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1. INTRODUCTION

A plasma is a classical many-body system with a large number of degrees of freedom. Its behaviour
is dominated by collective phenomena which owe their origin to the long-range nature of the
Coulomb force which urges groups of particles to move cooperatively. Furthermore a plasma is
typically characterized by large deviations from thermodynamic equilibrium. It is typically born with
enormous reservoirs of free energy in the form of pressure gradients (‘confined’ plasmas), magnetic
field gradients (plasma currents), distribution function anisotropies etc.! Approach to thermodynamic
equilibrium by conventional Coulomb ‘collisions’ in a hot plasma would take an extremely long
time. The plasma therefore uses its ingenuity to approach thermodynamic equilibrium (of course
never succeeding completely because of lots of constraints) by non-conventional or anomalous
relaxation processes. In these processes, the free energy reservoirs are partially used up in driving
up instabilities i.e. large amplitude collective modes of oscillation which drive the plasma into a
nonlinear state — sometimes a very coherent one with periodic nonlinear waves and ‘sometimes (more
often) a stochastic one with seething turbulence’. A plasma is then typically caught up in an
intermediate nonlinear state with large amplitude fluctuations which causes it to relax towards
thermodynamic equilibrium at an anomalously fast rate. One often maintains a steady state wherein
external drivers balance the relaxation phenomena and keep the plasma in a steady non-equilibrium
configuration.

To describe the observed plasma state one follows one of the following two approaches. Traditionally,
one assumes that the plasma starts from a state of mechanical equilibrium (where the volume forces
are completely balanced even though the plasma may be far from thermodynamic equilibrium). It is
then perturbed and one asks if the perturbation is unstable because of the available free energy sources.
This analysis involves linear equations and many standard methods are available to carry out this task.
If the plasma is unstable, the next task is to find the saturated spectrum of unstable waves in which
the linear growth is modified by quasi-linear and nonlinear effects and also quenched by nonlinear
absorption effects. This is usually a non-standard task and ome often relies on one’s intuition to make
approximations which are not always fully justifiable. This is where the central difficulty of plasma
physics lies and this is what makes a typical-plasma so very unpredictable in its behaviour.

A second approach, which has achieved a certain measure of success over the past couple of
decades is what may be called a thermodynamic approach to nonlinear plasma problems. In this
approach, one simply asks, if one can understand the observed plasma behaviour to be due to
minimization of some appropriately defined free energy for the plasma subject to some reasonably
defined constraints. This leads one directly to preferred stationary states which are like local minima
in which the plasma likes to reside (figure 1). Or it may give us critical information about fluctuation
levels etc. without a detailed nonlinear analysis. This approach is particularly suited for systems
which may be treated as ‘isolated’ e.g. valid for time-scales over which the diffusion (or relaxation)
of heat, particles, magnetic fields etc. over the macroscopic length dimensions may be treated as
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Figure 1. Schematic of the free energy functions in
some general parameter space. The plasma gets trap-
ped in a local energy minimum because of constraints
on the minimization process.

negligible. In this review talk we shall describe the salient features of the nonlinear thermodynamic
approach by illustrating it with some examples.

2. THERMODYNAMICS OF MICROSCOPIC INSTABILITIES

One of the free energy sources in a plasma is the one associated with the details of the microscopic
distribution function. e.g. one may have a distribution function with two beams, or one with a
bump-on-tail or one with a net current. All these cases are known to be unstable and lead to the
growth of collective plasma oscillations. The conventional theory starts with the Vlasov-Poisson set
of equations (ions a smoothed out background, for simplicity)

af e of
—é—t—'*'VVf‘l'*nTVd)—é;"—-O, (18')
V2 = 4me U Fdv - no] . (1b)

Linearized equations can be solved by the method of fourier analysis viz. 1, fi, ~ exp i(k - r — of)
so that
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Elimination of f;, ¢y leads to the dispersion relation
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which gives the relationship ® = (k). The equation then demonstrates that certain k values give
an o with a positive imaginary part which corresponds to growing modes.
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Next, if one wants to understand, how these unstable modes saturate, one writes down the
nonlinear equations.

-—a—fi—+zk vfk+——-z¢k:k’ it —;—k¢k-¥3=o, (4a)
v

K2y, = —dme f fe &, (4b)

%—_—Z@ck (4c)

Analysis in which the equilibrium distribution function f; is altered but the nonlinear terms in eq-
uation (4a) are ignored are known as quasi-linear theories. One can often show that the neglected
mode-coupling terms are as important as the kept terms. This has led to a large number of renor-
malized quasi-linear theories? with and without mode coupling and one can typically base the approx-
imations on intuitive considerations only. In weak turbulence theories, one uses y/w; as an expansion
parameter so that one is considering the nonlinear interaction of quasi-modes (quasi-particles) in the
plasma with some sort of a random phase approximation. However, if y/0; ~ Aw/w; or ~ 1, one
can no longer ignore the strong turbulence effects. The entire spectrum of waves gets woven into a
strongly correlated spectrum (sometimes coherent and sometimes not so) which may then be solved
for. The theories of strong turbulence are still in their infancy. We now give a few examples of the
application of thermodynamic methods to microscopic nonlinear plasma problems.

Bounds on Fluctuation Energy

The thermodynamic approach to microscopic problems was pioneered by Gardener, Newcomb and
others®. Gardener argued that one can obtain an upper bound on fluctuation energy in a microscop-
ically unstable plasma by very general arguments. He pointed out that in a microinstability, a plasma

~is merely converting kinetic energy of particles into electrostatic field fluctuations. Thus the plasma

is attempting to minimise its free energy content, which is essentially the kinetic energy of its parti-
cles. Thus the field fluctuation energy Ep is limited by the condition

F < WO0) - W(),
W= [[dxdvfix, v, ) Gmvd). ©)

However, in this minimization process, the plasma is constrained to obey the Vlasov equation
Df/IDt = 0. This equation simply means that the motion of the phase space fluid is incompressible.
Gardener next gave a prescription for finding a lower bound on W(). This is given by

W1=%mffv2f,.(v)dxdv 6)

where f{(v) is (i) a monotone decreasing function of v* and (ii) for any o > 0, phase space volume
of region where f;(v)>a is equal to phase space volume of region where fi(x,v)>a. ‘
In a way, the problem is very similar to that encountered when a heavy liquid sits on top of a

\light liquid, becomes unstable and rearranges itself taking account of the constraint of incompressibil-

ity. Using the above arguments, Gardener was able to obtain a bound on fluctuation energy.
EFmax. = 4EpN ™)
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where Epy is the result of a detailed nonlinear theory of the kind outlined above after equation
(4). It is also clear that if one has better constraints than the one used above, one can get
even better estimates of the nonlinear fluctuation level. Thus, we note in this example how a
decent estimate of the fluctuation energy can be obtained by simple global thermodynamic
arguments.

Cyclotron Maser, Gyrotron etc.

We now consider another example, where thermodynamic methods have yielded useful bounds
on the performance of a given system using plasma instability. This is the well-known example
of a cyclotron maser®. In a cyclotron maser or a gyratron with anisotropy, a relativistic electron
beam i.e. different parallel and perpendicular spread is sent through a plasma with a magnetic
field and used to generate intense electromagnetic waves at a frequency which is tunable. The
basic physics is rather simple. The detailed nonlinear theory of this instability is essential in
determining the efficiency of conversion of the kinetic energy of the relativistic electron beam
into maser waves. The detailed nonlinear theory is likely to be quite complex as it involves
nonlinear fluid/Vlasov equations etc. However, as Davidson® has recently shown one can get
upper bounds on the efficiency of conversion by following arguments very similar to those of
Gardener’. By minimizing kinetic energy of particles with constraints related to conservation of
density, momentum, energy etc. he has been able to obtain bounds on the conversion efficiency.
Some of the plots obtained by him showing the bounds on the efficiency of such microwave
generation are shown herewith (figures 2 and 3).
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" Figure 2. Lowest upper bound on efficiency of conversion
from relativistic electron beam energy to EM wave energy as
a function of parallel spread.
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Figure 3. Lowest upper bound on efficiency of conversion from
relativistic electron beam energy to EM wave energy as a func-
tion of perpendicular spread.

Two Stream Instability or Phase Space Holes etc.

To elucidate the basic nonlinear phenomena taking place in a two-stream instability, Berk, Nielsen
and Roberts® carried out detailed computer simulations of an unstable 2-stream phase space fluid.
They used the so-called water-bag model (figure 4) in which

f:::l —;-V0<’VI<V0 (8)
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Figure 4. A two stream unstable water bag distribution func-
tion in phase space.
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Such a system is completely described by the boundary curves, each point on which follows the
equation of motion

dx/dt = v, dv/dt = —9d/ax, _ )]

¢ is to be obtained from Poisson’s equation with the charge density distribution coming from a
geometrical construction. They used periodic boundary conditions and found numerically that the
curves continually stretch so that representation by a fixed number of points is inaccurate. Therefore
extra points were automatically inserted wherever needed. The results of their investigations are
summarized in figure 5, for the following parameters:

vy At/Ax = 025, 0, At = 1/20 , Ax = L/64 , linear y/w, = 0-3.
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Figure 5. Nonlinear develop-
ment of a two-stream instabil-
ity. The inner f = 0 region has
been shaded to emphasize the
development and interactions
of hole structures.

If one focusses attention on the dark regions (f=0 cavities) one notes that it rolls up into phase-space
holes of roughly elliptical shape. This hole preserves its area as it deforms. Furthermore, associated
with the phase-space hole is a steady large amplitude electrostatic wave which is set up by the
streaming instability. These phase-space holes are the major results of the instability. In one dimen-
sion, they seem to be fairly stable nonlinear entities which only have a tendency to attract and
coalesce. In certain ways, they behave like positively charged bodies with negative mass which attract.
The turbulent state seems to be describable in the phase space fluid, as a collection of weakly
interacting phase-space holes superposed with minor disturbances such as background spray, tidal
deformations etc.

What is a phase-space hole? In a way it is a coherent nonlinear solution of the Vlasov-Poisson set
of equations. Such solutions were studied long back by Bernstein et al.” They discovered that
in 1-d, if one goes to a moving frame and makes the ansatz of stationarity, then the Vlasov-Poisson
equations take the form (§ = x — w)
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Equation (10a) may be solved by the method of characteristics, giving
f=f(W) where W = Lm(v - uf*~ e¢

A phase-space hole is a region with deficiency of electrons f = f — f < 0 i.e. one has an excess of
positive charge due to the background sea of ions. Some electrons get ‘trapped’ in the resulting
potential structure because their kinetic energy in the wave-frame is insufficient to overcome the

potential hill, i.e. -;—m(Av)2 < ed. BGK’ were able to demonstrate that arbitrary potential shapes in

the moving frame can be sustained by an appropriate choice of trapped and untrapped particle
distribution functions. Thus a phase-space hole is a special BGK type solution of the Vlasov-Poisson
system of equations which is being created and sustained in the above 1-d computer simulation. It
should be noted that a BGK solution is a highly nonlinear solution and cannot come out of any
simple perturbative nonlinear theory. This is so because the orbits of ‘trapped’ particles are so dras-
- tically modified that they cannot be described by any perturbation theory. The main problem with
BGK theory is that one may construct any potential shape by an appropriate choice of trapped and
untrapped particle distributions, i.e. there is too much arbitrariness in the solution. However, as
described below, certain arguments due to Dupree® may be used to uniquely fix the distribution
functions and hence the final nonlinear structures.

An understanding of why the two-stream instability organizes itself into a collection of phase-space
holes can be obtained by a thermodynamic argument due to Dupree®. He has recently given plausible
arguments indicating that fluctuations in a turbulent plasma have a natural tendency to organize
themselves into a collection of phase-space holes. He gives a maximal entropy argument to show
that the most probable state for a fluctuation of given mass, momentum and energy is to be in the
form of a phase-space hole.

From the Vlasov equation, we know that df/ds = 0 and hence that the entropy [fIn f dx dv is truly
conserved. However such a conservation of entropy is really meaningless because there is a great
deal of stretching and twisting of the phase-space fluid with the result that there are localized regions
of very high gradients, which are extremely small in size. A proper description should carry out
‘coarse-graining’ of these regions, which leads to entropy increase. Thus Dupree argues that the
‘trapped’ regions are phase mixed and have their entropy increased whereas the untrapped particles
essentially have reversible behaviour with conservation of entropy. He thus maximizes the entropy

o=n [ arav () I fi(v) = fow) In fu(w)] (11)
t
with constancy of
MP,T] = [[ dx av [£5Y) = folw)] [m, mv, (mPR2) = ed] (11b)
and &(x) determined self-consistently by the equation

2 d
L-"’; ~o? P J V—_-V; Favfl] & = 4m en J dv I:f,(v) - fo(u):l. (11¢)

t

Carrying out this maximization process, one finally gets
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Such a phase-space hole (see figure 6 for a sketch of f) has many features similar to those observed
in the 1-d numerical simulation of Berk et al® One can also show that two such holes have a
tendency to coalesce into a single hole, as observed.

-

Hole boundary™ T~ f=folw)
k< fol)inside A% here

\

Figure 6. Schematic representation of a Dupree phase
— space hole, a special BGK solution of the non-linear
Vlasov-Poisson equations.

It is clear therefore that the observed nomlinear state in the numerical simulations is one where
the plasma is maximizing the entropy of the ‘trapped’ parts of phase-space, subject to certain reason-
able constraints. It may well be argued (as Dupree does) that the description of nonlinear states in
real experiments with driven open systems in terms of a collection of weakly interacting nonlinear
entities (like phase-space holes) is far superior to description in terms of strongly interacting Fourier
modes (as the conventional theories demand). Again nonlinear thermodynamics has led to a greater
insight into the final state than any conventional theories would have done.

Recently, the problem of microinstabilities in magnetically confined inhomogeneous plasma has
also been looked at from the above refreshing point of view’. Rather than describe the final state
in terms of nonlinearly saturated unstable waves which may go into a turbulent state, one instead
works in terms of coherent nonlinear phase-space structures in a magnetized plasma. In these cases,
one has not only the free energy sources associated with dfy / 3v but also those associated with
dfo/ dx. One then gets a coupling between the phase-space holes and E X B vortices in physical
space. Such coupled vortex-phase-space structures in 2-dimensions are excellent candidates for de-
scribing the nonlinear turbulent state of an inhomogeneous confined plasma. :

3. THERMODYNAMICS OF MACROSCOPIC PHENOMENA

One of the outstanding problems of modern magnetically confined fusion systems is a description of
the nonlinear state in which the plasma is typically trapped. Many fusion systems are essentially
plasma current filaments which are kept in MHD equilibrium in external magnetic fields. These
equilibria contain free energy sources in the form of poloidal magnetic field energy (Er ~ Bi ~ 7%
and expansion free energy (Er ~ Vp). These free energy sources can in turn drive instabilities of
natural MHD oscillations in the plasma, which then grow. Finally, the oscillations saturate at large
amplitudes leaving the plasma in a nonlinear state. The description of this nonlinear state by conven-
tional methods is quite complex and will now be described below: »

The basic equations describing a plasma current filament in a magnetic field (such as in the labora-
tory or in a solar/astrophysical situation) are the macroscopic equations:

(3p/at) + V- (pv) =0, (13a)
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p[(3/3f) + v - V]v=J X B — Vp + iV?, (13b)
[(3/3) + v - V] [ple"] = 0, (13¢)
(8/0f) B=V X (VXB)+mV*B (13d)
J=VxB. | (13¢)

These equations are valid for a plasma which may be treated as a MHD fluid, a valid approximation when

typical 9/dt < w, and typical scale lengths L » r;;. The parameters i and m refer respectively to coeffi-

cients of viscosity and resistivity in the plasma and are responsible for the non-ideal nature of the plasma.
The basic plasma equilibrium is described by the equation™.

(V X B) X B = Vp. (14)
The equation indicates B - Vp = 0 or thati the pressure is constant along field lines. The fundamental

concept of toroidal confinement systems is related to integrability of the associated field line trajec-
tories.'” It is well-known that field lines described by the equations

Fox Y D E_ (15)

essentially form a Hamiltonian flow. In general, the equations do not lead to integrable trajectories.
However, if the field lines have additional invariants, then they form nested surfaces in Poincaré
surface of section plots. In these cases, the field lines instead of wandering randomly in surface of
section plots, (note that system is usually toroidal and hence periodic in the toroidal coordinate &)
actually reside on closed curves. These curves are known as magnetic surfaces (figure 7). They are
densely traced out by a magnetic field line. A rigorous proof of the existence of magnetic surfaces
can only be given for fields with external symmetries (Grad'’) such as plasma equilibrium with no
¢ dependence (e.g. tokamaks and pinches).

LA P.q
aty) P{Y)

©

Minor cross-section

Figure 7. (a) Pressure p({) and safety factor g() profiles for
a tokamak (b) Pressure p(¥) and safety factor g({) profiles for
a reversed field pinch. (¢) Magnetic surfaces on a surface of
section plot. The dotted curve shows how magnetic surfaces
result from intersections of a helical field line with the minor
cross-section as the field line wanders periodically in the toroi-
dal direction.
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A typical toroidal plasma equilibrium thus consists of a toroidal field, Br and a poloidal field, Bp
the latter being created by plasma currents:

B = BT éq, + Bp ée , (168.)
1 .
Br=— Vi x &, (16b)
R
q = qu, / RBP: q = q (Lll)a (16C)
p =p) (16d)

A pressure gradient and a current profile basically determine (or characterize) a given plasma equili-
brium; the latter is usually given in terms of the safety factor profile g(¥) (figure 7).

Experiments have demonstrated that for axisymmetric plasma toroidal equilibria sustained by cur-
rents, only two kinds of equilibria give reasonably quiescent discharges viz. tokamaks and reversed
field pinches. Both have a confined pressure profile with p peaked on the inside but differ in the
shape of the g-profiles. One of the outstanding problems of plasma MHD physics is an understanding
of why these two profiles give interesting stationary equilibria and why they differ from each other
(figure 7).

Let us first start an analysis of the affairs with the conventional methods. We realise that p', J'
and k (viz. field line curvature or effective gravitational fields associated with centrifugal forces on
ions following curved field lines) act as sources of free energy.

In ideal MHD theory, the stability of arbitrary equilibria is analysed either by a normal mode
analysis (similar to exp i(k - r — of) analysis of the linearised Vlasov equation) or by the use of an
energy principle."' The energy principle looks for changes in the potential energy 3W caused by a
linearized perturbation on a given equilibrium: 8W is given by

BW = L [ [IBAP + wpo (V- OF + B3IV - 61+ 261 - P

Jo- By
Bj

— 2 (1" Vpo) (x-E1) — (EL X By) - Bi], (17a)

BL=V X (EXBy), v=d&d, k = (b-V)b - (17b)

The first three terms are positive definite and correspond to the expenditure of energy in bending
field lines and compressing the plasma. The last two terms give negative contribution associated with
release of expansion/gravitational field energies and the release of energy associated with Jj or poloi-
dal magnetic fields. These negative contributions can thus lead to instabilities. Ideal instabilities are
to be avoided at all costs since they destroy the plasma configuration on a very fast time scale viz.
the time taken by an Alfven wave to transit the plasma. This limits the parameter space in which
confinement systems can operate.

Ideal MHD equations are a highly constrained system. This is evident from the basic equations
which can be used to prove an infinite number of conservation laws. \

(d/dDK,, = 0 (18a)

K, = f (A - B) dr, (18b)
¥

where K, is the helicity of field lines associated with each closed flux tube and more generally with
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each magnetic surface. This infinity of constraints actually freezes the topology of field lines in an
ideal MHD fluid (note similar constraints in constancy of f and entropy in the Vlasov equation).
This statement is often said to mean that field lines are ‘frozen’ in an ideal MHD fluid." This also
means that ideal instabilities cannot change the basic topology of the magnetic surfaces, however
much these surfaces may get twisted and stretched.

It is also well-known that in a plasma with finite resistivity (1 # 0), many new instabilities arise.?
Examples of these are the tearing instabilities which filament a given current sheet, the rippling
instabilities which are driven by resistivity gradients, resistive g-modes etc. These modes need not
satisfy the ‘frozen-field’ constraints of ideal MHD and can actually lead to drastic changes in the
magnetic field topologies. It is indeed because of the magnetic topology changes that resistive in-
stabilities arise in an equilibrium which is stable to ideal instabilities. Basically, the release of ideal
MHD constraints permits an access to lower energy states, not originally possible. In contrast to
ideal instabilities these non-ideal instabilities are typically slow since they depend on resistivity which

for a hot plasma is a small parameter. They often go as a fractional power of resistivity such as n'?,

n°® etc. One can therefore hope to live with these instabilities and it becomes interesting to enquire
as to the non-linear fate of the plasma in the presence of such instabilities. In a tearing instability
in a tokamak, for example, the plasma may form magnetic islands on the g = 2 surface, i.e. the
plasma current filament ultimately breaks up into two crescent-shaped helical filaments (as shown in
figure 8a). If the plasma is unstable to tearing modes on only one surface, the final fate is generally
not complex and is a coherent island formation. However, if several magnetic surfaces are unstable
to tearing modes, the plasma loses all symmetries. The field line mapping now does not lead to nice
magnetic islands but instead leads to a turbulent state where the field lines stochastically wander over
a volume (figure 8b). In this case, the plasma loses all confinement and the current filament violently
disrupts. The calculation of the final fate of the plasma current filament and the associated stochastic
field lines in a resistive MHD plasma is an extremely complex task and can often be done only
numerically. In view of the extremely complex nature of these calculations, it is a miracle that any
significant progress has been made at all in a description of the observed nonlinear states.

¢
@b

Figure 8. (a) Formation of o coherent m = 2 isknd

structure due o tearing instability

¢
b

Figure 8. (1) Strochastic wandering of ficld linc tuter-
sections in the outer shell as many helical modes arc
excited destroying plasma symmetry and confinement.
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A thermodynamic approach to the above complex set of problems was initiated by Taylor™ about
15 years ago. He was attempting to interpret a large amount of data that had been gathered on

RFP’s (reversed field pinches). He argued that the most important source of free energy in these

phenomena is that associated with the poloidal magnetic field energy.
W= f (B%/8) dr. (19)
1%

The plasma is attempting to get rid of this free energy and if it were allowed to do so in an
unconstrained manner, it would reach a state with Bp = 0, i.e. get rid of all plasma current. However,
as the plasma moves around, it is constrained by ideal MHD equations. If ideal MHD were exactly
valid, one would have an infinite number of constraints associated with each magnetic surface. As
it is, the plasma resistivity m is finite but not too large. The result is that certain magnetic surfaces
break-up and reconnect forming magnetic islands on several surfaces. Under these conditions, conser-
vation of K, for each surface loses its meaning. However an overall conservation law for the total
volume is still meaningful because the plasma is surrounded by a conducting shell. That is, we can use,

K=fA-Bd'r (20)

as an overall constraint on the plasma motions. This kind of ansatz has also been verified in numerical
computation (Montgomery et al)*. It is possible to give the following interpretation of the above
thermodynamic process:

W~ —n fﬁ &r - i f Vv d¥, @1

K~-2 fJ-Bd3r. (22)

If by virtue of plasma motions, sharp gradients of ¥ (current layers) are created, they may lead to
considerable decrease of energy with a corresponding minimal decrease of K. Conceptually J ~ n™?
such that [n!™% d% — finite while [¢'?d* — 0 as m — 0. Thus we may argue that instability processes
are attempting to minimize the poloidal field energy while keeping K nearly invariant. This will
always be valid as long as the overall relaxation is taking place on time scales much faster than
resistive diffusion time scales such as m etc. Under these conditions, the system may still be treated
as an isolated system.

Following Taylor”® we now minimize W subject to the constancy of K. The result is an equilibrium
configuration in which

V X B = uB. (23)

This is a force-free configuration in which w is entirely determined by Ky and the toroidal flux Y.
Thus, the solution of the above equilibrium equation is

Br=0, BB::OLJI(}‘U.)’ BtP:aJO(p’r)a v (243)

where w and o are determined by

K R
= iy Vi) + el 2i6a) Tl (240)

and yr = 2w [ B, rdr. (24¢)

Thus, given a value for Ky and yr, the final equilibrium state is completely determined. Experimentally,
the results on reversed fields equilibria are expressed in terms of F — 8 plots where F = B, (r = a)/B,
and 6 = pa/2.
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The above theory gives an excellent description of observations on reversed field pinches. The
experiments indicate that after a violent initial phase, the pinch settles into a quiescent state with
minimum fluctuations. Furthermore, the mean magnetic field profiles in the quiescent state are inde-
pendent of particular experiment and the previous history and only depend on one parameter

0 = (21, / By) (1/g,).

Lastly for & > 6, the toroidal field is observed to reverse in the outer region of the plasma, as
described by the above solutions (Jy(pr) etc.). Figure 9 and 10 give a very brief view of the excellent

Figure 9. By, By profiles in the reversed field pinch; note that
By reverses in outer region. Dotted lines are the theoretical

predictions.
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Figure 10. Comparison of the F ~— 6 curves from theory and
experiments (circles and triangles).
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