 = 0, \xi_0 = 1, k = 0.1 \) and \((\omega, \gamma) = (0.0, 0.57262) \).
POLOIDAL SHEARED FLOW AND ACTIVE FEEDBACK

The eigenvalue equation is recast in a form more convenient for numerical computation:

$$\frac{d^2 \tilde{\phi}}{d\xi^2} + Q(\xi) \tilde{\phi} = 0$$

(17)

where

$$Q(\xi) = -k^2 - \frac{2\tilde{\phi}(1 - f^2)}{L^2 u_f(\omega - \tilde{\phi}f)} \left(f - \frac{L^2}{2\lambda_L} \right)$$

$$- \frac{1}{\xi^2} \frac{1}{\xi_R} \frac{1}{(\omega - \tilde{\phi}f)(\omega - \tilde{\phi}f)}$$

and \(\omega = \omega/\omega_s \), \(\tilde{\phi} = k_0 u_0/\omega_s \), \(L^2_j = a_j/L_j \), \(j = u, s \), \(N \) and \(z \), \(L^2_u/L^2_N > 0 \), \(k = k_0 a_s \), \(S_z = 0 \), \(u_0 \neq 0 \) and \(u_0 = u_0 f(\xi) \). Equation (17) is solved by employing a shooting method with appropriate boundary conditions at large \(\xi \) (decaying mode). In Fig. 1(a), we have shown the normalized growth rate \(\gamma \) as a function of \(\tilde{\phi} \) for

FIG. 2. Growth rate (\(\gamma \)) of the rippling instability versus \(\tilde{\phi} \), for \(\xi = 1.0 \), \(a = 1.0 \), \(k = 0.1 \) and \(L^2_u = 400 \).

FIG. 3. (a) Real frequency \(\tilde{\omega} \) versus \(\tilde{\phi} \) and (b) growth rate \(\gamma \) versus \(\tilde{\phi} \) of the rippling instability for \(\xi_R = 1.0 \), \(a_2 = 1.0 \), \(k = 0.1 \), \(L^2_u = 400 \) and \(L^2_u = 1.0, 1.5, 5.0 \).
The mode structure is displayed in Fig. 1(b). The threshold value for the onset of the rippling instability is found to depend upon the resistive point (\(g_R\)) and the normalized parameter (\(\alpha\)), which is a function of the scale length of the Z gradient. The rippling mode is found to be unstable for \(\tilde{B}_2/g_R > 0.21\). The introduction of sheared flow is found to have a stabilizing effect on the mode. Our numerical computations show that for parameters typical of tokamak edge plasmas and with the poloidal velocity shear scale length \(L_\eta\), the rippling instability can be suppressed irrespective of whether the flow direction is along the electron diamagnetic drift or opposite to it. This feature is clearly seen in Fig. 2, where the numerical results corresponding to a shear scale length of \(L_\eta^* = 5.0\) are presented. In Figs 3(a) and (b), the real frequency (\(\omega_0\)) and the growth rate (\(\gamma\)) of the rippling instability are plotted as a function of the normalized flow velocity (\(v_0\)), for three different values of the shear scale length \(L_\eta^* = 1.0, 1.5\) and 5.0. It is seen that sheared poloidal flow has a stabilizing effect over a certain range of flow velocity and that this range varies with the value of the shear scale length. For large values of \(v_0\), there is a destabilization of the mode. A possible reason for this could be the onset of the Kelvin–Helmholtz instability in this regime [16]. Figure 4(a) shows the mode structure of the unstable rippling mode in the regime where the Kelvin–Helmholtz mode is beginning to emerge (\(L_\eta^* = 1.0, v_0 = 1.5\)). Figure 4(b) shows the mode structure in the regime where the instability is more pronounced (for \(v_0 = 4.0\)). The schematic plots of the potential function Q for these two cases are displayed in Figs 5(a) and (b), respectively.
3.2. Drift dissipative instability

It is well known [17] that in the slab approximation the drift mode is stable in a resistive plasma in a sheared magnetic field. The basic physical reason for this effect is that the magnetic shear gives coupling to parallel sound waves that propagate away from the resonant surface, draining the mode energy resulting in so-called shear damping. There are, however, several physical conditions under which the shear damping may be completely suppressed. As examples, we may consider the neutrally stable toroidicity induced eigenmodes discussed by Cheng and Chen [18], or nonlinearly found shear damping suppressed modes [19].

A simple slab eigenmode that also exhibits complete suppression of the shear damping is the one that arises when \(\omega_c(x) = \omega_c(1 - \xi^2/L_x) \) with \(L_x \ll \xi \), where \(\xi \) is the ion sound turning point. This simple slab eigenmode can, therefore, reproduce many of the features of the toroidicity induced eigenmodes in a true toroidal plasma. In this section, we consider such a slab eigenmode as a model and investigate the effect of poloidal velocity shear on its stability properties in several limiting cases, namely,

(i) \(v'_i = 0, S_e \neq 0 \),
(ii) \(v'_i \neq 0, \phi_i = 0, S_e = 0 \), and
(iii) \(S_e = 0, v'_i \neq 0, v_0(\xi) = v_0 f(\xi) \).

The appropriate equations may be derived from Eqs (10)-(13), assuming cold ions and \(\nabla T_e = 0 \). The linear mode width of the drift mode can be approximated by balancing the terms \(d^2/dL_x^2 \) and \(\xi^2/\xi^2 \) in Eq. (11). We first write the eigenmode equation for drift waves with feedback terms but \(v'_i = 0 \):

\[
\left(1 + \frac{k^2}{L_x^2} - \frac{\omega_c}{\omega} \left(1 - \frac{\xi^2}{L_x^2} \right) \right) \dot{\phi} - \frac{i \xi^2}{\xi^2 - i \xi (1 - \xi)} \frac{\omega_c}{\omega} \dot{\phi} = 0 \quad (18)
\]

where \(\dot{S}_n = (i |S_e|/\omega) \exp(i \phi) \) and we have assumed that \(\xi \ll L_x \). This equation may be solved by the method of matched asymptotic expansions [17] and shows that the growth rate is multiplied by a factor \((1 - \xi^2)^{1/2}\). Thus, for a \(\phi \) such that \(\xi^2 > 0 \) and real, there is a significant reduction of the growth rate using feedback methods. We now consider the case where \(\xi = 0 \) and \(v'_i \neq 0 \), so that \(\beta \) dependent terms are important. The new eigenmode equation is

\[
\frac{d^2 \phi}{d\xi^2} = \left[1 + k^2 - \frac{\omega_c}{\omega} \left(1 - \frac{\xi^2}{L_x^2} \right) \right] \phi + \frac{i \xi^2 (1 - \beta \xi)}{\xi^2 - i \xi (1 - \beta \xi)} \phi
\]

\[
\times \left(1 - \frac{\xi^2}{L_x^2} \right) \dot{\phi} + \frac{i \xi^2 (1 - \beta \xi)}{\xi^2 - i \xi (1 - \beta \xi)} \dot{\phi}
\]

For \(\xi = 0 \), we get the eigenmode equation for the drift wave without resistive effects. If \(\beta \) is small, that is the weak shear case, such that \(\beta^{-1} > L_x \), the mode is essentially confined by the \(\omega_c \) variation and the eigenmode has similar properties to the zero shear case.

When \(0 < \beta^{-1} < L_x \), we get the strong velocity shear case. In this case, we find that the asymptotic behaviour is like \(\exp(2i \xi^3/3\sqrt{\beta L_x}) \), i.e. like a propagating wave. Again, in this case, we get a shear damped mode.

FIG. 6. (a) Real frequency \(\omega_r \) and (b) growth rate \(\gamma \) for the drift dissipative mode as functions of the shear flow parameter \((I/L_u^+) \) with \(\xi_0 = 4.0, \xi_R = 1, k = 0.1, L_i = 10 \) and \(\xi_i = 20 \).
For $\phi^0 \neq 0$, the eigenvalue equation can again be written in the form of Eq. (17), where now Q is given by

$$Q(\xi) = -\xi^2 - \frac{2\nu_0 f (1 - f^2)}{L_n^2(\omega - \nu_0 f)} \left(f - \frac{L_n^2}{2L_n^2} \right)$$

$$- \frac{\xi^2}{\xi^2 - \frac{1}{\xi^2} f (\omega - \nu_0 f)} \left[1 - \frac{1}{(\omega - \nu_0 f)} \right] + \frac{\xi^2}{L_n^2(\omega - \nu_0 f)} - \frac{\xi^2}{(\omega - \nu_0 f)^2} \right].$$

The eigenvalue equation is again solved numerically using a shooting method and the results are displayed in Figs 6 and 7. Figures 6(a) and (b) show plots of the real frequency (ω_0) and the growth rate (γ) of the drift dissipative instability as functions of $1/L_n$. For typical values of $\nu_0 = 4.0$, $\xi_n = 20$, $L_n = 10$ and $\xi_R = 1.0$, it is seen that shear stabilization is effective in the range of $(L_n)^{-1} \leq 0.01$. For larger values, there is further destabilization and the growth rate is found to increase. In Figs 7(a), (b) and (c), we also show the mode structures of the drift dissipative mode for:

(i) $(L_n)^{-1} = 4.0 \times 10^{-3}$ (stabilized region),
(ii) $(L_n)^{-1} = 1.0 \times 10^{-2}$ (region of minimal growth) and
(iii) $(L_n)^{-1} = 2.0 \times 10^{-2}$ (region of shear destabilization).

3.3. Radiative condensation instability

In this section, we investigate the radiative condensation instability [20, 21] which is an important candidate for short scale length fluctuations (poloidal mode number $m \gg 1$) in tokamak edge plasmas. Physically, this instability is caused by $d\Delta / d\xi < 0$ and $L \propto N^2$ and leads to the development of cold spots of high density. The mode that is dominantly driven by radiative condensation effects is typically important when the edge plasma has a high electron density and is formed away from the mode rational surface where $k \ll \omega$ (this is to be distinguished from other small k modes such as rippling modes, whose growth rate could be influenced by radiative effects).

We shall concentrate our attention on this mode. The radial extent of the mode can be estimated by balancing the parallel and perpendicular thermal conductivities and gives $\xi_{rad} = (\xi_{\perp} L_n^2 / k_{\perp}^2) / \nu_{ei}$. We now study the effect of sheared poloidal flow and an active feedback source term. For $\nabla N = \nabla T = 0$, $k_{\perp} C_n / \omega^2 > 1$, $m_{ei} / m_e > 1$, we find, by adding the electron and ion energy equations (because the electrons and ions are strongly coupled) and using the condition that $\beta = \beta_e + \beta_i \equiv 0$, the eigenmode equation

\[\]
This is a standard Hermitian equation, which yields the eigenvalue condition
\[
\frac{\partial^2}{\partial x^2} - k_0^2 a_s^2 + \xi L_s (\gamma_s + \gamma_T - 1.14 i S_e - \frac{\xi^2}{L_x}) + 2i(1 - \beta \xi) \xi L_s \tilde{x} = 0
\]
(20)
This is a standard Hermitian equation, which yields the eigenvalue condition
\[
\omega_e = k_0 v_0(r_e)
\]
(21)
\[
\gamma = \frac{1}{3} \left(\frac{2L}{NT} - \frac{1}{N} \frac{\partial L}{\partial T} \right) - \frac{1}{3} \left(\frac{k_0^2}{L_s} \frac{\partial L}{\partial x} \frac{\partial x}{\partial T} \right)^{1/2} - \frac{1}{3} k_0^2 \xi L_s
\]
(22)
It may be noted that the velocity shear produces a stabilizing effect on the growth irrespective of the sign. The feedback term is found to be stabilizing for \(\phi = -\pi \).

4. CONCLUSIONS

We have investigated the linear stability of the rippling modes, the radiative condensation instabilities, and the drift dissipative mode in the presence of a sheared poloidal flow and of a phase sensitive feedback source. The latter is introduced in the electron continuity equation, and the conditions for the stabilization of the modes are obtained by a combination of analytic and numerical analysis of the relevant eigenmode equations. For a simple linear velocity profile, namely \(v_0 = v_0(r_e) + xu_0(r_e) \), analytic methods show that for weak shear, the stabilization is independent of the sign of \(v_0 \). A more general poloidal flow profile, namely \(v_0(\xi) = v_0(tanh(\xi/L_s^0)) \), is employed to study the strong shear limit, and the eigenmode equations are solved numerically in this case. It is found that both the rippling and the drift dissipative modes can be suppressed with sheared poloidal flow irrespective of the flow direction. The stabilization occurs over a range of flow velocities that depends on the value of the scale length. The unstable regime beyond a certain flow velocity value is possibly due to the onset of the Kelvin–Helmholtz instability [16]. We find the onset of this regime for typical values of \(v_0 \approx 1.5 \), \(L_s^0 \leq 5 \) for the rippling mode and of \(v_0 \approx 4.0 \), \(L_s^0 \leq 50 \) for the drift dissipative mode. We also find that a poloidal sheared flow, with a simple linear velocity profile, stabilizes the radiative condensation mode irrespective of the sign of the shear. The feedback source in the electron continuity equation can bring about stabilization for a phase of \(-\pi\).

REFERENCES

SINGH et al.

(Manuscript received 28 September 1992
Final manuscript received 17 May 1993)