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Abstract. Using a kinetic description for electrons and the usual equation of motion
for lattice displacement we have derived a general dispersion relation for acoustic
waves in a piezoelectric semiconductor, in the presence of a strong high frequency
electric ficld oscillating near the electron plasma frequency. Earlier hydrodynamic
results valid for kA, € 1 (where k& is the wave number of the acoustic wave and A,
the electron mean free path) are rederived as a special case. For kA, > 1, two instabi-
lity branches are discovered and magnitudes of the threshold electric field required
to drive the acoustic wave unstable in each case, are obtained.
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~ 1. Introduction

One of us has recently investigated (Kaw 1973, hereafter referred to as I) the
parametric excitation of ultrasonic waves in collision dominated piezoelectric
semiconductors by the application of high frequency electromagnetic fields oscil-
lating near the electron plasma frequency. This parametric excitation process is
quite distinct from the ones considered by earlier workers (Chaban 1968, Levin
and Chernozatonskii 1970, Epshtein 1969; the driving frequency, w,is near acoustic
frequency, » in these works) in the sense that it involves the simultaneous excita-
tion of electron plasma waves. The calculation was done using hydrodynamic
equations for the electron ‘fluid > and can therefore be applied only to the excita-
tion of long wavelength acoustic waves satisfying the inequality kX, <€ 1. The
calculation showed that in the range of validity of the hydrodynamic treatment,
higher values of k& have a lower threshold field of excitation. Itis therefore of
interest to extend the above calculation into the domain kX,>> 1. This is the
aim of our present communication. The range of wavelengths kA, = 1 obviously
necessitates the use of a kinetic description for electrons.

Sta.rting with a Boltzmann equation description for electrons in the presence of
a uniform external oscillating electric field, with a number-conserving relaxation
model _for collisions (for simplicity we ignore the energy dependence of the
rela:xauon time) and the usual equation of motion for lattice displacement, we have
derived a general dispersion relation for small amplitude acoustic waves. For
kA, <1 and taking the hydrodynamic limit we recover the results of I. For
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kXA, =1 and acoustic wave frequency « > v (the electron collision frequency)
we find that the dispersion relation is strongly modified and leads to possible excita-
tion of acoustic waves in two different ranges of wavelengths. For {w, — (w,2
+ K2V, 2% > 0 we find the excitation of weekly damped acoustic waves; the
threshold field for the excitation of these modes is rather small. For wy < (w,2 +
k2V. 2t a purely growing mode (which is a strongly modified version of the
usual acoustic mode) is obtained; the excitation of this mode requires the ampli-
fication of a rather intense high frequency field. The results of the above analysis
are in close agreement with the generalised analysis of parametric instabilities
discussed recently by Nishikawa (1968).

2. Derivation of the dispersion relation

Consider a piezoelectric semiconductor under the influence of an oscillating electric
field E, cos wot with frequency w, close to the electron plasma frequency w,.
Under the influence of this field, electrons oscillate with a velocity, (eEo/mw,) sin w,t
whereas the heavier lattice ions remain relatively unperturbed. We wish to investi-
gate the excitation of acoustic waves due to the oscillatory relative motion between
the electrons and the lattice. For simplicity, we consider only the one-dimensional
case where the acoustic waves propagate along E,.

In a piezoelectric semiconductor, a propagating acoustic wave has low frequency
electron density fluctuations associated with it. The external field produces a
nonlinear coupling between these low frequency fluctuations and high frequency
electron plasma waves in such a manner that both are driven unstable (see I for
a detailed physical discussion). The basic equations of motion for electrons and
the lattice are

¥ w2 4 (5 cos w VB LY = —masy @

ot 0
n= [ f dv 2
d%u d%u VE
— == —_— —_— 3
YL Cbxz B dx 3
. .
2E _ dme 4B % @
X € € 20X
where f is the perturbed electron velocity distribution and
eE,

fO Efo ('D _— M, Sin CUot)

are the equilibrium density and distribution function of electrons, respectively,
u is the lattice displacement and e is the appropriate dielectric cons:nant.* All o!:her
symbols have their usual meanings as reported in L Equat.io.n (1) is the hnearllzed
microscopic equation for electrons with a BGK type collision term op'the nght
hand side (Bhatnagar et al 1954). Equations (3) and (4) are t.he famlhz}r lattice
and Poisson equations with the piezoelectric coupling terms included in them.

* [n I. we have taken e due to the lattice to be different for low frequency (€o) anc_i high
’ However, if all frequencies are smaller then the frequencies of

frequency (e.o) perturbations.  for both type of perturbations.

characteristic oscillators describing the lattice, € can be taken sam
We thus assume €, = cgo = ¢ (Ehrenreich 1966).
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To solve eq. (1), we shall seek the Fourier transform of f(x, v, t) with respect
to space and time defined by the relation

fe,v, ) = 1 T fk v, w)expi(kx — wt) dkdw )

As it is convenient to calculate the perturbed electron distribution function in its

own oscillating frame of reference, we shall change the independent variable »
to ¥V by the substitution

and put
fk, v, w) = F(k, V, w) exp (in cOs wt).

The quantity p (= keE,/mw,?) represents physically the ratio of electron excursion
length in the high frequency field to the wavelength of a typical perturbation and
the function F(k, V, w) is the Fourier transform of F(x, V, t). Using eqs (1)
and (5) and the well known property of Bessel function J,(x), namely,

exp (ix sin ) = +2°’°J,, (x) exp (in0)
-0

the Fourier-transformed equation in terms of F(k, V, w) reduces to

Fk, V, w)= ~%b—f°b—(VK) P (—w) E (k, w + log/li (kK V—w —iv)]
+ vfo (V) ny (k, w)fing (kV — o — iv) (6)

where
n(k, wy= [ F(k, V, w)dV

Similarly, eqs (3) and (4) in the transformed variables become

u(k, w) =ikBE (k, w)/(pw? — Ck?) 39
. =400
KEh, o) =" 0k, o)+ 5 D T, @m e ot ped @)

p=—0C0

Choosing the equilibrium distribution for £, (V) in the form
Jo (V) =no(a|m)texp (— aV?), a = 2T/m

a form quite suitable for non-degenerate semiconductors, and integrating eq. (6)

over velocity space, the resultant relation between n, (k, w) and E (k, w) is given
by

dmen, (k, w) = — ikey, (k, w) X it J;(— p) Ek, o -+ lw,) (7
. 4
where X, is the electron susceptibility function defined by the relation

1 ive/a
Xo = g A+ Z@y{1 + Y0 2 (1)

)

d(:‘"_ \/27/4".”0‘-"2) b-_sing the electron Debye length, Z ({) the usual plasma dis-
persion function (Fried and Conte 1961) and finally { = ( + i») /a/k. Elimi-
nating u (k, w) between eqs (3') and (4') and replacing the terms 4wei’ ny (k, w 4 lwg)
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and ikei' E (k, o + lw,), respectively, by N (k, w + lwy) and E (k, w + lw,), the
two coupled set of recurrence relations between N (k, w) and E (k, w) can be written

in the form
N(ks w) - _‘Xc(k: w) lZ' Jl(_:u’)E(ks w+lw0)

{L+ Xk )} E(k, w) = %’ Jpy (W) N (k, @ + pwo) ®

the former being the revised form of eq. (7) while the latter is derived as a con-
sequence of relations (3') and (4). X, (k, o) is the lattice susceptibility function

given by the expression

xi (k, w) = — 47B2%k2/pe (w2 — Ck2/p) (10)
To derive the dispersion relation, we eliminate E (k, w) in the set (9) and thus obtain
an infinite determinantal relation' between N (k, w) and their harmonics (i.e.
N (k, w4+ w,), etc.). We shall stipulate that the electron excursion lengths are
much shorter than the wavelengths of the perturbation and therefore we shall
retain only terms involving N (k, w) and N(k, w -- w,). This approximation
enables us to truncate the infinite determinant to a 3 x 3 relation. Such a trunca-
tion procedure has been extensively used in the theory of parametric instabilities
in plasmas; a detailed analysis of the validity of this approximation may be found
in the work by Ott eral (1973). Assuming that X, (k, o -4 w,) ~ 0 (because
the lattice responds weakly at high frequencies), after some simplifications, the
dispersion relation can finally be put in the form

(11)

1 1 :
1 ‘{_xl _{_Xe —_ — a\ﬂle (1 + ,Xe) {(1 -+ Xe+) + (]. + xe_)}

" where
X&E =X, (k, w 4 w,) are the high frequency electron susceptibilities.

3. Solution of the dispersion relation

We shall now discuss the properties of the dispersion relation for certain special
cases of interest. Equation (11) can be rewritten as

Ck?  4mwf2k?  4nB2%?2 Xe 12
2 . — —_——t
w - t = {A : +X°} (12)

where the expression for X; (eq. 10) is used in eq. (11). The quantity A defines
the contribution arising due to the externally applied electric field and is given by

3

1, 1 1 }

4= {aren T
For 4 =0 and kV,< v (V. being the electron thermal velocity), one uses the
large argument expansion of Z-function in X, and eq. (12) reduces to the known

hydrodynamic result, viz.
Ck2 4xB2%k% wp? } (12a)
wi=ZE+ T\t e
This equation describes damped acoustic waves in piezoelectric semiconductors,
the damping arising because of their interaction with electrons. For A3 0 and

kV, << v, the dispersion relation of I can be recovered as follows:

e,
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Equation (12) may be written as

2 272 272 : 2
- e e e (5)] - o
(12 b)
where
0 == wo — wy

wg = (wp?® + L2V 2R

and we have approximated X, >~ — w,2/iwv and w, = w,. Equation (125) is
identical to eq. (9) of I if we binomially expand the square parenthesis in that
equation, retaining first order terms only and assume ¢, = €, = € as discussed
earlier*. It should be emphasised that eq. (12 ) is more exact than eq. (9) of 1
and the expansion of the latter becomes necessary because of certain approxima-
tions inherent in the hydrodynamic equations.

We now examine the excitation of acoustic waves for the range of wavelengths
kV.> v. We shall assume throughout our analysis that woS kV,> w, v
Using eq. (8) and the small argument expansion of the Z-function (Fried and
Conte 1961) the electron susceptibility can be written as

%= g {1+ YT (= vy )

We restrict our attention to two frequency ranges: (i) |w| <L vand ()| w| v

For these cases, the quantity 4 representing the effect of high frequency field term
takes the following forms:

A mpt {02 (82 4 392 4 J00e8) + 2008% -+ 2ive (Gr2 — o2 + wd)}
8(8% + 1v)?; (o< (13 a)
and
A~ p? Qive — 208 — v)/8 (0 — 312 — 82 L ivw); (|w| Z¥)
(13 b)

Firstly, we shall examine the case when | w | <€ ». Substituting the expressions

(8 a) and (134a) in eq. (12), we obtain

oo CK* _ 4nB%® _ 4nmBoK? {;ﬂ [v2 (32 LY Bwg

P €p €p 3t 3 )"t 2wob?
. v2 1
v (G-t es)| s+ b — [ty
i A/ mwk2d?
+ kV, (1 ¥ k*d?)e (A — fav[kV)2 } (14

* In I, we have taken e due to the lattice to be different fi i
frequency (e.o) perturbations. e Smaley eduency (<o) and high

However, if all frequencies are smaller than i f
characteristic oscillators describ o an the frequencies o

ing the lattice, € can be taken same for both type of perturbations
We thus assume eg=ec, = ¢ (Ehrenreich 1966). P P * '
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It is clear that the instability is excited when the imaginary part of the high fre-
quency term overcomes the usual damping term on the right and side of eq. (14).
Therefore the condition for the excitation of instability is

v (3 v — 82 + wed)/(@r? 4+ 892
> VARPAPKV (1 + k2d2)2 (1 — +/mv/kV,)

or

E,? 4 \/m wo\? (v 2 v A/m\ [ v?

drn, T >(1 F k2d?)® (E) (Z -+ 32) /kVTV (1 — ?\Vé:) (—4~ — 8% 4 C003) 15)
The above criterion also defines a threshold needed for destabilization of acoustic
waves. Further for instability it must be noted that 8 > 0 or wo > w, as it is
evident from the dispersion relation (14). The minimum amplitude of the
electric field required for parametric excitation can be simplified by optimizing
the right hand side of the inequality (15). For w, close to w, and k2d? X 1, this
threshold field turns out to be of order, v (4mn,T/kV,w,)t. This result therefore
leads us to the conclusion that the short wavelength acoustic instabilities can be
triggered by the applied fields with lesser amplitudes.

In the aforesaid criterion for instability, we notice that the threshold condi-
tion is independent of the frequency of acoustic waves. This feature is a dire.sct
consequence to our earlier assumption that | w|<€ ». For | w]| > v, the quantity
4 is significantly altered (eq. 13 4) and hence the modified dispersion relation by
virtue of eqs (12), (13 5) and (8 @) becomes

(w? + ivew — 112 — §82) (w? + iww; — we?) + A2 (¥2 + 2wd — 2ivw) =0

(16)
where
_ 4mp?k? vmk2d? (1 v \/ﬂ)‘l
AT T EV,( + KR %V.)
o_ Ck®  4mB2%* k2d _ Ck?
@2t = P ep 1-+k227 p
and
A% = (u2/8) (4nB2k?/ <p) a7

Equation (16) is a fourth degree algebraic equation in w with cogplgx coefficients.
We now investigate it following the methods developed by.lethawa (.1968)%
This equation admits of two kinds of growing ropts (_iepen(_il.ng on the sign o
d = wy — wy. For 8§ < 0 we have a purely growing instability ‘of the acoustic
wave. The threshold electric field for this instability can be obtained by putting

w =10 in eq. (16). This gives
keE,\ _ {<C (3* + »*/4? (18)
mst) = U et 5] ,
Optimizing the right side of eq. (18) with respect to | 8] we obtain
keEo/mws? = (eCvjmBwot. . .
In contrast to the threshold electric field for | w | < v, We notice that ]tn 'theagfiei:i?l:
case, the amplitude critically depends on the piezoelectric coefficient in
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to its dependence on the wavelength of the perturbation. The dependence on k
is the same as before, i.e. shorter wavelength modes are excited more readily.

For & > 0, we have an instability of the usual acoustic waves in the semiconductor.
The threshold electric fields can be readily obtained assuming w to be real, equating
the real and imaginary parts of eq. (16) and eliminating the unknown quantity
(viz., w) from the equations. Thus we obtain the two equations

(w?2— 212 — 82) (w2 — wy?) — v w2 + 2w,dA2 =0 (19 @)
v (w2 — wy?) + wy (w2 — 3?2 — §2) — 2vA%2 = (19 b)

Eliminating w2 between eqs (19 a, b), it gives a complicated quadratic equation
in A% which can however, be readily solved. Making the additional assumptions

wyS v> w, and 8§ 0 which are valid over a wide parameter range we get for
the threshold A2

= O [(%2 — %% + vzw_ﬁ]

wo vo (20)
The right side has minimum value for 8 = w, and gives
o — (€ @ v \}F 21
(keEqlmw,?) = (WB2 = 2w0) (21)

This threshold field is smaller than that of the purely growing instability, as is
usually the case (Nishikawa 1968). Note that § = w, i.e. w, = wy + wy COIres-
ponds to the case of perfect matching of the incident frequency to the sum of
frequencies of the two decay waves; that is why the threshold field is minimum

for § = w,. Since (w;/w,) goes as k2, in this case, the threshold field is inde-
pendent of k.

4. Summary

We have extended the previous hydrodynamic calculation of parametric excita-
tion of acoustic waves in piezoelectric semiconductors, into the short wavelength
regionkV, > v where a kinetic description of electrons is necessary. For
| @] > », we find that there are two branches of instability depending on the sign
of 8 = wy— (w2 4 k2V,2)}; this conclusion is similar to that obtained by
Nishikawa (1968) for general parametric instabilities. For 8 < 0, a purely grow-
ing instability is obtained. The threshold field for this instability does not depend
on the damping of the low frequency mode; it depends inversely on wave-
number k and the piezoelectric coefficient 8. For § > 0, we get the excitation of
usual acoustic waves in the semiconductor. The threshold field E, is now

independent of k and B. This is a consequence of the fact that the threshold A%
1S now proportional to the low

-frequency damping rate and both go as k282,
which therefore cancels out. pmpIng - ° ’

g Finally, it should be pointed out that the use of the elastic equation for the
escpptxon Of' acoustic waves limits our treatment to the excitation of non-dis-
persive acoustic phonons only. This puts a lower limit on the wavelength of the

acoustic waves, namely ka <€ 1 where g is the i i ing i .
(Kittel 1966). Thus the - the validity of the above Kincfie

wavelength range for th idi o
treatment is given by 4 ¢ validity of the above kinetic

a1 > k> v,
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Since the typical interatomic spacing is a few angstroms and a typical electron
mean free path is a few microns, the range of wavelengths for which the treatment
is applicable is quite considerable.
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