Proc. Indian Acad. Sci. (Math. Sci.) Vol. 114, No. 1, February 2004, pp. 7–14. © Printed in India

Representability of Hom implies flatness

NITIN NITSURE

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India E-mail: nitsure@math.tifr.res.in

MS received 8 August 2003

Abstract. Let *X* be a projective scheme over a noetherian base scheme *S*, and let \mathcal{F} be a coherent sheaf on *X*. For any coherent sheaf \mathcal{E} on *X*, consider the set-valued contravariant functor $\hom_{(\mathcal{E},\mathcal{F})}$ on *S*-schemes, defined by $\hom_{(\mathcal{E},\mathcal{F})}(T) = \operatorname{Hom}(\mathcal{E}_T, \mathcal{F}_T)$ where \mathcal{E}_T and \mathcal{F}_T are the pull-backs of \mathcal{E} and \mathcal{F} to $X_T = X \times_S T$. A basic result of Grothendieck ([EGA], III 7.7.8, 7.7.9) says that if \mathcal{F} is flat over *S* then $\hom_{(\mathcal{E},\mathcal{F})}$ is representable for all \mathcal{E} .

We prove the converse of the above, in fact, we show that if *L* is a relatively ample line bundle on *X* over *S* such that the functor $\hom_{(L^{-n},\mathcal{F})}$ is representable for infinitely many positive integers *n*, then \mathcal{F} is flat over *S*. As a corollary, taking X = S, it follows that if \mathcal{F} is a coherent sheaf on *S* then the functor $T \mapsto H^0(T, \mathcal{F}_T)$ on the category of *S*-schemes is representable if and only if \mathcal{F} is locally free on *S*. This answers a question posed by Angelo Vistoli.

The techniques we use involve the proof of flattening stratification, together with the methods used in proving the author's earlier result (see [N1]) that the automorphism group functor of a coherent sheaf on S is representable if and only if the sheaf is locally free.

Keywords. Flattening stratification; Q-sheaf; group-scheme; base change.

Let *S* be a noetherian scheme, and let *X* be a projective scheme over *S*. If \mathcal{E} and \mathcal{F} are coherent sheaves on *X*, consider the contravariant functor $\hom_{(\mathcal{E},\mathcal{F})}$ from the category of schemes over *S* to the category of sets which is defined by putting

$$\hom_{(\mathcal{E},\mathcal{F})}(T) = \operatorname{Hom}_{X_T}(\mathcal{E}_T,\mathcal{F}_T)$$

for any *S*-scheme $T \to S$, where $X_T = X \times_S T$, and \mathcal{E}_T and \mathcal{F}_T denote the pull-backs of \mathcal{E} and \mathcal{F} under the projection $X_T \to X$. This functor is clearly a sheaf in the fpqc topology on Sch/*S*. It was proved by Grothendieck that if \mathcal{F} is flat over *S* then the above functor is representable (see [EGA], III 7.7.8, 7.7.9).

Our main theorem is as follows, which is a converse to the above.

Theorem 1. Let S be a noetherian scheme, X a projective scheme over S, and L a relatively very ample line bundle on X over S. Let \mathcal{F} be a coherent sheaf on X. Then the following three statements are equivalent:

- (1) The sheaf \mathcal{F} is flat over S.
- (2) For any coherent sheaf \mathcal{E} on X, the set-valued contravariant functor $\hom_{(\mathcal{E},\mathcal{F})}$ on *S*-schemes, defined by $\hom_{(\mathcal{E},\mathcal{F})}(T) = \operatorname{Hom}_{X_T}(\mathcal{E}_T, \mathcal{F}_T)$, is representable.
- (3) There exist infinitely many positive integers r such that the set-valued contravariant functor $\mathcal{G}^{(r)}$ on S-schemes, defined by $\mathcal{G}^{(r)}(T) = H^0(X_T, \mathcal{F}_T \otimes L^{\otimes r})$, is representable.

In particular, taking X = S and $L = \mathcal{O}_X$, we get the following corollary.

COROLLARY 2

Let S be a noetherian scheme, and \mathcal{F} a coherent sheaf on S. Consider the contravariant functor **F** from S-schemes to sets, which is defined by putting $\mathbf{F}(T) = H^0(T, f^*\mathcal{F})$ for any S-scheme $f: T \to S$. This functor (which is a sheaf in the fpqc topology) is representable if and only if \mathcal{F} is locally free as an \mathcal{O}_S -module.

Note that the affine line \mathbf{A}_{S}^{1} over a base *S* admits a ring-scheme structure over *S* in the obvious way. A *linear scheme* over a scheme *S* will mean a module-scheme $V \rightarrow S$ under the ring-scheme \mathbf{A}_{S}^{1} . This means *V* is a commutative group-scheme over *S* together with a 'scalar-multiplication' morphism $\mu : \mathbf{A}_{S}^{1} \times_{S} V \rightarrow V$ over *S*, such that the module axioms (in diagrammatic terms) are satisfied.

A linear functor \mathbf{F} on S-schemes will mean a contravariant functor from S-schemes to sets together with the structure of an $H^0(T, \mathcal{O}_T)$ -module on $\mathbf{F}(T)$ for each S-scheme T, which is well-behaved under any morphism $f : U \to T$ of S-schemes in the following sense: $\mathbf{F}(f) : \mathbf{F}(T) \to \mathbf{F}(U)$ is a homomorphism of the underlying additive groups, and $\mathbf{F}(f)(a \cdot v) = f^*(a) \cdot (\mathbf{F}(f)v)$ for any $a \in H^0(T, \mathcal{O}_T)$ and $v \in \mathbf{F}(T)$. In particular note that the kernel of $\mathbf{F}(f)$ will be an $H^0(T, \mathcal{O}_T)$ -submodule of $\mathbf{F}(T)$. The functor of points of a linear scheme is naturally a linear functor. Conversely, it follows by the Yoneda lemma that if a linear functor \mathbf{F} on S-schemes is representable, then the representing scheme V is naturally a linear scheme over S.

For example, the linear functor $T \mapsto H^0(T, \mathcal{O}_T)^n$ (where $n \ge 0$) is represented by the affine space $\mathbf{A}^n_{\mathbb{Z}}$ over Spec \mathbb{Z} , with its usual linear-scheme structure. More generally, for any coherent sheaf \mathfrak{Q} on S, the scheme Spec Sym(\mathfrak{Q}) is naturally a linear-scheme over S, where Sym(\mathfrak{Q}) denotes the symmetric algebra of \mathfrak{Q} over \mathcal{O}_S . It represents the linear functor $\mathbf{F}(T) = \text{Hom}(\mathfrak{Q}_T, \mathcal{O}_T)$ where \mathfrak{Q}_T denotes the pull-back of \mathfrak{Q} under $T \to S$.

With this terminology, the functor $\mathcal{G}^{(r)}(T) = H^0(X_T, \mathcal{F}_T \otimes L^{\otimes r})$ of Theorem 1(3) is a linear functor. Therefore, if a representing scheme $G^{(r)}$ exists, it will naturally be a linear scheme. Note that each $\mathcal{G}^{(r)}$ is obviously a sheaf in the fpqc topology.

The proof of Theorem 1 is by a combination of the result of Grothendieck on the existence of a flattening stratification [TDTE IV] together with the techniques which were employed in [N1] to prove the following result.

Theorem 3 (Representability of the functor GL_E). Let S be a noetherian scheme, and E a coherent \mathcal{O}_S -module. Let GL_E denote the contrafunctor on S-schemes which associates to any S-scheme $f: T \to S$ the group of all \mathcal{O}_T -linear automorphisms of the pullback $E_T = f^*E$ (this functor is a sheaf in the fpqc topology). Then GL_E is representable by a group scheme over S if and only if E is locally free.

We re-state Grothendieck's result (see [TDTE IV]) on the existence of a flattening stratification in the following form, which emphasises the role of the direct images $\pi_*(\mathcal{F}(r))$. For an exposition of flattening stratification, see [M] or [N2].

Theorem 4 (Grothendieck). Let *S* be a noetherian scheme, and let \mathcal{F} be a coherent sheaf on \mathbf{P}_{S}^{n} where $n \geq 0$. There exists an integer *m*, and a collection of locally closed subschemes $S_{f} \subset S$ indexed by polynomials $f \in \mathbb{Q}[\lambda]$, with the following properties.

(i) The underlying set of S_f consists of all $s \in S$ such that the Hilbert polynomial of \mathcal{F}_s is f, where \mathcal{F}_s denotes the pull-back of \mathcal{F} to the schematic fibre \mathbf{P}_s^n over s of the

projection $\pi : \mathbf{P}_{S}^{n} \to S$. All but finitely many S_{f} are empty (only finitely many Hilbert polynomials occur). In particular, the S_{f} are mutually disjoint, and their set-theoretic union is S.

- (ii) For each $r \ge m$, the higher direct images $R^j \pi_*(\mathcal{F}(r))$ are zero for $j \ge 1$ and the subschemes S_f give the flattening stratification for the direct image $\pi_*(\mathcal{F}(r))$, that is, the morphism $i : \coprod_f S_f \to S$ induced by the locally closed embeddings $S_f \to S$ has the universal property that for any morphism $g : T \to S$, the sheaf $g^*\pi_*(\mathcal{F}(r))$ is locally free on T if and only if g factors via $i : \coprod_f S_f \to S$.
- (iii) The subschemes S_f give the flattening stratification for \mathcal{F} , that is, for any morphism $g: T \to S$, the sheaf $\mathcal{F}_T = (1 \times g)^* \mathcal{F}$ on \mathbf{P}_T^n is flat over T if and only if g factors via $i: \coprod_f S_f \to S$. In particular, \mathcal{F} is flat over S if and only if each S_f is an open subscheme of S.
- (iv) Let $\mathbb{Q}[\lambda]$ be totally ordered by putting $f_1 < f_2$ if $f_1(p) < f_2(p)$ for all $p \gg 0$. Then the closure of S_f in S is set-theoretically contained in $\bigcup_{g \ge f} S_g$. Moreover, whenever S_f and S_g are non-empty, we have f < g if and only if f(p) < g(p) for all $p \ge m$.

The following elementary lemma of Grothendieck on base-change does not need any flatness hypothesis. The price paid is that the integer r_0 may depend on ϕ . (See [N2] for a cohomological proof.)

Lemma 5. Let $\phi : T \to S$ be a morphism of noetherian schemes, let \mathcal{F} a coherent sheaf on \mathbf{P}_S^n , and let \mathcal{F}_T denote its pull-back under the induced morphism $\mathbf{P}_T^n \to \mathbf{P}_S^n$. Let $\pi_S : \mathbf{P}_S^n \to S$ and $\pi_T : \mathbf{P}_T^n \to T$ denote the projections. Then there exists an integer r_0 such that the base-change homomorphism $\phi^* \pi_{S*} \mathcal{F}(r) \to \pi_{T*} \mathcal{F}_T(r)$ is an isomorphism for all $r \geq r_0$.

Proof of Theorem 1. The implication $(1) \Rightarrow (2)$ follows by [EGA], III 7.7.8, 7.7.9, while the implication $(2) \Rightarrow (3)$ follows by taking $\mathcal{E} = L^{\otimes -r}$. Therefore it now remains to show the implication $(3) \Rightarrow (1)$. This we do in a number of steps.

Step 1: Reduction to S = Spec R with R local, $X = \mathbf{P}_S^n$ and $L = \mathcal{O}_{\mathbf{P}_S^n}(1)$. Suppose that \mathcal{F} is not flat over S, but the linear functor $\mathcal{G}^{(r)}$ on S-schemes, defined by $\mathcal{G}^{(r)}(T) = H^0(X_T, \mathcal{F}_T \otimes L^{\otimes r})$, is representable by a linear scheme $G^{(r)}$ over S for arbitrarily large integers r. As \mathcal{F} is not flat, by definition there exists some $x \in X$ such that the stalk \mathcal{F}_x is not a flat module over the local ring $\mathcal{O}_{S,\pi(x)}$ where $\pi : X \to S$ is the projection. Let $U = \text{Spec } \mathcal{O}_{S,\pi(x)}$, let \mathcal{F}_U be the pull-back of \mathcal{F} to $X_U = X \times_S U$ and let $G_U^{(r)}$ denote the pull-back of $G^{(r)}$ to U. Then \mathcal{F}_U is not flat over U but given any integer m, there exists an integer $r \ge m$ such that the functor $\mathcal{G}_U^{(r)}$ on U-schemes, defined by $\mathcal{G}_U^{(r)}(T) = H^0(X_T, \mathcal{F}_T \otimes L^{\otimes r})$, is representable by the U-scheme $\mathcal{G}_U^{(r)}$.

Therefore, by replacing *S* by *U*, we can assume that *S* is of the form Spec *R* where *R* is a noetherian local ring. Let $i : X \hookrightarrow \mathbf{P}_S^n$ be the embedding given by *L*. Then replacing \mathcal{F} by $i_*\mathcal{F}$, we can further assume that $X = \mathbf{P}_S^n$ and $L = \mathcal{O}_{\mathbf{P}_S^n}(1)$.

Step 2: Flattening stratification of Spec *R*. There exists an integer *m* as asserted by Theorem 4, such that for any $r \ge m$, the flattening stratification of *S* for the sheaf $\pi_*\mathcal{F}(r)$ on *S* is the same as the flattening stratification of *S* for the sheaf \mathcal{F} on \mathbf{P}_S^n . Let $r \ge m$ be any integer. As \mathcal{F} is not flat over S = Spec R, the sheaf $\pi_*\mathcal{F}(r)$ is not flat. Let $M_r = H^0(S, \pi_*\mathcal{F}(r))$, which is a finite *R*-module. Let $\mathfrak{m} \subset R$ be the maximal ideal, and let $k = R/\mathfrak{m}$ the residue

field. Let $s \in S = \text{Spec } R$ be the closed point, and let $d = \dim_k(M_r/\mathfrak{m}M_r)$. Then there exists a right-exact sequence of *R*-modules of the form

$$R^{\delta} \xrightarrow{\psi} R^{d} \to M_{r} \to 0.$$

Let $I \subset R$ be the ideal formed by the matrix entries of the $(d \times \delta)$ -matrix ψ . Then I defines a closed subscheme $S' \subset S$ which is the flattening stratification of S for M_r . As M_r is not flat by assumption, I is a non-zero proper ideal in R.

It follows from Theorem 4 that I is independent of r as long as $r \ge m$.

Step 3: Reduction to Artin local case with principal I with $\mathfrak{m}I = 0$. Let $I = (a_1, \ldots, a_t)$ where a_1, \ldots, a_t is a minimal set of generators of I. Let $J \subset R$ be the ideal defined by

$$J = (a_2, \ldots, a_t) + \mathfrak{m}I.$$

Then note that $J \,\subset I \,\subset m$, and the quotient R' = R/J is an Artin local *R*-algebra with maximal ideal $\mathfrak{m}' = \mathfrak{m}/J$, and I' = I/J is a non-zero principal ideal which satisfies $\mathfrak{m}'I' = 0$. For the base-change under f: Spec $R' \to$ Spec R, the flattening stratification for $f^*\pi_*\mathcal{F}(r)$ is defined by the ideal I' for $r \geq m$. Let \mathcal{F}' denote the pull-back of \mathcal{F} to $\mathbf{P}_{R'}^n$, and let $\pi' : \mathbf{P}_{R'}^n \to$ Spec R' the projection. As f is a morphism of noetherian schemes, by Lemma 5 there exists some integer m' such that the base-change homomorphism $f^*\pi_*\mathcal{F}(r) \to \pi'_*\mathcal{F}'(r)$ is an isomorphism whenever $r \geq m'$. Choosing some $m' \geq m$ with this property, and replacing R by R', \mathcal{F} by \mathcal{F}' and m by m', we can assume that R is Artin local, and I is a non-zero principal ideal with $\mathfrak{m}I = 0$, which defines the flattening stratification for $\pi_*\mathcal{F}(r)$ for all $r \geq m$.

Step 4: Decomposition of $\pi_* \mathcal{F}(r)$ via lemma of Srinivas.

Lemma (Srinivas). Let R be an Artin local ring with maximal ideal \mathfrak{m} , and let E be any finite R module whose flattening stratification is defined by an ideal I which is a non-zero proper principal ideal with $\mathfrak{m}I = 0$. Then there exist integers $i \ge 0$ and j > 0 such that E is isomorphic to the direct sum $R^i \oplus (R/I)^j$.

Proof. See Lemma 4 in [N1].

We apply the above lemma to the *R*-module $M_r = H^0(S, \pi_* \mathcal{F}(r))$, which has flattening stratification defined by the principal ideal *I* with $\mathfrak{m}I = 0$, to conclude that (up to isomorphism) M_r has the form

$$M_r = R^{i(r)} \oplus (R/I)^{j(r)}$$

for non-negative integers i(r) and j(r) with j(r) > 0. Note that $i(r) + j(r) = \Phi(r)$ where Φ is the Hilbert polynomial of \mathcal{F} .

Step 5: Structure of the hypothetical representing scheme $G^{(r)}$. Let ϕ : Spec $(R/I) \hookrightarrow$ Spec R denote the inclusion and \mathcal{F}' denote the pull-back of \mathcal{F} under $\mathbf{P}_{R/I}^n \hookrightarrow \mathbf{P}_R^n$. The sheaf \mathcal{F}' is flat over R/I, and the functor $\mathcal{G}_{R/I}^{(r)}$, which is the restriction of $\mathcal{G}^{(r)}$, is represented by the linear scheme $\mathbf{A}_{R/I}^d = \text{Spec}(R/I)[y_1, \ldots, y_d]$ over R/I, where $d = \Phi(r)$ where Φ is the Hilbert polynomial of \mathcal{F} . Hence, the pull-back of the hypothetical representing scheme $G^{(r)}$ to R/I is the linear scheme $\mathbf{A}_{R/I}^d$. We now use the following fact (see Lemmas 6 and 7 of [N1] for a proof). Lemma. Let R be a ring and I a nilpotent ideal $(I^n = 0 \text{ for some } n \ge 1)$. Let X be a scheme over Spec R, such that the closed subscheme $Y = X \otimes_R (R/I)$ is isomorphic over R/I to Spec B where B is a finite-type R/I-algebra. Let $b_1, \ldots, b_d \in B$ be a set of algebra generators for B over R/I. Then X is isomorphic over R with Spec A where A is a finite-type R-algebra. Moreover, there exists a set of R-algebra generators a_1, \ldots, a_d for A, such that each a_i restricts modulo I to $b_i \in B$ over R/I. Let $R[x_1, \ldots, x_d]$ be a polynomial ring in d variables over R, and consider the surjective R-algebra homomorphism $R[x_1, \ldots, x_d] \rightarrow A$ defined by sending each x_i to a_i , and let J be its kernel. Then $J \subset IR[x_1, \ldots, x_d]$.

It follows from the above lemma that $G^{(r)}$ is affine of finite type over R, and its coordinate ring A as an R algebra is of the form

$$A = R[a_1, \ldots, a_d] = R[x_1, \ldots, x_d]/J,$$

where a_i is the residue of x_i , and a_1, \ldots, a_d restrict over R/I to the linear coordinates y_1, \ldots, y_d on the linear scheme $\mathbf{A}_{R/I}^d$, and J is an ideal with $J \subset I \cdot R[x_1, \ldots, x_d]$. Being an additive group-scheme, $G^{(r)}$ has its zero section σ : Spec $R \to G^{(r)}$, and this corresponds to an R-algebra homomorphism $\sigma^* : A \to R$. Modulo I, the section σ restricts to the zero section of $\mathbf{A}_{R/I}^d$ over $\operatorname{Spec}(R/I)$, therefore $\sigma^*(a_i) \in I$ for all $i = 1, \ldots, d$. Let $x'_i = x_i - \sigma^*(a_i) \in R[x_1, \ldots, x_d]$ and $a'_i = a_i - \sigma^*(a_i) \in A$ be its residue modulo J. Then $R[x_1, \ldots, x_d] = R[x'_1, \ldots, x'_d]$, the elements a'_1, \ldots, a'_d generate A as an R-algebra, and moreover the a'_i restrict over R/I to the linear coordinates y_i on the linear scheme $\mathbf{A}_{R/I}^d$. Therefore, by replacing the x_i by the x'_i and the a_i by the a'_i , we can assume that for each i, we have

$$\sigma^*(a_i) = 0.$$

Next, consider any element $f(x_1, \ldots, x_d) \in J$. Then $f(a_1, \ldots, a_d) = 0$ in A, so $\sigma^* f(a_1, \ldots, a_d) = 0 \in R$, which shows that the constant coefficient of f is zero, as $\sigma^*(a_i) = 0$. As we already know that $J \subset I \cdot R[x_1, \ldots, x_d]$, the vanishing of the constant term of any element of J now establishes that

$$J \subset I \cdot (x_1, \ldots, x_d).$$

From the above, using $I^2 = 0$, it follows that for any $(b_1, \ldots, b_d) \in I^d$, we have a well-defined *R*-algebra homomorphism

$$\Psi_{(b_1,\ldots,b_d)}: A \to R: a_i \mapsto b_i.$$

We now express the linear-scheme structure of $G^{(r)}$ in terms of the ring A, using the fact that each a_i restricts to y_i modulo I, and $G^{(r)}_{R/I}$ is the standard linear-scheme $\mathbf{A}^d_{R/I}$ with linear co-ordinates y_i . Note that the vector addition morphism $\mathbf{A}^d_{R/I} \times_{R/I} \mathbf{A}^d_{R/I} \to \mathbf{A}^d_{R/I}$ corresponds to the R/I-algebra homomorphism

$$(R/I)[y_1, \dots, y_d] \to (R/I)[y_1, \dots, y_d] \otimes_{R/I} (R/I)[y_1, \dots, y_d] : y_i$$
$$\mapsto y_i \otimes 1 + 1 \otimes y_i$$

while the scalar-multiplication morphism $\mathbf{A}_{R/I}^1 \times_{R/I} \mathbf{A}_{R/I}^d \to \mathbf{A}_{R/I}^d$ corresponds to the R/I-algebra homomorphism

$$(R/I)[y_1, \dots, y_d] \to (R/I)[t, y_1, \dots, y_d]$$
$$= (R/I)[t] \otimes_{R/I} (R/I)[y_1, \dots, y_d] : y_i \mapsto ty_i.$$

It follows that the addition morphism $\alpha : G^{(r)} \times_R G^{(r)} \to G^{(r)}$ corresponds to an algebra homomorphism $\alpha^* : A \to A \otimes_R A$ which has the form

$$a_i \mapsto a_i \otimes 1 + 1 \otimes a_i + u_i$$
 where $u_i \in I(A \otimes_R A)$.

Let the element u_i in the above equation for $\alpha^*(a_i)$ be written as a polynomial expression

$$u_i = f_i(a_1 \otimes 1, \ldots, a_d \otimes 1, 1 \otimes a_1, \ldots, 1 \otimes a_d)$$

with coefficients in *I*. The additive identity 0 of $G^{(r)}(R)$ corresponds to $\sigma^* : A \to R$ with $\sigma^*(a_i) = 0$, and we have 0 + 0 = 0 in $G^{(r)}(R)$. This implies that $f_i(0, \ldots, 0) = 0$, and so the constant term of f_i is zero. From this, using $I^2 = 0$, we get the important consequence that

$$f_i(w_1, \ldots, w_{2d}) = 0$$
 for all $w_1, \ldots, w_{2d} \in I$.

The scalar-multiplication morphism $\mu : \mathbf{A}_R^1 \times_R G^{(r)} \to G^{(r)}$ prolongs the standard scalar multiplication on $\mathbf{A}_{R/I}^d$, and so μ corresponds to an algebra homomorphism $\mu^* : A \to A[t] = R[t] \otimes_R A$ which has the form

$$a_i \mapsto ta_i + v_i$$
 where $v_i \in IA[t]$.

Let v_i be expressed as a polynomial $v_i = g_i(t, a_1, ..., a_d)$ with coefficients in *I*. As multiplication by the scalar 0 is the zero morphism on $G^{(r)}$, it follows by specialising under $t \mapsto 0$ that $g_i(0, a_1, ..., a_d) = 0$. This means $v_i = g_i(t, a_1, ..., a_d)$ can be expanded as a finite sum

$$v_i = \sum_{j\geq 1} t^j h_{i,j}(a_1,\ldots,a_d),$$

where the $h_{i,j}(a_1, \ldots, a_d)$ are polynomial expressions with coefficients in *I*. As the zero vector times any scalar is zero, it follows by specialising under σ^* that $g_i(t, 0, \ldots, 0) = 0$. It follows that the constant term of each $h_{i,j}$ is zero. From this, and the fact that $I^2 = 0$, we get the important consequence that

$$g_i(t, b_1, \ldots, b_d) = 0$$
 for all $b_1, \ldots, b_d \in I$.

Step 6: The kernel of the map $G^{(r)}(R) \to G^{(r)}(R/I)$.

Lemma. Let $\Psi_{(b_1,...,b_d)}$: $A \to R$ be the *R*-algebra homomorphism defined in terms of the generators by $\Psi_{(b_1,...,b_d)}(a_k) = b_k$. Let $\Psi : I^d \to \operatorname{Hom}_{R-\operatorname{alg}}(A, R)$ be the set-map defined by $(b_1,...,b_d) \mapsto (\Psi_{(b_1,...,b_d)} : A \to R)$. Then Ψ is a homomorphism of *R*modules, where the *R*-module structure on $\operatorname{Hom}_{R-\operatorname{alg}}(A, R)$ is defined by its identification with the *R*-module $G^{(r)}(R)$.

The map Ψ is injective, and its image is the *R*-submodule ker $G^{(r)}(\phi) \subset G^{(r)}(R)$, where ϕ : Spec $(R/I) \hookrightarrow$ Spec *R* is the inclusion.

Proof. For any (b_1, \ldots, b_d) and (c_1, \ldots, c_d) in I^d , we have

$$(\Psi_{(b_1,\dots,b_d)} + \Psi_{(c_1,\dots,c_d)})(a_i) = (\Psi_{(b_1,\dots,b_d)} \otimes \Psi_{(c_1,\dots,c_d)})(\alpha^*(a_i))$$
$$= b_i + c_i + f_i(b_1,\dots,b_d,c_1,\dots,c_d)$$
by substituting for $\alpha^*(a_i)$
$$= b_i + c_i \text{ as } b_k, c_k \in I$$
$$= \Psi_{(b_1+c_1,\dots,b_d+c_d)}(a_i).$$

This shows the equality $\Psi_{(b_1,\ldots,b_d)} + \Psi_{(c_1,\ldots,c_d)} = \Psi_{(b_1,\ldots,b_d)+(c_1,\ldots,c_d)}$, which means the map $\Psi: I^d \to G^{(r)}(R)$ is additive.

For any $\lambda \in R$, let $f_{\lambda} : R[t] \to R$ be the *R*-algebra homomorphism defined by $f_{\lambda}(t) = \lambda$. Then for any $(b_1, \ldots, b_d) \in I^d$ we have

$$(\lambda \cdot \Psi_{(b_1,\dots,b_d)})(a_i) = (f_\lambda \otimes \Psi_{(b_1,\dots,b_d)})(\mu^*(a_i))$$
$$= (f_\lambda \otimes \Psi_{(b_1,\dots,b_d)})(ta_i + g_i(t, a_1, \dots, a_d))$$
$$= \lambda b_i + g_i(\lambda, b_1, \dots, b_d)$$
$$= \lambda b_i \text{ as } b_k \in I$$
$$= \Psi_{(\lambda b_1,\dots,\lambda b_d)}(a_i).$$

This shows the equality $\lambda \cdot \Psi_{(b_1,\ldots,b_d)} = \Psi_{\lambda \cdot (b_1,\ldots,b_d)}$, hence the map $\Psi : I^d \to G^{(r)}(R)$ preserves scalar multiplication. This completes the proof that $\Psi : I^d \to G^{(r)}(R)$ is a homomorphism of *R*-modules.

The map Ψ is clearly injective. The map $G^{(r)}(\phi) : G^{(r)}(R) \to G^{(r)}(R/I)$ is in algebraic terms the map $\operatorname{Hom}_{R-\operatorname{alg}}(A, R) \to \operatorname{Hom}_{R-\operatorname{alg}}(A, R/I)$ induced by the quotient $R \to R/I$. An element $g \in \operatorname{Hom}_{R-\operatorname{alg}}(A, R/I)$ represents the zero element of $G^{(r)}(R/I)$ exactly when $g(a_i) = 0 \in R/I$ for the generators a_i of A. Therefore $f \in \operatorname{Hom}_{R-\operatorname{alg}}(A, R)$ is in the kernel of $G^{(r)}(\phi)$ precisely when $f(a_i) \in I$ for the generators a_i . Putting $b_i = f(a_i)$, we see that such an f is the same as $\Psi_{(b_1,\ldots,b_d)}$.

This completes the proof of the lemma that ker $G^{(r)}(\phi) = I^d$.

In particular, as $\mathfrak{m}I = 0$, it follows from the above lemma that ker $G^{(r)}(\phi)$ is annihilated by \mathfrak{m} , so it is a vector space over R/\mathfrak{m} , and its dimension as a vector space over R/\mathfrak{m} is $d = \Phi(r)$, as by assumption I is a non-zero principal ideal.

The above determination of the dimension over R/\mathfrak{m} of the kernel of $G^{(r)}(\phi)$ will contradict a more direct functorial description, which is as follows.

Step 7: Functorial description of kernel of $\mathcal{G}^{(r)}(R) \to \mathcal{G}^{(r)}(R/I)$. As $\mathcal{F}_{R/I}(r)$ is flat over R/I, and as for $r \ge m$ all higher direct images of $\mathcal{F}(r)$ vanish, $\mathcal{G}^{(r)}(R/I)$ is isomorphic to the R/I-module $(R/I)^d$ where $d = \Phi(r)$. By Lemma 5, there exists $m'' \ge m$ such that for $r \ge m''$ the inclusion ϕ : Spec $(R/I) \hookrightarrow$ Spec R induces an isomorphism $\phi^*\pi_*\mathcal{F}(r) \to \pi'_*\mathcal{F}'(r)$ where $\pi' : \mathbf{P}_{R/I}^n \to \text{Spec}(R/I)$ is the projection and \mathcal{F}' is the pull-back of \mathcal{F} under $\mathbf{P}_{R/I}^n \hookrightarrow \mathbf{P}_R^n$. Note that $\mathcal{G}^{(r)}(R) = R^{i(r)} \oplus (R/I)^{j(r)}$, and so for $r \ge m''$ we get an induced decomposition

$$\mathcal{G}^{(r)}(R/I) = (R/I)^{i(r)} \oplus (R/I)^{j(r)}$$

Nitin Nitsure

such that the map $\mathcal{G}^{(r)}(\phi) : \mathcal{G}^{(r)}(R) \to \mathcal{G}^{(r)}(R/I)$ is the map

$$(q,1): R^{i(r)} \oplus (R/I)^{j(r)} \to (R/I)^{i(r)} \oplus (R/I)^{j(r)},$$

where *q* is the quotient map modulo *I*. It follows that the kernel of $\mathcal{G}^{(r)}(\phi)$ is the *R*-module $I^{i(r)} \oplus 0 \subset R^{i(r)} \oplus (R/I)^{j(r)} = \mathcal{G}^{(r)}(R)$. This is a vector space over *R*/m of dimension $i(r) < i(r) + j(r) = \Phi(r)$.

We thus obtain two different values for the dimension of the same vector space ker $G^{(r)}(\phi) = \ker \mathcal{G}^{(r)}(\phi)$, which shows that our assumption that $\mathcal{G}^{(r)}$ is representable for arbitrarily large values of r is false. This completes the proof of Theorem 1.

Acknowledgement

This note was inspired by a question posed by Angelo Vistoli to the participants of the workshop 'Advanced basic algebraic geometry' held at the Abdus Salam ICTP, Trieste, in July 2003. The Corollary 2 answers that question. I thank the ICTP for hospitality while this work was in progress.

References

- [EGA] Grothendieck A, *Éléments de Géométrie Algébriques* (written with the collaboration of Dieudonné), *Publ. Math. IHES* **4**, **8**, **11**, **17**, **20**, **24**, **28**, **32** (1960–67)
- [TDTE IV] Grothendieck A, Techniques de construction et théorèmes d'existence en géométrie algébriques IV: les schémas de Hilbert. *Séminaire Bourbaki* 221 (1960/61)
 - [M] Mumford, Lectures on Curves on an Algebraic Surface (Princeton University Press) (1966)
 - [N1] Nitsure N, Representability of GL_E, Proc. Indian Acad. Sci. (Math. Sci.) 112 (2002) http://arXiv.org/abs/math/0204047
 - [N2] Nitsure N, Construction of Hilbert and Quot Schemes, Lectures at the ICTP Summer School on Advanced Basic Algebraic Geometry, July 2003 (follow the web link http: //www.ictp.trieste/ for an electronic version)