Representability of Hom implies flatness

NITIN NITSURE

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
E-mail: nitsure@math.tifr.res.in

MS received 8 August 2003

Abstract. Let X be a projective scheme over a noetherian base scheme S, and let \mathcal{F} be a coherent sheaf on X. For any coherent sheaf E on X, consider the set-valued contravariant functor $\text{hom}_{(E,\mathcal{F})}$ on S-schemes, defined by $\text{hom}_{(E,\mathcal{F})}(T) = \text{Hom}(E_T, F_T)$ where E_T and F_T are the pull-backs of E and F to $X_T = X \times_S T$. A basic result of Grothendieck ([EGA], III 7.7.8, 7.7.9) says that if \mathcal{F} is flat over S then $\text{hom}_{(E,\mathcal{F})}$ is representable for all E.

We prove the converse of the above, in fact, we show that if L is a relatively ample line bundle on X over S such that the functor $G^r(T) = H^0(X_T, F_T \otimes L^{\otimes r})$ is representable for infinitely many positive integers r, then \mathcal{F} is flat over S. As a corollary, taking $X = S$, it follows that if \mathcal{F} is a coherent sheaf on S then the functor $T \mapsto H^0(T, \mathcal{F}_T)$ on the category of S-schemes is representable if and only if \mathcal{F} is locally free on S. This answers a question posed by Angelo Vistoli.

The techniques we use involve the proof of flattening stratification, together with the methods used in proving the author’s earlier result (see [N1]) that the automorphism group functor of a coherent sheaf on S is representable if and only if the sheaf is locally free.

Keywords. Flattening stratification; Q-sheaf; group-scheme; base change.

Let S be a noetherian scheme, and let X be a projective scheme over S. If E and \mathcal{F} are coherent sheaves on X, consider the contravariant functor $\text{hom}_{(E,\mathcal{F})}$ from the category of schemes over S to the category of sets which is defined by putting $\text{hom}_{(E,\mathcal{F})}(T) = \text{Hom}(E_T, F_T)$ for any S-scheme $T \to S$, where $X_T = X \times_S T$, and E_T and F_T denote the pull-backs of E and \mathcal{F} under the projection $X_T \to X$. This functor is clearly a sheaf in the fpqc topology on Sch/S. It was proved by Grothendieck that if \mathcal{F} is flat over S then the above functor is representable (see [EGA], III 7.7.8, 7.7.9).

Our main theorem is as follows, which is a converse to the above.

Theorem 1. Let S be a noetherian scheme, X a projective scheme over S, and L a relatively ample line bundle on X over S. Let \mathcal{F} be a coherent sheaf on X. Then the following three statements are equivalent:

1. The sheaf \mathcal{F} is flat over S.
2. For any coherent sheaf E on X, the set-valued contravariant functor $\text{hom}_{(E,\mathcal{F})}$ on S-schemes, defined by $\text{hom}_{(E,\mathcal{F})}(T) = \text{Hom}(E_T, F_T)$, is representable.
3. There exist infinitely many positive integers r such that the set-valued contravariant functor $G^r(T) = H^0(X_T, F_T \otimes L^{\otimes r})$ is representable.
COROLLARY 2

Let S be a noetherian scheme, and F a coherent sheaf on S. Consider the contravariant functor F from S-schemes to sets, which is defined by putting $F(T) = H^0(T, f^*\mathcal{F})$ for any S-scheme $f : T \to S$. This functor (which is a sheaf in the fpqc topology) is representable if and only if F is locally free as an \mathcal{O}_S-module.

Note that the affine line \mathbb{A}^1_S over a base S admits a ring-scheme structure over S in the obvious way. A linear scheme over a scheme S will mean a module-scheme $V \to S$ under the ring-scheme \mathbb{A}^1_S. This means V is a commutative group-scheme over S together with a ‘scalar-multiplication’ morphism $\mu : \mathbb{A}^1_S \times_S V \to V$ over S, such that the module axioms (in diagrammatic terms) are satisfied.

A linear functor F on S-schemes will mean a contravariant functor from S-schemes to sets together with the structure of an $H^0(T, \mathcal{O}_T)$-module on $F(T)$ for each S-scheme T, which is well-behaved under any morphism $f : U \to T$ of S-schemes in the following sense: $F(f) : F(T) \to F(U)$ is a homomorphism of the underlying additive groups, and $F(f)(a \cdot v) = f^*(a) \cdot (F(f)v)$ for any $a \in H^0(T, \mathcal{O}_T)$ and $v \in F(T)$. In particular note that the kernel of $F(f)$ will be an $H^0(T, \mathcal{O}_T)$-submodule of $F(T)$. The functor of points of a linear scheme is naturally a linear functor. Conversely, it follows by the Yoneda lemma that if a linear functor F on S-schemes is representable, then the representing scheme V is naturally a linear scheme over S.

For example, the linear functor $T \mapsto H^0(T, \mathcal{O}_T)^n$ (where $n \geq 0$) is represented by the affine space \mathbb{A}^n_S over $\text{Spec} \, \mathbb{Z}$, with its usual linear-scheme structure. More generally, for any coherent sheaf \mathcal{O} on S, the scheme $\text{Spec} \, \text{Sym}(\mathcal{O})$ is naturally a linear-scheme over S, where $\text{Sym}(\mathcal{O})$ denotes the symmetric algebra of \mathcal{O} over \mathcal{O}_S. It represents the linear functor $F(T) = \text{Hom}(\mathcal{O}_T, \mathcal{O}_T)$ where \mathcal{O}_T denotes the pull-back of \mathcal{O} under $T \to S$.

With this terminology, the functor $G^{(r)}(T) = H^0(X_T, \mathcal{F}_T \otimes L^{\text{det}})$ of Theorem 1(3) is a linear functor. Therefore, if a representing scheme $G^{(r)}$ exists, it will naturally be a linear scheme. Note that each $G^{(r)}$ is obviously a sheaf in the fpqc topology.

The proof of Theorem 1 is by a combination of the result of Grothendieck on the existence of a flattening stratification [TDTE IV] together with the techniques which were employed in [N1] to prove the following result.

Theorem 3 (Representability of the functor GL_E). Let S be a noetherian scheme, and E a coherent \mathcal{O}_S-module. Let GL_E denote the contrafunctor on S-schemes which associates to any S-scheme $f : T \to S$ the group of all \mathcal{O}_T-linear automorphisms of the pull-back $E_T = f^*E$ (this functor is a sheaf in the fpqc topology). Then GL_E is representable by a group scheme over S if and only if E is locally free.

We re-state Grothendieck’s result (see [TDTE IV]) on the existence of a flattening stratification in the following form, which emphasises the role of the direct images $\pi_*\mathcal{F}(r)$.

Theorem 4 (Grothendieck). Let S be a noetherian scheme, and let \mathcal{F} be a coherent sheaf on \mathbb{P}_S^n where $n \geq 0$. There exists an integer m, and a collection of locally closed subschemes $S_{i} \subset S$ indexed by polynomials $f \in \mathbb{Q}[\lambda]$, with the following properties.

(i) The underlying set of S_i consists of all $s \in S$ such that the Hilbert polynomial of \mathcal{F}_s is f, where \mathcal{F}_s denotes the pull-back of \mathcal{F} to the schematic fibre \mathbb{P}_s^n over s of the
A projection $\pi : P^a_S \to S$. All but finitely many S_f are empty (only finitely many Hilbert polynomials occur). In particular, the S_f are mutually disjoint, and their set-theoretic union is S.

(ii) For each $r \geq m$, the higher direct images $R^j\pi_* (F(r))$ are zero for $j \geq 1$ and the subschemes S_f give the flattening stratification for the direct image $\pi_* (F(r))$, that is, the morphism $i : \bigsqcup S_f \to S$ induced by the locally closed embeddings $S_f \hookrightarrow S$ has the universal property that for any morphism $g : T \to S$, the sheaf $g^*\pi_* (F(r))$ is locally free on T if and only if g factors via $i : \bigsqcup S_f \to S$.

(iii) The subschemes S_f give the flattening stratification for F, that is, for any morphism $g : T \to S$, the sheaf $g^* F = (1 \times g)^* F$ on P^a_T is flat over T if and only if g factors via $i : \bigsqcup S_f \to S$. In particular, F is flat over S if and only if each S_f is an open subscheme of S.

(iv) Let $\mathbb{Q}[\lambda]$ be totally ordered by putting $f_1 < f_2$ if $f_1(p) < f_2(p)$ for all $p \gg 0$. Then the closure of S_f in S is set-theoretically contained in $\bigcup_{g \geq f} S_g$. Moreover, whenever S_f and S_g are non-empty, we have $f < g$ if and only if $f(p) < g(p)$ for all $p \geq m$.

The following elementary lemma of Grothendieck on base-change does not need any flatness hypothesis. The price paid is that the integer r_0 may depend on ϕ. (See [N2] for a cohomological proof.)

Lemma 5. Let $\phi : T \to S$ be a morphism of noetherian schemes, let F be a coherent sheaf on P^a_S, and let F_T denote its pull-back under the induced morphism $P^a_T \to P^a_S$. Let $\pi_S : P^a_S \to S$ and $\pi_T : P^a_T \to T$ denote the projections. Then there exists an integer r_0 such that the base-change homomorphism $\phi^*\pi_* S_f F(r) \to \pi_* F_T(r)$ is an isomorphism for all $r \geq r_0$.

Proof of Theorem 1. The implication $(1) \Rightarrow (2)$ follows by [EGA], III 7.7.8, 7.7.9, while the implication $(2) \Rightarrow (3)$ follows by taking $E = L^{\otimes -r}$. Therefore it now remains to show the implication $(3) \Rightarrow (1)$. This we do in a number of steps.

Step 1: **Reduction to S = Spec R with R local, $X = P^a_S$ and $L = O_{P^a_S}(1)$**. Suppose that F is not flat over S, but the linear scheme $G^{(r)}$ on S-schemes, defined by $G^{(r)}(T) = H^0(X_T, F_T \otimes L^{\otimes r})$, is representable by a linear scheme $G^{(r)}$ over S for arbitrarily large integers r. As F is not flat, by definition there exists some $x \in X$ such that the stalk F_x is not a flat module over the local ring $O_{S, \pi(x)}$, where $\pi : X \to S$ is the projection. Let $U = \text{Spec } O_{S, \pi(x)}$, let F_U be the pull-back of F to $X_U = X \times_S U$ and let $G^{(r)}_U$ denote the pull-back of $G^{(r)}$ to U. Then F_U is not flat over U but given any integer m, there exists an integer $r \geq m$ such that the functor $G^{(r)}_U$ on U-schemes, defined by $G^{(r)}_U(T) = H^0(X_T, F_T \otimes L^{\otimes r})$, is representable by the U-scheme $G^{(r)}_U$.

Therefore, by replacing S by U, we can assume that S is of the form $\text{Spec } R$ where R is a noetherian local ring. Let $i : X \hookrightarrow P^a_S$ be the embedding given by L. Then replacing F by $i_* F$, we can further assume that $X = P^a_S$ and $L = O_{P^a_S}(1)$.

Step 2: **Flattening stratification of Spec R**. There exists an integer m as asserted by Theorem 4, such that for any $r \geq m$, the flattening stratification of S for the sheaf $\pi_* F(r)$ on S is the same as the flattening stratification of S for the sheaf F on P^a_S. Let $r \geq m$ be any integer. As F is not flat over $S = \text{Spec } R$, the sheaf $\pi_* F(r)$ is not flat. Let $M_r = H^0(S, \pi_* F(r))$, which is a finite R-module. Let $m \subset R$ be the maximal ideal, and let $k = R/m$ the residue
field. Let \(s \in S = \text{Spec } R \) be the closed point, and let \(d = \dim_k(M_r/mM_r) \). Then there exists a right-exact sequence of \(R \)-modules of the form

\[
R^8 \xrightarrow{\psi} R^d \rightarrow M_r \rightarrow 0.
\]

Let \(I \subset R \) be the ideal formed by the matrix entries of the \((d \times s)\)-matrix \(\psi \). Then \(I \) defines a closed subscheme \(S' \subset S \) which is the flattening stratification of \(S \) for \(M_r \). As \(M_r \) is not flat by assumption, \(I \) is a non-zero proper ideal in \(R \).

It follows from Theorem 4 that \(I \) is independent of \(r \) as long as \(r \geq m \).

Step 3: Reduction to Artin local case with principal \(I \) with \(mI = 0 \). Let \(I = (a_1, \ldots, a_t) \) where \(a_1, \ldots, a_t \) is a minimal set of generators of \(I \). Let \(J \subset R \) be the ideal defined by

\[
J = (a_2, \ldots, a_t) + mI.
\]

Then note that \(J \subset I \subset m \), and the quotient \(R' = R/J \) is an Artin local \(R \)-algebra with maximal ideal \(m' = m/J \), and \(I' = I/J \) is a non-zero principal ideal which satisfies \(m' I' = 0 \). For the base-change under \(f : \text{Spec } R' \rightarrow \text{Spec } R \), the flattening stratification for \(f^* \pi_a F(r) \) is defined by the ideal \(I' \) for \(r \geq m \). Let \(F' \) denote the pull-back of \(F \) to \(P_a^{n'} \), and let \(\pi' : P_a^{n'} \rightarrow \text{Spec } R' \) the projection. As \(f \) is a morphism of noetherian schemes, by Lemma 5 there exists some integer \(m' \) such that the base-change homomorphism \(f^* \pi_a F(r) \rightarrow \pi'_a F'(r) \) is an isomorphism whenever \(r \geq m' \). Choosing some \(m' \geq m \) with this property, and replacing \(R \) by \(R' \), \(F \) by \(F' \) and \(m \) by \(m' \), we can assume that \(R \) is Artin local, and \(I \) is a non-zero principal ideal with \(mI = 0 \), which defines the flattening stratification for \(\pi_a F(r) \) for all \(r \geq m \).

Step 4: Decomposition of \(\pi_a F(r) \) via lemma of Srinivas.

Lemma (Srinivas). Let \(R \) be an Artin local ring with maximal ideal \(m \), and let \(E \) be any finite \(R \)-module whose flattening stratification is defined by an ideal \(I \) which is a non-zero proper principal ideal with \(mI = 0 \). Then there exist integers \(i \geq 0 \) and \(j > 0 \) such that \(E \) is isomorphic to the direct sum \(R^i \oplus (R/I)^j \).

Proof. See Lemma 4 in [N1].

We apply the above lemma to the \(R \)-module \(M_r = H^0(S, \pi_a F(r)) \), which has flattening stratification defined by the principal ideal \(I \) with \(mI = 0 \), to conclude that (up to isomorphism) \(M_r \) has the form

\[
M_r = R^{i(r)} \oplus (R/I)^{j(r)}
\]

for non-negative integers \(i(r) \) and \(j(r) \) with \(j(r) > 0 \). Note that \(i(r) + j(r) = \Phi(r) \) where \(\Phi \) is the Hilbert polynomial of \(F \).

Step 5: Structure of the hypothetical representing scheme \(G^{(r)} \). Let \(\phi : \text{Spec } (R/I) \hookrightarrow \text{Spec } R \) denote the inclusion and \(F' \) denote the pull-back of \(F \) under \(P_a^{d} \). The sheaf \(F' \) is flat over \(R/I \), and the functor \(G^{(r)}_{R/I} \), which is the restriction of \(G^{(r)} \), is represented by the linear scheme \(A^{d}_{R/I} = \text{Spec } (R/I)[y_1, \ldots, y_d] \) over \(R/I \), where \(d = \Phi(r) \) where \(\Phi \) is the Hilbert polynomial of \(F \). Hence, the pull-back of the hypothetical representing scheme \(G^{(r)} \) to \(R/I \) is the linear scheme \(A^{d}_{R/I} \). We now use the following fact (see Lemmas 6 and 7 of [N1] for a proof).
Lemma. Let R be a ring and I a nilpotent ideal ($I^n = 0$ for some $n \geq 1$). Let X be a scheme over $\text{Spec} \ R$, such that the closed subscheme $Y = X \otimes_R (R/I)$ is isomorphic over R/I to $\text{Spec} \ B$ where B is a finite-type R/I-algebra. Let $b_1, \ldots, b_d \in B$ be a set of R/I-algebra generators for B over R/I. Then X is isomorphic over R with $\text{Spec} \ A$ where A is a finite-type R-algebra. Moreover, there exists a set of R-algebra generators a_1, \ldots, a_d for A, such that each a_i restricts to the zero section of $\sigma_i = \text{Spec} \ (R/I)$.

From the above, using $\text{Rep} \text{Hom}$ implies flatness 11, it follows that for any $(b_1, \ldots, b_d) \in I^d$, we have a well-defined R-algebra homomorphism

$$\Psi_{(b_1, \ldots, b_d)} : A \to R : a_i \mapsto b_i.$$

We now express the linear-scheme structure of $G^{(r)}$ in terms of the ring A, using the fact that each a_i restricts to y_i modulo I, and $G^{(r)}_{R/I}$ is the standard linear-scheme $A^d_{R/I}$ with R/I-algebra generators y_i. Note that the vector addition morphism $A^d_{R/I} \times_{R/I} A^d_{R/I} \to A^d_{R/I}$ corresponds to the R/I-algebra homomorphism

$$(R/I)[y_1, \ldots, y_d] \to (R/I)[y_1, \ldots, y_d] \otimes_{R/I} (R/I)[y_1, \ldots, y_d] : y_i \mapsto y_i \otimes 1 + 1 \otimes y_i.$$
while the scalar-multiplication morphism \(\mathbf{A}^1_{R/I} \times_{R/I} \mathbf{A}^d_{R/I} \to \mathbf{A}^d_{R/I} \) corresponds to the \(R/I \)-algebra homomorphism

\[
(R/I)[y_1, \ldots, y_d] \to (R/I)[t, y_1, \ldots, y_d]
\]

\[
= (R/I)[t] \otimes_{R/I} (R/I)[y_1, \ldots, y_d] : y_i \mapsto ty_i.
\]

It follows that the addition morphism \(\alpha : G^{(r)} \times G^{(r)} \to G^{(r)} \) corresponds to the \(R/I \)-algebra homomorphism \(\alpha^* : A \to A \otimes_R A \) which has the form

\[
a_i \mapsto a_i \otimes 1 + 1 \otimes a_i + u_i \text{ where } u_i \in I(A \otimes_R A).
\]

Let the element \(u_i \) in the above equation for \(\alpha^*(a_i) \) be written as a polynomial expression

\[
u_i = f_i(a_1 \otimes 1, \ldots, a_d \otimes 1, 1 \otimes a_1, \ldots, 1 \otimes a_d)
\]

with coefficients in \(I \). The additive identity \(0 \) of \(G^{(r)}(R) \) corresponds to \(\sigma^* : A \to R \) with \(\sigma^*(a_i) = 0 \), and we have \(0 + 0 = 0 \) in \(G^{(r)}(R) \). This implies that \(f_i(0, \ldots, 0) = 0 \), and so the constant term of \(f_i \) is zero. From this, using \(I^2 = 0 \), we get the important consequence that

\[
f_i(w_1, \ldots, w_{2d}) = 0 \text{ for all } w_1, \ldots, w_{2d} \in I.
\]

The scalar-multiplication morphism \(\mu : \mathbf{A}^1_{R} \times_R G^{(r)} \to G^{(r)} \) prolongs the standard scalar multiplication on \(\mathbf{A}^d_{R/I} \), and so \(\mu \) corresponds to an algebra homomorphism \(\mu^* : A \to A[t] = R[t] \otimes_R A \) which has the form

\[
a_i \mapsto ta_i + v_i \text{ where } v_i \in I A[t].
\]

Let \(v_i \) be expressed as a polynomial \(v_i = g_i(t, a_1, \ldots, a_d) \) with coefficients in \(I \). As multiplication by the scalar \(0 \) is the zero morphism on \(G^{(r)} \), it follows by specialising under \(t \mapsto 0 \) that \(g_i(0, a_1, \ldots, a_d) = 0 \). This means \(v_i = g_i(t, a_1, \ldots, a_d) \) can be expanded as a finite sum

\[
v_i = \sum_{j \geq 1} t^j h_{i,j}(a_1, \ldots, a_d),
\]

where the \(h_{i,j}(a_1, \ldots, a_d) \) are polynomial expressions with coefficients in \(I \). As the zero vector times any scalar is zero, it follows by specialising under \(\sigma^* \) that \(g_i(t, 0, \ldots, 0) = 0 \). It follows that the constant term of each \(h_{i,j} \) is zero. From this, and the fact that \(I^2 = 0 \), we get the important consequence that

\[
g_i(t, b_1, \ldots, b_d) = 0 \text{ for all } b_1, \ldots, b_d \in I.
\]

Step 6: The kernel of the map \(G^{(r)}(R) \to G^{(r)}(R/I) \).

Lemma. Let \(\Psi_{(b_1, \ldots, b_d)} : A \to R \) be the \(R \)-algebra homomorphism defined in terms of the generators by \(\Psi_{(b_1, \ldots, b_d)}(a_k) = b_k \). Let \(\Psi : I^d \to \text{Hom}_{R \text{-alg}}(A, R) \) be the set-map defined by \((b_1, \ldots, b_d) \mapsto (\Psi_{(b_1, \ldots, b_d)} : A \to R) \). Then \(\Psi \) is a homomorphism of \(R \)-modules, where the \(R \)-module structure on \(\text{Hom}_{R \text{-alg}}(A, R) \) is defined by its identification with the \(R \)-module \(G^{(r)}(R) \).

The map \(\Psi \) is injective, and its image is the \(R \)-submodule \(G^{(r)}(\phi) \subset G^{(r)}(R) \), where \(\phi : \text{Spec}(R/I) \leftrightarrow \text{Spec } R \) is the inclusion.
Proof. For any \((b_1, \ldots, b_d)\) and \((c_1, \ldots, c_d)\) in \(I^d\), we have
\[
(\Psi_{(b_1, \ldots, b_d)} + \Psi_{(c_1, \ldots, c_d)})(a_i) = (\Psi_{(b_1, \ldots, b_d)} \otimes \Psi_{(c_1, \ldots, c_d)})(\alpha^*(a_i)) = b_1 + c_1 + f_1(b_1, \ldots, b_d, c_1, \ldots, c_d)
\]
by substituting for \(\alpha^*(a_i)\)
\[
= b_1 + c_1 \text{ as } b_k, c_k \in I
\]
\[
= \Psi_{(b_1+c_1, \ldots, b_d+c_d)}(a_i).
\]
This shows the equality \(\Psi_{(b_1, \ldots, b_d)} + \Psi_{(c_1, \ldots, c_d)} = \Psi_{(b_1, \ldots, b_d) + (c_1, \ldots, c_d)}\), which means the map \(\Psi : I^d \rightarrow G^{(r)}(R)\) is additive.

For any \(\lambda \in R\), let \(f_\lambda : R[t] \rightarrow R\) be the \(R\)-algebra homomorphism defined by \(f_\lambda(t) = \lambda\). Then for any \((b_1, \ldots, b_d)\) in \(I^d\) we have
\[
(\lambda \cdot \Psi_{(b_1, \ldots, b_d)})(a_i) = (f_\lambda \otimes \Psi_{(b_1, \ldots, b_d)})(\mu^*(a_i)) = (f_\lambda \otimes \Psi_{(b_1, \ldots, b_d)})(ta_i + g(t, a_1, \ldots, a_d)) = \lambda b_1 + g_\lambda(t, b_1, \ldots, b_d) = \lambda b_1 \text{ as } b_k \in I
\]
\[
= \Psi_{(\lambda b_1, \ldots, \lambda b_d)}(a_i).
\]
This shows the equality \(\lambda \cdot \Psi_{(b_1, \ldots, b_d)} = \Psi_{\lambda b_1, \ldots, b_d}\), hence the map \(\Psi : I^d \rightarrow G^{(r)}(R)\) preserves scalar multiplication. This completes the proof that \(\Psi : I^d \rightarrow G^{(r)}(R)\) is a homomorphism of \(R\)-modules.

The map \(\Psi\) is clearly injective. The map \(G^{(r)}(\phi) : G^{(r)}(R) \rightarrow G^{(r)}(R/I)\) is in algebraic terms the map \(\text{Hom}_{R_{\text{alg}}}(A, R) \rightarrow \text{Hom}_{R_{\text{alg}}}(A, R/I)\) induced by the quotient \(R \rightarrow R/I\). An element \(g \in \text{Hom}_{R_{\text{alg}}}(A, R/I)\) represents the zero element of \(G^{(r)}(R/I)\) exactly when \(g(a_i) = 0 \in R/I\) for the generators \(a_i\) of \(A\). Therefore \(f \in \text{Hom}_{R_{\text{alg}}}(A, R)\) is in the kernel of \(G^{(r)}(\phi)\) precisely when \(f(a_i) \in I\) for the generators \(a_i\). Putting \(b_j = f(a_i)\), we see that such an \(f\) is the same as \(\Psi_{(b_1, \ldots, b_d)}\).

This completes the proof of the lemma that \(\ker G^{(r)}(\phi) = I^d\).

In particular, as \(mI = 0\), it follows from the above lemma that \(\ker G^{(r)}(\phi)\) is annihilated by \(m\), so it is a vector space over \(R/m\), and its dimension as a vector space over \(R/m\) is \(d = \Phi(r)\), as by assumption \(I\) is a non-zero principal ideal.

The above determination of the dimension over \(R/m\) of the kernel of \(G^{(r)}(\phi)\) will contradict a more direct functorial description, which is as follows.

Step 7: Functorial description of kernel of \(G^{(r)}(R) \rightarrow G^{(r)}(R/I)\). As \(\mathcal{F}_{R/I}(r)\) is flat over \(R/I\), and as for \(r \geq m\) all higher direct images of \(\mathcal{F}(r)\) vanish, \(G^{(r)}(R/I)\) is isomorphic to the \(R/I\)-module \((R/I)^{d'}\) where \(d = \Phi(r)\). By Lemma 5, there exists \(m'' \geq m\) such that for \(r \geq m''\) the inclusion \(\phi : \text{Spec}(R/I) \hookrightarrow \text{Spec} R\) induces an isomorphism \(\phi^* \pi_* \mathcal{F}(r) \rightarrow \pi'_* \mathcal{F}'(r)\) where \(\pi' : P_{R/I}^m \rightarrow \text{Spec}(R/I)\) is the projection and \(\mathcal{F}'\) is the pull-back of \(\mathcal{F}\) under \(P_{R/I}^m \hookrightarrow P_R^m\). Note that \(G^{(r)}(R) = R^{(r)} \oplus (R/I)^{j(r)}\), and so for \(r \geq m''\) we get an induced decomposition
\[
G^{(r)}(R/I) = (R/I)^{j(r)} \oplus (R/I)^{j(r)}\]
such that the map \(G^{(r)}(\phi) : G^{(r)}(R) \rightarrow G^{(r)}(R/I) \) is the map

\[
(q, 1) : R^{i(r)} \oplus (R/I)^{j(r)} \rightarrow (R/I)^{i(r)} \oplus (R/I)^{j(r)},
\]

where \(q \) is the quotient map modulo \(I \). It follows that the kernel of \(G^{(r)}(\phi) \) is the \(R \)-module \(I^{i(r)} \oplus 0 \subset R^{i(r)} \oplus (R/I)^{j(r)} = G^{(r)}(R) \). This is a vector space over \(R/m \) of dimension \(i(r) < i(r) + j(r) = \Phi(r) \).

We thus obtain two different values for the dimension of the same vector space \(\ker G^{(r)}(\phi) = \ker G^{(r)}(\phi) \), which shows that our assumption that \(G^{(r)} \) is representable for arbitrarily large values of \(r \) is false. This completes the proof of Theorem 1.

Acknowledgement

This note was inspired by a question posed by Angelo Vistoli to the participants of the workshop ‘Advanced basic algebraic geometry’ held at the Abdus Salam ICTP, Trieste, in July 2003. The Corollary 2 answers that question. I thank the ICTP for hospitality while this work was in progress.

References

