
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 114, No. 1, February 2004, pp. 7–14.
© Printed in India

Representability of Hom implies flatness

NITIN NITSURE

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai 400 005, India
E-mail: nitsure@math.tifr.res.in

MS received 8 August 2003

Abstract. Let X be a projective scheme over a noetherian base schemeS, and let
F be a coherent sheaf onX. For any coherent sheafE onX, consider the set-valued
contravariant functorhom

(E,F)

onS-schemes, defined byhom
(E,F)

(T ) = Hom(E
T

, F
T

)

whereE

T

andF

T

are the pull-backs ofE andF to X
T

= X ×

S

T . A basic result of
Grothendieck ([EGA], III 7.7.8, 7.7.9) says that ifF is flat overS thenhom

(E,F)

is
representable for allE.

We prove the converse of the above, in fact, we show that ifL is a relatively ample
line bundle onX overS such that the functorhom

(L

−n

,F)

is representable for infinitely
many positive integersn, thenF is flat overS. As a corollary, takingX = S, it follows
that if F is a coherent sheaf onS then the functorT 7→ H

0
(T ,F

T

) on the category of
S-schemes is representable if and only ifF is locally free onS. This answers a question
posed by Angelo Vistoli.

The techniques we use involve the proof of flattening stratification, together with the
methods used in proving the author’s earlier result (see [N1]) that the automorphism
group functor of a coherent sheaf onS is representable if and only if the sheaf is locally
free.
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Let S be a noetherian scheme, and letX be a projective scheme overS. If E andF are
coherent sheaves onX, consider the contravariant functorhom

(E,F )

from the category of
schemes overS to the category of sets which is defined by putting

hom
(E,F )

(T ) = Hom
X

T

(E

T

,F

T

)

for anyS-schemeT → S, whereX
T

= X×

S

T , andE

T

andF

T

denote the pull-backs of
E andF under the projectionX

T

→ X. This functor is clearly a sheaf in the fpqc topology
on Sch/S. It was proved by Grothendieck that ifF is flat overS then the above functor is
representable (see [EGA], III 7.7.8, 7.7.9).

Our main theorem is as follows, which is a converse to the above.

Theorem 1. Let S be a noetherian scheme, X a projective scheme overS, andL a rel-
atively very ample line bundle onX overS. Let F be a coherent sheaf onX. Then the
following three statements are equivalent:

(1) The sheafF is flat overS.
(2) For any coherent sheafE on X, the set-valued contravariant functorhom

(E,F )

on
S-schemes, defined byhom

(E,F )

(T ) = Hom
X

T

(E

T

,F

T

), is representable.
(3) There exist infinitely many positive integersr such that the set-valued contravariant

functorG(r) onS-schemes,defined byG(r)(T ) = H

0
(X

T

,F

T

⊗L

⊗r

), is representable.
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In particular, takingX = S andL = O

X

, we get the following corollary.

COROLLARY 2

Let S be a noetherian scheme, andF a coherent sheaf onS. Consider the contravariant
functorF fromS-schemes to sets, which is defined by puttingF(T ) = H

0
(T , f

∗

F) for any
S-schemef : T → S. This functor(which is a sheaf in the fpqc topology) is representable
if and only ifF is locally free as anO

S

-module.

Note that the affine lineA1
S

over a baseS admits a ring-scheme structure overS in the
obvious way. Alinear schemeover a schemeS will mean a module-schemeV → S under
the ring-schemeA1

S

. This meansV is a commutative group-scheme overS together with a
‘scalar-multiplication’ morphismµ : A1

S

×

S

V → V overS, such that the module axioms
(in diagrammatic terms) are satisfied.

A linear functorF onS-schemes will mean a contravariant functor fromS-schemes to
sets together with the structure of anH 0

(T ,O

T

)-module onF(T ) for eachS-schemeT ,
which is well-behaved under any morphismf : U → T of S-schemes in the following
sense:F(f ) : F(T ) → F(U) is a homomorphism of the underlying additive groups, and
F(f )(a · v) = f

∗

(a) · (F(f )v) for anya ∈ H

0
(T ,O

T

) andv ∈ F(T ). In particular note
that the kernel ofF(f )will be anH 0

(T ,O

T

)-submodule ofF(T ). The functor of points of
a linear scheme is naturally a linear functor. Conversely, it follows by the Yoneda lemma
that if a linear functorF on S-schemes is representable, then the representing schemeV

is naturally a linear scheme overS.
For example, the linear functorT 7→ H

0
(T ,O

T

)

n (wheren ≥ 0) is represented by the
affine spaceAn

Z

over SpecZ, with its usual linear-scheme structure. More generally, for
any coherent sheafQ on S, the scheme Spec Sym(Q) is naturally a linear-scheme over
S, where Sym(Q) denotes the symmetric algebra ofQ overO

S

. It represents the linear
functorF(T ) = Hom(Q

T

,O

T

) whereQ

T

denotes the pull-back ofQ underT → S.
With this terminology, the functorG(r)(T ) = H

0
(X

T

,F

T

⊗L

⊗r

) of Theorem 1(3) is a
linear functor. Therefore, if a representing schemeG

(r) exists, it will naturally be a linear
scheme. Note that eachG(r) is obviously a sheaf in the fpqc topology.

The proof of Theorem 1 is by a combination of the result of Grothendieck on the
existence of a flattening stratification [TDTE IV] together with the techniques which were
employed in [N1] to prove the following result.

Theorem 3 (Representability of the functorGL

E

). LetS be a noetherian scheme, and
E a coherentO

S

-module. LetGL
E

denote the contrafunctor onS-schemes which asso-
ciates to anyS-schemef : T → S the group of allO

T

-linear automorphisms of the pull-
backE

T

= f

∗

E (this functor is a sheaf in the fpqc topology). ThenGL
E

is representable
by a group scheme overS if and only ifE is locally free.

We re-state Grothendieck’s result (see [TDTE IV]) on the existence of a flattening strat-
ification in the following form, which emphasises the role of the direct imagesπ

∗

(F(r)).
For an exposition of flattening stratification, see [M] or [N2].

Theorem 4 (Grothendieck). LetS be a noetherian scheme, and letF be a coherent sheaf
onPn

S

wheren ≥ 0. There exists an integerm,and a collection of locally closed subschemes
S

f

⊂ S indexed by polynomialsf ∈ Q[λ], with the following properties.

(i) The underlying set ofS
f

consists of alls ∈ S such that the Hilbert polynomial of
F

s

is f , whereF

s

denotes the pull-back ofF to the schematic fibrePn
s

overs of the
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projectionπ : Pn
S

→ S. All but finitely manyS
f

are empty(only finitely many Hilbert
polynomials occur). In particular, theS

f

are mutually disjoint, and their set-theoretic
union isS.

(ii) For eachr ≥ m, the higher direct imagesRjπ
∗

(F(r)) are zero forj ≥ 1 and the
subschemesS

f

give the flattening stratification for the direct imageπ
∗

(F(r)), that
is, the morphismi :

∐

f

S

f

→ S induced by the locally closed embeddingsS
f

↪→ S

has the universal property that for any morphismg : T → S, the sheafg∗

π

∗

(F(r))

is locally free onT if and only ifg factors viai :
∐

f

S

f

→ S.
(iii) The subschemesS

f

give the flattening stratification forF , that is, for any morphism
g : T → S, the sheafF

T

= (1 × g)

∗

F on Pn
T

is flat overT if and only ifg factors
via i :

∐

f

S

f

→ S. In particular, F is flat overS if and only if eachS
f

is an open
subscheme ofS.

(iv) LetQ[λ] be totally ordered by puttingf1 < f2 if f1(p) < f2(p) for all p � 0. Then
the closure ofS

f

in S is set-theoretically contained in
⋃

g≥f

S

g

. Moreover, whenever
S

f

andS
g

are non-empty, we havef < g if and only iff (p) < g(p) for all p ≥ m.

The following elementary lemma of Grothendieck on base-change does not need any
flatness hypothesis. The price paid is that the integerr0 may depend onφ. (See [N2] for a
cohomological proof.)

Lemma5. Let φ : T → S be a morphism of noetherian schemes, let F a coherent
sheaf onPn

S

, and letF
T

denote its pull-back under the induced morphismPn
T

→ Pn
S

. Let
π

S

: Pn
S

→ S andπ
T

: Pn
T

→ T denote the projections. Then there exists an integerr0
such that the base-change homomorphismφ∗

π

S

∗

F(r) → π

T

∗

F

T

(r) is an isomorphism
for all r ≥ r0.

Proof of Theorem1. The implication(1) ⇒ (2) follows by [EGA], III 7.7.8, 7.7.9, while
the implication(2) ⇒ (3) follows by takingE = L

⊗−r . Therefore it now remains to show
the implication(3) ⇒ (1). This we do in a number of steps.

Step1: Reduction toS = SpecR withR local,X = Pn
S

andL = OPn
S

(1). Suppose that

F is not flat overS, but the linear functorG(r) on S-schemes, defined byG(r)(T ) =

H

0
(X

T

,F

T

⊗ L

⊗r

), is representable by a linear schemeG(r) overS for arbitrarily large
integersr. As F is not flat, by definition there exists somex ∈ X such that the stalk
F

x

is not a flat module over the local ringO
S,π(x)

whereπ : X → S is the projection.

Let U = SpecO
S,π(x)

, let F

U

be the pull-back ofF to X
U

= X ×

S

U and letG(r)
U

denote the pull-back ofG(r) to U . ThenF

U

is not flat overU but given any integer
m, there exists an integerr ≥ m such that the functorG(r)

U

on U -schemes, defined by

G

(r)

U

(T ) = H

0
(X

T

,F

T

⊗ L

⊗r

), is representable by theU -schemeG(r)
U

.
Therefore, by replacingS by U , we can assume thatS is of the form SpecR whereR

is a noetherian local ring. Leti : X ↪→ Pn
S

be the embedding given byL. Then replacing
F by i

∗

F , we can further assume thatX = Pn
S

andL = OPn
S

(1).

Step2: Flattening stratification ofSpecR. There exists an integerm as asserted by Theo-
rem 4, such that for anyr ≥ m, the flattening stratification ofS for the sheafπ

∗

F(r) onS is
the same as the flattening stratification ofS for the sheafF onPn

S

. Letr ≥ m be any integer.
As F is not flat overS = SpecR, the sheafπ

∗

F(r) is not flat. LetM
r

= H

0
(S, π

∗

F(r)),
which is a finiteR-module. Letm ⊂ R be the maximal ideal, and letk = R/m the residue
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field. Let s ∈ S = SpecR be the closed point, and letd = dim
k

(M

r

/mM

r

). Then there
exists a right-exact sequence ofR-modules of the form

R

δ

ψ

→ R

d

→ M

r

→ 0.

Let I ⊂ R be the ideal formed by the matrix entries of the(d × δ)-matrix ψ . ThenI
defines a closed subschemeS′

⊂ S which is the flattening stratification ofS for M
r

. As
M

r

is not flat by assumption,I is a non-zero proper ideal inR.
It follows from Theorem 4 thatI is independent ofr as long asr ≥ m.

Step3: Reduction to Artin local case with principalI with mI = 0. LetI = (a1, . . . , at )

wherea1, . . . , at is a minimal set of generators ofI . Let J ⊂ R be the ideal defined by

J = (a2, . . . , at )+ mI.

Then note thatJ ⊂ I ⊂ m, and the quotientR′

= R/J is an Artin localR-algebra with
maximal idealm′

= m/J , andI ′

= I/J is a non-zero principal ideal which satisfies
m

′

I

′

= 0. For the base-change underf : SpecR′

→ SpecR, the flattening stratifica-
tion for f ∗

π

∗

F(r) is defined by the idealI ′ for r ≥ m. Let F

′ denote the pull-back of
F to Pn

R

′

, and letπ ′ : Pn
R

′

→ SpecR′ the projection. Asf is a morphism of noethe-
rian schemes, by Lemma 5 there exists some integerm

′ such that the base-change homo-
morphismf ∗

π

∗

F(r) → π

′

∗

F

′

(r) is an isomorphism wheneverr ≥ m

′. Choosing some
m

′

≥ m with this property, and replacingR byR′, F by F

′ andm bym′, we can assume
thatR is Artin local, andI is a non-zero principal ideal withmI = 0, which defines the
flattening stratification forπ

∗

F(r) for all r ≥ m.

Step4: Decomposition ofπ
∗

F(r) via lemma of Srinivas.

Lemma(Srinivas). LetR be an Artin local ring with maximal idealm, and letE be any
finiteR module whose flattening stratification is defined by an idealI which is a non-zero
proper principal ideal withmI = 0. Then there exist integersi ≥ 0 andj > 0 such that
E is isomorphic to the direct sumRi ⊕ (R/I)

j .

Proof. See Lemma 4 in [N1].

We apply the above lemma to theR-moduleM
r

= H

0
(S, π

∗

F(r)), which has flatten-
ing stratification defined by the principal idealI with mI = 0, to conclude that (up to
isomorphism)M

r

has the form

M

r

= R

i(r)

⊕ (R/I)

j (r)

for non-negative integersi(r) andj (r)with j (r) > 0. Note thati(r)+j (r) = 8(r)where
8 is the Hilbert polynomial ofF .

Step5: Structure of the hypothetical representing schemeG

(r). Let φ : Spec(R/I) ↪→
SpecR denote the inclusion andF ′ denote the pull-back ofF underPn

R/I

↪→ Pn
R

. The sheaf

F

′ is flat overR/I , and the functorG(r)
R/I

, which is the restriction ofG(r), is represented by

the linear schemeAd
R/I

= Spec(R/I)[y1, . . . , yd ] overR/I , whered = 8(r)where8 is
the Hilbert polynomial ofF . Hence, the pull-back of the hypothetical representing scheme
G

(r) toR/I is the linear schemeAd
R/I

. We now use the following fact (see Lemmas 6 and
7 of [N1] for a proof).
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Lemma. LetR be a ring andI a nilpotent ideal(In = 0 for somen ≥ 1). LetX be
a scheme overSpecR, such that the closed subschemeY = X ⊗

R

(R/I) is isomorphic
overR/I to SpecB whereB is a finite-typeR/I -algebra. Letb1, . . . , bd ∈ B be a set of
algebra generators forB overR/I . ThenX is isomorphic overR with SpecA whereA is
a finite-typeR-algebra. Moreover, there exists a set ofR-algebra generatorsa1, . . . , ad
for A, such that eacha

i

restricts moduloI to b
i

∈ B overR/I . LetR[x1, . . . , xd ] be a
polynomial ring ind variables overR, and consider the surjectiveR-algebra homomor-
phismR[x1, . . . , xd ] → A defined by sending eachx

i

to a
i

, and letJ be its kernel. Then
J ⊂ IR[x1, . . . , xd ].

It follows from the above lemma thatG(r) is affine of finite type overR, and its co-
ordinate ringA as anR algebra is of the form

A = R[a1, . . . , ad ] = R[x1, . . . , xd ]/J,

wherea
i

is the residue ofx
i

, anda1, . . . , ad restrict overR/I to the linear coordinates
y1, . . . , yd on the linear schemeAd

R/I

, andJ is an ideal withJ ⊂ I · R[x1, . . . , xd ].

Being an additive group-scheme,G(r) has its zero sectionσ : SpecR → G

(r), and
this corresponds to anR-algebra homomorphismσ ∗ : A → R. Modulo I , the section
σ restricts to the zero section ofAd

R/I

over Spec(R/I), thereforeσ ∗

(a

i

) ∈ I for all
i = 1, . . . , d. Let x′

i

= x

i

− σ

∗

(a

i

) ∈ R[x1, . . . , xd ] and a′

i

= a

i

− σ

∗

(a

i

) ∈ A be
its residue moduloJ . ThenR[x1, . . . , xd ] = R[x′

1, . . . , x
′

d

], the elementsa′

1, . . . , a
′

d

generateA as anR-algebra, and moreover thea′

i

restrict overR/I to the linear coordinates
y

i

on the linear schemeAd
R/I

. Therefore, by replacing thex
i

by thex′

i

and thea
i

by the
a

′

i

, we can assume that for eachi, we have

σ

∗

(a

i

) = 0.

Next, consider any elementf (x1, . . . , xd) ∈ J . Then f (a1, . . . ad) = 0 in A, so
σ

∗

f (a1, . . . ad) = 0 ∈ R, which shows that the constant coefficient off is zero, as
σ

∗

(a

i

) = 0. As we already know thatJ ⊂ I ·R[x1, . . . , xd ], the vanishing of the constant
term of any element ofJ now establishes that

J ⊂ I · (x1, . . . , xd).

From the above, usingI2
= 0, it follows that for any(b1, . . . , bd) ∈ I

d , we have a well-
definedR-algebra homomorphism

9

(b1,... ,bd ) : A → R : a
i

7→ b

i

.

We now express the linear-scheme structure ofG

(r) in terms of the ringA, using the fact
that eacha

i

restricts toy
i

moduloI , andG(r)
R/I

is the standard linear-schemeAd
R/I

with

linear co-ordinatesy
i

. Note that the vector addition morphismAd
R/I

×

R/I

Ad
R/I

→ Ad
R/I

corresponds to theR/I -algebra homomorphism

(R/I)[y1, . . . , yd ] → (R/I)[y1, . . . , yd ] ⊗

R/I

(R/I)[y1, . . . , yd ] : y
i

7→ y

i

⊗ 1 + 1 ⊗ y

i



12 Nitin Nitsure

while the scalar-multiplication morphismA1
R/I

×

R/I

Ad
R/I

→ Ad
R/I

corresponds to the
R/I -algebra homomorphism

(R/I)[y1, . . . , yd ] → (R/I)[t, y1, . . . , yd ]

= (R/I)[t ] ⊗

R/I

(R/I)[y1, . . . , yd ] : y
i

7→ ty

i

.

It follows that the addition morphismα : G(r) ×
R

G

(r)

→ G

(r) corresponds to an algebra
homomorphismα∗ : A → A⊗

R

A which has the form

a

i

7→ a

i

⊗ 1 + 1 ⊗ a

i

+ u

i

whereu
i

∈ I (A⊗

R

A).

Let the elementu
i

in the above equation forα∗

(a

i

) be written as a polynomial expression

u

i

= f

i

(a1 ⊗ 1, . . . , a
d

⊗ 1, 1 ⊗ a1, . . . ,1 ⊗ a

d

)

with coefficients inI . The additive identity 0 ofG(r)(R) corresponds toσ ∗ : A → R with
σ

∗

(a

i

) = 0, and we have 0+0 = 0 inG(r)(R). This implies thatf
i

(0, . . . ,0) = 0, and so
the constant term off

i

is zero. From this, usingI2
= 0, we get the important consequence

that

f

i

(w1, . . . , w2d) = 0 for allw1, . . . , w2d ∈ I.

The scalar-multiplication morphismµ : A1
R

×

R

G

(r)

→ G

(r) prolongs the standard scalar
multiplication onAd

R/I

, and soµ corresponds to an algebra homomorphismµ∗ : A →

A[t ] = R[t ] ⊗

R

A which has the form

a

i

7→ ta

i

+ v

i

wherev
i

∈ IA[t ].

Let v
i

be expressed as a polynomialv
i

= g

i

(t, a1, . . . , ad) with coefficients inI . As
multiplication by the scalar 0 is the zero morphism onG(r), it follows by specialising under
t 7→ 0 thatg

i

(0, a1, . . . , ad) = 0. This meansv
i

= g

i

(t, a1, . . . , ad) can be expanded as
a finite sum

v

i

=

∑

j≥1

t

j

h

i,j

(a1, . . . , ad),

where theh
i,j

(a1, . . . , ad) are polynomial expressions with coefficients inI . As the zero
vector times any scalar is zero, it follows by specialising underσ

∗ thatg
i

(t, 0, . . . ,0) = 0.
It follows that the constant term of eachh

i,j

is zero. From this, and the fact thatI2
= 0,

we get the important consequence that

g

i

(t, b1, . . . , bd) = 0 for all b1, . . . , bd ∈ I.

Step6: The kernel of the mapG(r)(R) → G

(r)

(R/I).

Lemma. Let9
(b1,... ,bd ) : A → R be theR-algebra homomorphism defined in terms of

the generators by9
(b1,... ,bd )(ak) = b

k

. Let9 : I d → Hom
R−alg(A,R) be the set-map

defined by(b1, . . . , bd) 7→ (9

(b1,... ,bd ) : A → R). Then9 is a homomorphism ofR-
modules, where theR-module structure onHom

R−alg(A,R) is defined by its identification
with theR-moduleG(r)(R).

The map9 is injective, and its image is theR-submodulekerG(r)(φ) ⊂ G

(r)

(R), where
φ : Spec(R/I) ↪→ SpecR is the inclusion.
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Proof. For any(b1, . . . , bd) and(c1, . . . , cd) in I d , we have

(9

(b1,... ,bd ) +9

(c1,... ,cd ))(ai) = (9

(b1,... ,bd ) ⊗9

(c1,... ,cd ))(α
∗

(a

i

))

= b

i

+ c

i

+ f

i

(b1, . . . , bd, c1, . . . , cd)

by substituting forα∗

(a

i

)

= b

i

+ c

i

asb
k

, c

k

∈ I

= 9

(b1+c1,... ,bd+cd )(ai).

This shows the equality9
(b1,... ,bd ) +9

(c1,... ,cd ) = 9

(b1,... ,bd )+(c1,... ,cd ), which means the
map9 : I d → G

(r)

(R) is additive.
For anyλ ∈ R, let f

λ

: R[t ] → R be theR-algebra homomorphism defined by
f

λ

(t) = λ. Then for any(b1, . . . , bd) ∈ I

d we have

(λ ·9

(b1,... ,bd ))(ai) = (f

λ

⊗9

(b1,... ,bd ))(µ
∗

(a

i

))

= (f

λ

⊗9

(b1,... ,bd ))(tai + g

i

(t, a1, . . . , ad))

= λb

i

+ g

i

(λ, b1, . . . , bd)

= λb

i

asb
k

∈ I

= 9

(λb1,... ,λbd )(ai).

This shows the equalityλ ·9

(b1,... ,bd ) = 9

λ·(b1,... ,bd ), hence the map9 : Id → G

(r)

(R)

preserves scalar multiplication. This completes the proof that9 : I d → G

(r)

(R) is a
homomorphism ofR-modules.

The map9 is clearly injective. The mapG(r)(φ) : G(r)(R) → G

(r)

(R/I) is in alge-
braic terms the map Hom

R−alg(A,R) → Hom
R−alg(A,R/I) induced by the quotient

R → R/I . An elementg ∈ Hom
R−alg(A,R/I) represents the zero element ofG

(r)

(R/I)

exactly wheng(a
i

) = 0 ∈ R/I for the generatorsa
i

ofA. Thereforef ∈ Hom
R−alg(A,R)

is in the kernel ofG(r)(φ) precisely whenf (a
i

) ∈ I for the generatorsa
i

. Putting
b

i

= f (a

i

), we see that such anf is the same as9
(b1,... ,bd ).

This completes the proof of the lemma that kerG

(r)

(φ) = I

d .

In particular, asmI = 0, it follows from the above lemma that kerG(r)(φ) is annihilated
by m, so it is a vector space overR/m, and its dimension as a vector space overR/m is
d = 8(r), as by assumptionI is a non-zero principal ideal.

The above determination of the dimension overR/m of the kernel ofG(r)(φ) will
contradict a more direct functorial description, which is as follows.

Step7: Functorial description of kernel ofG(r)(R) → G

(r)

(R/I). As F

R/I

(r) is flat
overR/I , and as forr ≥ m all higher direct images ofF(r) vanish,G(r)(R/I) is iso-
morphic to theR/I -module(R/I)d whered = 8(r). By Lemma 5, there existsm′′

≥ m

such that forr ≥ m

′′ the inclusionφ : Spec(R/I) ↪→ SpecR induces an isomorphism
φ

∗

π

∗

F(r) → π

′

∗

F

′

(r) whereπ ′ : Pn
R/I

→ Spec(R/I) is the projection andF ′ is the

pull-back ofF underPn
R/I

↪→ Pn
R

. Note thatG(r)(R) = R

i(r)

⊕ (R/I)

j (r), and so for
r ≥ m

′′ we get an induced decomposition

G

(r)

(R/I) = (R/I)

i(r)

⊕ (R/I)

j (r)
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such that the mapG(r)(φ) : G

(r)

(R) → G

(r)

(R/I) is the map

(q, 1) : Ri(r) ⊕ (R/I)

j (r)

→ (R/I)

i(r)

⊕ (R/I)

j (r)

,

whereq is the quotient map moduloI . It follows that the kernel ofG(r)(φ) is theR-module
I

i(r)

⊕ 0 ⊂ R

i(r)

⊕ (R/I)

j (r)

= G

(r)

(R). This is a vector space overR/m of dimension
i(r) < i(r)+ j (r) = 8(r).

We thus obtain two different values for the dimension of the same vector space
kerG(r)(φ) = kerG(r)(φ), which shows that our assumption thatG

(r) is representable for
arbitrarily large values ofr is false. This completes the proof of Theorem 1.
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