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In a screen for calcium-regulated gene expression during growth and development of Dictyostelium discoideum 
we have identified an asparaginyl tRNA synthetase (ddAsnRS) gene, the second tRNA synthetase gene identified in 
this organism. The ddAsnRS gene shows many unique features. One, it is repressed by lowering cellular calcium, 
making it the first known calcium-regulated tRNA synthetase. Two, despite the calcium-dependence, its expression 
is unaltered during the cell cycle, making this the first D. discoideum gene to show a calcium-dependent but cell 
cycle phase-independent expression. Finally, the N-terminal domain of the predicted ddAsnRS protein shows 
higher sequence similarity to Glutaminyl tRNA synthetases than to other Asn tRNA synthetases. These unique 
features of the AsnRS from this primitive eukaryote not only point to a novel mechanism regulating the compo-
nents of translation machinery and gene expression by calcium, but also hint at a link between the evolution of 
GlnRS and AsnRS in eukaryotes. 

[Jaiswal J K and Nanjundiah V 2003 Calcium regulates the expression of a Dictyostelium discoideum asparaginyl tRNA synthetase gene;  
J. Biosci. 28 697–707] 

1. Introduction 

Freshly starved cells of Dictyostelium discoideum are 
heterogeneous with regard to their levels of both free and 
sequestered calcium (Saran et al 1994; Azhar et al 1996). 
This pre-aggregative heterogeneity is correlated with a 
cell’s post-aggregative fate; cells with relatively high cal-
cium (HC cells) develop along the presumptive stalk (pst) 
pathway whereas cells with relatively low calcium (LC 
cells) develop along the presumptive spore (psp) pathway 
(Azhar et al 1996). The link between cellular calcium and 
cell fate is reinforced by the observation that artificially 
lowering the level of cellular calcium by a combination  
of the calcium ionophore A23187 and EGTA leads to an 
increase in the proportion of spore cells, while raising the 

cellular calcium by a combination of A23187 and high  
extracellular calcium leads to an increase in the proportion 
of stalk cells (Baskar et al 2000). Besides calcium, the cell 
cycle phase at starvation is another factor that affects cell 
fate in D. discoideum (McDonald and Durston 1984; Wei-
jer et al 1984b; Huang and Pears 1999; Gomer and Firtel 
1987; Azhar et al 2001). Cells that are in S or early G2 
phase when starved tend to follow the pst pathway while 
those in mid to late G2 phase tend to adopt the psp path-
way. As one might expect from this, the cell cycle status is 
correlated with the level of cellular calcium (Azhar et al 
1998; Saran 1999). Treatment with cell cycle inhibitors 
leads to an increase or decrease in cellular calcium depend-
ing on the phase at which the inhibitors block the cell cycle 
(Azhar et al 2001). 
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 Calcium has also been shown to play a role during 
growth (Yuan et al 2001) and in the growth-to-develop-
ment transition (Malchow et al 1996; Itoh et al 1998;  
Tanaka et al 1998) in D. discoideum. It is likely that cal-
cium influences cell fate choice in Dictyostelium by regu-
lating gene expression. A number of Ca2+ regulated genes 
have been identified in mammalian cells (Hardingham 
and Bading 1999), but little is known about such genes in 
Dictyostelium. The present study is aimed at identifying 
genes regulated by calcium in D. discoideum in the hope 
that one might thereby obtain insight into the functioning 
of metabolic and signalling pathways. Towards this goal 
we have employed the RNA Arbitrary Primed-PCR (RAP–
PCR) technique. 
 RAP–PCR and a related technique, differential dis-
play-PCR (dd-PCR), have been used extensively for 
identifying differentially expressed genes in various orga-
nisms (Welsh et al 1992; Liang and Pardee 1995). 
Recently, dd-PCR has been used to identify Dictyostelium 
genes that are expressed in conjunction with the growth-
to-differentiation transition (Inazu et al 1999; Hirose et al 
2000). By using this approach we have found that expres-
sion of the Asparaginyl tRNA synthetase (ddAsnRS) gene 
in Dictyostelium is repressed by lowering of cellular cal-
cium. Despite the strong link between cellular calcium 
and cell cycle phase, we find that expression of ddAsnRS 
gene is not influenced by the cell cycle phase. A feature 
of the predicted ddAsnRS protein is that its sequence is 
more similar to those of eukaryotic AsnRSs than to the 
prokaryotic and archaeal AsnRS proteins. Interestingly, it 
contains an N-terminal domain that shares little sequence 
overlap with eukaryotic AsnRS and is missing from the 
prokaryotic AsnRS proteins. However, the N-terminal 
domain of ddAsnRS is very similar to Glutaminyl tRNA 
synthetases (GlnRSs) from a number of organisms. In 
brief, we report the identification of an unusual tRNA syn-
thetase gene that is also regulated in a novel fashion. 
 
 

2. Materials and methods 

2.1 Reagents and growth media 

Dictyostelium discoideum strain AX2 was grown in HL5 
(Watts and Ashworth 1970) supplemented with 1% peni-
cillin-streptomycin (Sigma Chemical Company, USA). Pep-
tone and yeast extract for HL5 was obtained from Oxoid 
(UK), and all other media components were obtained 
from Difco Laboratories (USA) and Sigma Chemical 
Company (USA). The RAP–PCR kit was purchased from 
Stratagene (La Jolla, CA, USA). Restriction enzymes were 
from New England Biolabs (UK); Amersham Pharmacia 
Biotech (UK); Bangalore Genei (India); and Roche Mole-

cular Biochemicals (Germany). The oligonucleotides 
were synthesized by Bangalore Genei (India). 
 

2.2 Cell cycle synchronization and  
calcium treatments 

Cold synchronization was performed as described earlier 
(MacWilliams et al 2001). Cells were maintained for at 
least 48 h in continuous exponential growth, culminating 
at a density between 0⋅5 × 106/ml and 1 × 106/ml. One 
hundred ml of cells in a 300 ml flask were then placed on 
a shaker in a cold chamber adjusted to give a temperature, 
in the medium, of 9⋅5°C, with shaking at 75 rpm. After 
14–16 h, a sample was taken for the zero-time (T0)  
observation and the cells were then warmed to 22°C in 
30–60 s by immersing the flask in a warm water bath. 
Cells for RNA extraction and BrdU incorporation mea-
surements were taken from the removed material. For 
raising the cellular calcium level, cells growing in MES-
HL5 (HL5 buffered at pH 6⋅4 with 10 mM MES) were 
treated with a combination of 7 µM A23187 and 1 mM 
CaCl2 (HC) or 7 µM A23187 and 1 mM EGTA (LC). In 
all the experiments involving calcium alterations, the 
growth media and all other relevant solutions were buf-
fered using 10 mM MES. 
 

2.3 RNA preparation and Northern blot analysis 

RNA was prepared from 10 ml of cell suspension at a 
density of 5 × 106 using the guanidine hydrochloride method 
(Chomczynski and Sacchi 1987). For RAP–PCR, RNA 
was treated with RNase-free DNAse (Startegene, USA, 
Amersham Pharmacia Biotech., Sweden), extracted with 
acid phenol and precipitated with ethanol. The RNA was 
suspended in DEPC-treated water and quantified by spec-
trophotometry. For Northern blot analysis, 10–20 µg of 
total RNA was resolved on a 1⋅2% agarose-formaldehyde 
gel in 1X MOPS/EDTA buffer as described in Sambrook 
et al (1989). Before loading, RNA was denatured by heat-
ing at 68ºC for 15 min with three volumes of RNA load-
ing buffer (67% formamide and 9% formaldehyde in 1X 
SSC with 0⋅2% bromophenol blue). RNA was then  
transferred by capillarity onto a Hybond N (Amersham  
Pharmacia Biotech., Sweden) or Nytran membrane  
(Schleicher and Schuell, USA) in 10X SSC. After transfer, 
RNA was cross-linked using Stratalinker 1800 (Stratagene, 
USA). Northern blots were carried out according to the 
“Neverfail” Northern blot protocol of McCaughern-Carucci 
(http://www.nwfsc.noaa.gov/protocols/northernblot.html). 
Blots were exposed to a Fuji phosphoimager screen and 
quantified with the Fuji Science(tm) software (Fuji Labo-
ratories, Japan). To control for loading differences, mRNA 
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levels were normalized to the level of the IG7 (Hopper  
et al 1993) message in the same blots. 

2.4 RAP–PCR 

RAP–PCR involved the following two steps: 
 
(i) cDNA synthesis was carried out using 1 µg of total 
RNA and a randomly selected primer; in the present 
study the primer used was called A2G and had the  
sequence AATCTAGAGCTCCAGCAGG. The reaction 
was carried out for 1 h at 37°C. As a control, another tube 
that contained all the components for cDNA synthesis 
except for the reverse transcriptase enzyme was included 
to check for the presence of residual DNA that did not 
get completely degraded by the DNase treatment. RAP–
PCR products from those reactions whose controls 
(meaning parallel samples that lacked reverse transcrip-
tase) yielded more than 4–5 bands were not examined 
any further. 
(ii) PCR was carried out for 30 cycles using 10 µl of 
1 : 10 diluted cDNA from the above in the presence of 
5 µCi-P32dATP and using the following cycling parame-
ters: 1 min at 94°C, 1 min at 55°C, 1 min at 72°C and 
10 min at 72°C. Following PCR the sample was resolved 
on a 6% denaturing urea polyacrylamide gel, the gel was 
dried and put for autoradiography. The bands excised 
from the gel were re-amplified using the cycling condi-
tions used above for PCR, but this time without the  
radiolabel. 

2.5 DNA sequencing and analysis 

BLASTP searches and amino acid sequence similarities 
were calculated using the BLAST software at the NCBI 
Blast server (http://www.ncbi.nlm.nih.gov/BLAST) (Altschul 
et al 1990). The sequences of all the clones were determined 
by an ABI-PRISM automated DNA sequencer (Applied 
Biosystems, Foster City, CA, USA). Sequence data were 
processed using the Clone Manager software (Scientific 
and Educational Software, Durham, NC, USA). AsnRS 
sequences from different organisms were obtained from 
Genbank database and aligned using the CLUSTAL W 
program (Higgins and Sharp 1988; Thompson et al 1994). 
Amino acid sequence similarities were calculated using 
BLAST. Sequence alignments were carried out using the 
ClustalW program using default settings at GeneBee mole-
cular biology server at the Russian EMBnet node (http:// 
www.genebee.msu.su/). The software ‘Boxshade 321’ was 
used to highlight the regions of similarities in the multiple 
sequence alignment files generated using ClustalW. 

3. Results 

3.1 Calcium regulates gene expression in  
vegetative amoebae 

The level of cellular calcium and the cell cycle phase at 
starvation are both known to regulate post-starvation cell 
fate choice. In order to identify calcium-regulated genes 
during growth and early starvation, we carried out RAP–
PCR on total RNA extracted from cells grown to high 
densities (5 × 106 cells/ml) in HL5 medium. The medium 
was supplemented with 7 µM calcium ionophore A23187 
and 1 mM CaCl2 (high calcium; HC) or 1 mM EGTA 
(low calcium; LC). We have previously shown that these 
approaches are effective in altering the level of the Ca2+ 
in D. discoideum amoebae (Baskar et al 2000). Both  
environments reduced the growth rate of cells but did not 
affect their ability to initiate and undergo development 
(Azhar 1997; Baskar et al 2000). Treatment of cells with 
7 µM A23187 alone did not affect the overall pattern of 
gene expression [compare lanes untreated (U) and iono-
phore treated (I) in figure 1]. Even in response to HC  
or LC treatment, gene expression was not drastically  
altered, as of the total of 4 primers that we tested for 
RAP–PCR only one (primer A2G) showed altered exp-
ression of a few genes (compare lanes HC, LC and U in 
figure 1). These genes can be classified into the following 
categories: repressed by LC (figure 1, band A); induced by 
LC (figure 1, band D); induced by HC (figure 1, band B); 
repressed by HC (figure 1, band C); and repressed both 
by LC and HC (figure 1, band E). These cDNAs were iso-
lated from the gel, amplified, cloned and sequenced. The 
cDNA encoded by band B (figure 2a) is identical to the 
D. discoideum gene that encodes the cAMP binding pro-
tein CABP1/P34 (Grant and Tsang 1990; Bain et al 1991), 
while that corresponding to band E (figure 2b) shows 
highest similarity to the sequence of the gene that encodes 
D. discoideum alpha-mannosidase (Bush et al 1994). 
Bands C and D remain to be explored further. An addi-
tional cDNA, not visible in figure 1, was repressed by 
HC and was found to encode the 26s ribosomal RNA 
gene (figure 2c and Jaiswal 2001). Band A encoded a 
cDNA with maximal sequence similarity to the Asn 
tRNA synthetase gene (AsnRS) (Glöckner et al 2002). 
Amino acyl tRNA synthetases (AARS) have been shown 
to be regulated by a variety of signals including cell dif-
ferentiation and the cell cycle; correspondingly, muta-
tions in AARS have been shown to affect these processes 
(Sen et al 1997; Pelchat and Lapointe 1999; Zhou et al 
1999). So far glutaminyl tRNA synthetase (GlnRS) is the 
only tRNA synthetase that has been identified in  
D. discoideum, a fact which motivated further analysis of 
the organization and expression of the AsnRS gene. 
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3.2 Organization and sequence analysis of  
D. discoideum AsnRS 

The cDNA corresponding to band A was cloned and  
sequenced. BlastN analysis carried out for this sequence 
using the Dictyostelium genomic DNA sequence database 

at the Sanger Center identified a contig (Contig 17359) 
that contained a sequence identical (> 99% nucleotide 
sequence similarity) to this cDNA (figure 3a). Analysis 
of contig 17359 for a coding region using the GrailEXP 
Gene finder software (http://searchlauncher.bcm.tmc.edu/ 
seq-search/gene-search.html) indicated the presence of a 
single ORF with 3 exons (470 bp, 1455 bp, and 173 bp 
respectively) and 2 small introns (121 and 131 bp) (figure 
3a). Analysis of predicted protein encoded by this ORF 
using the ‘pfam’ protein domain database (Sonnhammer 
et al 1997) indicated the presence of the OB-fold nucleic 
acid binding domain (OB domain) and a class II tRNA 
synthetase domain (figure 3b). Both domains are charac-
teristic of AsnRS (Commans et al 1998). A blast search 
of the putative protein encoded by this ORF identified the 
DNA sequence to be that of the D. discoideum AsnRS 
(ddAsnRS Genbank Accession# AAO52345) that is  
encoded by a gene on chromosome 2 (Glöckner et al 2002). 
 Blast analysis of the protein encoded by the putative  
D. discoideum AsnRS indicated a > 50% amino acid simi-
larity with other eukaryotic and prokaryotic Asn tRNA 
synthetases (figure 4a). At the N-terminus, the predicted 
ddAsnRS contains a ~ 130 amino acid stretch (encoded 
by exon 1) which is absent from prokaryotic AsnRSs and 
shares very little similarity with eukaryotic AsnRSs  
(figure 4a). On the other hand, this extended N-terminal 
domain shares a significant degree of amino acid seq-
uence similarity (55–60%) with the eukaryotic glutaminyl 
tRNA synthetase (GlnRS) (figure 4b). It has been sug-
gested that the AsnRS and GlnRS genes has evolved sepa-
rately along independent paths (Shiba et al 1998). Thus it 
is interesting to note the presence of a GlnRS homology 
domain in the Dictyostelium AsnRS. 

3.3 Expression of D. discoideum Asn tRNA synthetase 
is repressed by calcium 

As a first step towards analysing the expression of the 
ddAsnRS, we carried out a Northern blot analysis using a 
band A-specific probe. This indicated the presence of a 
~ 2 kb mRNA whose expression was reduced by the lower-
ing of cellular calcium (figure 2d). In order to further 
confirm the calcium regulated expression of this AsnRS, 
we obtained a shotgun clone (JC2a186g08) from the  
Dictyostelium Genome sequencing centre at IMB Jena 
(Germany) that spans most of the AsnRS gene. This clone 
was used to perform a Northern blot analysis (figure 5). 
Similar to the result obtained with the smaller cDNA 
clone obtained by RAP–PCR (figure 2d), this probe also 
identified a single ~ 2 kb mRNA that was repressed in 
response to a decrease in cellular calcium (figure 4); the 
IG7 transcript was used as an internal control for RNA 
loading (Hopper et al 1993). 

 
 
Figure 1. Effect of calcium alterations on gene expression. 
RNA extracted from cells growing in normal growth media 
with no additions (U), with the addition of 10 µM A23187 (I), 
with A23187 and 1 mM CaCl2 (HC), or with A23187 and 
1 mM EGTA (LC) were subject to RAP–PCR analysis. The 
different classes of calcium regulated cDNAs identified are 
represented by the cDNA clones A (repressed by LC), B 
(induced by HC), C (repressed by HC), D (induced by LC), and 
E (repressed both by LC and HC). 
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 One of the consequences of altering cellular Ca2+ in  
D. discoideum is that post-aggregation cell fate choice is 
affected. The cell cycle phase at starvation too influences 
cell fate choice (McDonald and Durston 1984; Weijer  

et al 1984a; Gomer and Firtel 1987; Huang and Pears 
1999). Besides, the manner in which it does so indicates 
that calcium levels are influenced by the cell cycle phase 
(Saran 1999; Azhar et al 2001). We therefore looked  

 
 
Figure 2. BLAST analysis of cDNA corresponding to various bands shown in figure 1. (a) Band B. (i) cDNA corresponding to 
band B was cloned and partially sequenced. (ii) The partial sequence was used to carry out a BLAST homology search 
using the Genbank nucleotide database. The sequence showed maximal (~ 97%) similarity with two CABP1 related Dictyostelium 
genes, p34 and p31. (b) Sequence and BLAST analysis of cDNA corresponding to band E. (i) cDNA corresponding to band E was 
cloned and sequenced. (ii) BLAST homology search using the band cDNA identified this cDNA to correspond to the Dictyostelium 
alpha mannosidase gene (manA) gene. (c) RAP–PCR analysis and BLAST analysis of cDNA corresponding to band E2. (i) RAP–
PCR was carried out as described in text and the sample was resolved on Urea PAGE. (ii) The cDNA corresponding to band E2 was 
excised out of the gel, cloned and sequenced. BLAST analysis of E2 cDNA carried out using Genbank database, indicated high 
sequence similarity with the D. discoideum 26S rRNA. (d) Northern blot analysis using total RNA and the cDNA corresponding to 
band A as probe. Note almost undetectable expression of mRNA corresponding to this cDNA in cell treated with LC. The blot was 
subsequently probed using IG7 to control for loading differences. 
 

(a) 
 

(c) 
 

(b) 
 

(d) 
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at the effect of cell cycle phase on the expression of 
ddAsnRS. To assay the expression of ddAsnRS over the 
cell cycle, AX2 cells were synchronized by the cold re-
lease method (Maeda et al 1989); synchrony was checked 
by the increase in cell numbers and by nuclear BrdU  
incorporation (figure 6a). Although there is a strong cor-
relation between cell cycle and cell calcium levels, we 
found that ddAsnRS expression remained unchanged all 
through the cell cycle, in particular when calcium levels 
are expected to be relatively low (mid-late G2 phase, or 
between 4–8 h in figure 6b). 
 

4. Discussion 

The AARSs are highly conserved proteins and their evolu-
tion has been found to be representative of the evolutionary 
history of the organisms themselves (Woese et al 2000). 
The 20 cellular AARS enzymes, besides carrying out 
esterification of specific tRNAs with their cognate amino 
acids, are also essential for processes that go beyond pro-
tein synthesis (Martinis et al 1999). Expression of these 
proteins is regulated by a variety of signals including star-
vation, cell cycle and cellular differentiation (Sen et al 
1997; Pelchat and Lapointe 1999; Zhou et al 1999).  
Mutations in tRNA synthetases cause cell cycle arrest 
both in prokaryotic (Holland et al 1999) and eukaryotic 
(Motomura et al 1996) cells. Modified versions of the 
catalytic domains of tRNA synthetases are reported to 
serve a variety of roles such as kinases and as enzymes 
involved in histidine and asparagine biosynthesis (re-
viewed in Weiner 1999). In short, the term ‘tRNA syn-

thetase’ does not do justice to the range of capabilities 
exhibited by these versatile proteins. Our observation of 
calcium-regulated expression of ddAsnRs adds another 
feature to their properties. To our knowledge this is the 
first report of a calcium-dependent expression of a tRNA 
synthetase. Given that during the developmental phase of 
Dictyostelium calcium and the cell cycle phase act in 
concert to regulate cell fate (Azhar et al 2001), it is sig-
nificant that the expression of the ddAsnRS gene is sensi-
tive to calcium but not to the cell cycle phase (compare 
figure 5 with figure 6). This indicates that calcium can affect 
gene expression independently of the cell cycle phase. The 
cell cycle dependent and independent regulation of gene 
expression could be mediated by different calcium-binding 
proteins that in turn regulate different signalling path-
ways leading to differential effects on gene expression. 
 The regulation of a tRNA synthetase gene by calcium 
hints that changes in Ca2+ levels might not only be regu-
lating cell differentiation but also general protein synthesis. 
This possibility is supported by the observed effect of 
calcium changes on normal cellular metabolism. For ex-
ample, an increase in Ca2+ induced by the calcium-
specific ionophores, A23187 and ionomycin affects the 
nucleotide content and rate of protein synthesis in several 
types of mammalian cells (Gmitter et al 1996; Xu et al 
1999). Further, calmodulin antagonists suppress transla-
tion, both in mammalian (Kumar et al 1991) and Dictyo-
stelium (Sonnemann et al 1993) cells. Also, the interaction 
of calmodulin with the ribosomal protein L19 has been 
shown to be important for in vitro translation of Dictyo-
stelium genes. Our observation that the expression of the  

 
 
Figure 3. Gene and protein structure of Contig 17359. (A) Contig contains the full-length AsnRS protein encoding region and 
also the regions upstream and downstream of it. The ORF encoding AsnRS consists of three exons and 2 small introns. The position 
of cDNA clone A, and the genomic library clone (JC2a186g08) are indicated by shaded arrows. (B) The N-terminus sequence of the 
AsnRS protein shows homology to the GlnRS proteins, while the C-terminus contains the OB-fold nucleic acid binding domain and 
the class II tRNA synthetase domain. 
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Figure 4. Multiple protein sequence alignment. (a) The predicted AsnRS of Dictyostelium discoideum (D.) was aligned with 
AsnRSs from other eukaryotes C. elegans (C.), S. cerevisiae (S.), Halobacterium salinarum (H.) and prokaryotes Bacillus subtilis (B.), 
and E. coli (E.), using the ClustalW sequence alignment software and displayed using the boxshade software. The region shaded 
black represent sequence identity, while the gray shaded region represent sequence similarity. (b) The N-terminus 90 amino acids 
of the D. discoideum AsnRS identified in this study (N-terminus) were aligned using ClustalW with the N-terminal GlnRS sequence of 
Mus musculus (M.), Homo sapiens (H.), C. elegans (C.), Arabidopsis thaliana (A.), and predicted GlnRS from D. discoideum (H4), 
displayed using the boxshade software. 
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26S ribosomal gene (figure 2C) and the putative aspar-
aginyl tRNA synthetase genes in the RAP–PCR screen is 
dependent on Ca2+ (figure 5) add to the growing evidence 
for the role of calcium in Dictyostelium protein synthesis, 
and hence general cellular metabolism. Growth in glucose-
rich (G+) or glucose-deficient (G–) medium respectively 
raises or lowers the level of stored sugar reserves (Noce 
and Takeuchi 1985), and also presumably the metabolic 
activity of the cells. It is known that when combined, 
starved G+ and G– cells exhibit pre-spore and pre-stalk 
tendencies respectively (Leach et al 1973). It is conceiv-
able that a raising or slowing down of cellular metabolism 
is the means by which pre-aggregation differences in  
the level of calcium alters post-aggregation cell fate 
choice. 
 With regard to the high sequence similarity of 56% at 
the N-terminus of the ddAsnRS with other eukaryotic 

 
 
 

 
Figure 6. Cell cycle-dependent expression of JC2a186. (a) AX2 cells synchronized by 
release from cold were assessed for synchrony using nuclear Brdu incorporation. (b) RNA 
extracted from the synchronized AX2 cells were probed using JC2a186 DNA as probe. 
Compared to the internal control, IG7, no change in the expression of AsnRS can be 
observed during the various stages of the cell cycle. 
 

 
Figure 5. Northern blot analysis using the genomic DNA clone 
JC2a186 as probe. RNA prepared as in figure 1 was probed with a 
DNA probe prepared using the JC2a186 DNA. Subsequently 
the same blot was probed using IG7 to control for loading dif-
ferences. Note that similar to the expression profile of the probe 
made from cDNA clone corresponding to band A in figure 1, 
low calcium (LC) treatment also inhibited the expression of 
JC2a186. 
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GlnRS proteins, we wish to draw attention to two  
features: (i) It has been noted that a domain present  
in one aaRS is present in others belonging to the same 
class (Diaz-Lazcoz et al 1998; Woese et al 2000). How-
ever, to the best of our knowledge this is the first ex-
ample of a domain seen in a class II (AsnRS) synthetase 
which is also present in a class I enzyme (GlnRS).  
(ii) Genome analysis reveals that a wide spectrum of  
bacteria rely on the tRNA-dependent transamidation 
pathway as the sole route for the synthesis of asparagine 
and glutamine tRNAs (Tumbula et al 2000). This initially 
made us wonder whether the open reading frame (ORF) 
identified by us might code for a protein with both 
AsnRS and GlnRS activities. On further consideration 
this seemed to be unlikely for two reasons. Firstly, the 
encoded protein lacks the tRNA synthetase class I  
domain characteristic of GlnRSs; and secondly, the H4 
protein, which was previously identified as the putative 
GlnRS from D. discoideum (Singleton et al 1989) shares 
sequence identity with only 180 N-terminal amino acids 
encoded by the ORF, and even this is restricted to 38% of 
the residues. Also, the Sanger Center Dictyostelium  
genome database lists a contig (No. 15417) which appears 
to contain the full-length ORF corresponding to the GlnRS 
(data not shown). The GlnRS encoded by this contig also 
contains the class I tRNA synthetase domain. Taken  
together, these observations indicate that the D. dis-
coideum GlnRS activity is separate from that of the 
AsnRS. The origin and implications of the high sequence 
similarity between the N-terminus of the ddAsnRS protein 
with the GlnRS protein remain to be investigated. The 
hypothesis that suggests itself is that these two tRNA 
synthetases have arisen by tandem gene duplication. 
 This being only the second putative tRNA synthetase 
predicted in D. discoideum, we are just beginning to  
explore the range of functions and regulation of tRNA 
synthetases in the cellular slime moulds. The peculiar 
regulation and genetic organization of ddAsnRS will not 
only provide us with an opportunity to better understand 
the role of amino acyl tRNA synthetases in growth and 
development of D. discoideum, but will also help address 
the question of origin and evolution of this fascinating 
class of proteins. 
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