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Abstract. Let X be a projective scheme over a noetherian base sclseraed let
F be a coherent sheaf axi. For any coherent she&fon X, consider the set-valued
contravariant functohom = on S-schemes, defined Byome =(T) = Hom(Er, Fr)
where&r and Fr are the pull-backs of andF to X; = X x T. A basic result of
Grothendieck ([EGA], Ill 7.7.8, 7.7.9) says thatf is flat overS thenhom  is
representable for adl.

We prove the converse of the above, in fact, we show thati# a relatively ample
line bundle onX over S such that the functanom,, -» £, is representable for infinitely
many positive integers, thenF is flat overS. As a corollary, takingk = S, it follows
that if F is a coherent sheaf afithen the functofl” — H°(T, Fr) on the category of
S-schemes is representable if and onlgFifs locally free onS. This answers a question
posed by Angelo Vistoli.

The techniques we use involve the proof of flattening stratification, together with the
methods used in proving the author’s earlier result (see [N1]) that the automorphism
group functor of a coherent sheaf 8ns representable if and only if the sheaf is locally
free.
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Let S be a noetherian scheme, and Jebe a projective scheme ovsr If £ andF are
coherent sheaves o¥, consider the contravariant functeom ) from the category of
schemes oves to the category of sets which is defined by putting

home 7 (T) = Homy . (&7, Fr)

for any S-schemel” — S, whereXr = X xg¢ T, and€y andFr denote the pull-backs of
& andF under the projectioX — X. This functor is clearly a sheaf in the fpqc topology
on Scly'S. It was proved by Grothendieck that#f is flat oversS then the above functor is
representable (see [EGA], Il 7.7.8, 7.7.9).

Our main theorem is as follows, which is a converse to the above.

Theorem 1. Let S be a noetherian schem& a projective scheme ove, and L a rel-
atively very ample line bundle ok over S. Let F be a coherent sheaf oK. Then the
following three statements are equivalent

(1) The sheafr is flat overs.

(2) For any coherent sheaf on X, the set-valued contravariant functérom 7, on
S-schemegdefined byhom 7)(T) = Homy, (€7, Fr), is representable.

(3) There exist infinitely many positive integersuch that the set-valued contravariant
functorG™ onS-schemeglefined by ") (T) = HY (X7, Fr @ L®"),is representable.
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In particular, takingX = S andL = Oy, we get the following corollary.

COROLLARY 2

Let S be a noetherian schemand F a coherent sheaf ofi. Consider the contravariant
functorF from S-schemes to sgtwhich is defined by putting(7) = HO(T, f*F) forany
S-schemef : T — S. This functo(which is a sheaf in the fpgc topoldgyg representable
if and only if F is locally free as arOg-module.

Note that the affine Iinéé over a base admits a ring-scheme structure ovein the
obvious way. Alinear schemever a schem§& will mean a module-schenié — S under
the ring-schemc\%. This mean¥’ is a commutative group-scheme osiogether with a
‘scalar-multiplication’ morphisnu : A§ x gV — V overS, such that the module axioms
(in diagrammatic terms) are satisfied.

A linear functorF on S-schemes will mean a contravariant functor frérschemes to
sets together with the structure of &9 (T, O7)-module onF(T) for eachS-schemer’,
which is well-behaved under any morphisfn: U — T of S-schemes in the following
senseF(f) : F(T) — F(U) is a homomorphism of the underlying additive groups, and
F(f)(a-v) = f*(a) - (F(f)v) foranya € HO(T, Or) andv € F(T). In particular note
that the kernel oF (/) will be an H%(T, ©7)-submodule oF (7). The functor of points of
a linear scheme is naturally a linear functor. Conversely, it follows by the Yoneda lemma
that if a linear functoiF on S-schemes is representable, then the representing sctieme
is naturally a linear scheme ov&r

For example, the linear functdt — HO(T, Or)" (wheren > 0) is represented by the
affine spaced’, over Spe@, with its usual linear-scheme structure. More generally, for
any coherent sheal on S, the scheme Spec Sym) is naturally a linear-scheme over
S, where SyniQQ) denotes the symmetric algebrasfover Og. It represents the linear
functorF(T) = Hom(Qr, Or) whereQ7 denotes the pull-back a underT — S.

With this terminology, the functag”)(T) = H%(X 7, Fr ® L®") of Theorem 1(3) is a
linear functor. Therefore, if a representing sche@€ exists, it will naturally be a linear
scheme. Note that eaglt”) is obviously a sheaf in the fpgc topology.

The proof of Theorem 1 is by a combination of the result of Grothendieck on the
existence of a flattening stratification [TDTE V] together with the techniques which were
employed in [N1] to prove the following result.

Theorem 3 (Representability of the functorGLE). LetS be a noetherian schenand

E a coherentOg-module. LetG L g denote the contrafunctor oftschemes which asso-
ciates to anys-schemef : T — S the group of allO7-linear automorphisms of the pull-
backEr = f*E (this functor is a sheaf in the fpgc topolgg¥henG L g is representable
by a group scheme ovérif and only if E is locally free.

We re-state Grothendieck’s result (see [TDTE IV]) on the existence of a flattening strat-
ification in the following form, which emphasises the role of the direct images (r)).
For an exposition of flattening stratification, see [M] or [N2].

Theorem 4 (Grothendieck). LetS be a noetherian schenend letF be a coherent sheaf
onPs wheren > 0. There exists an integer, and a collection of locally closed subschemes
Sy C S indexed by polynomialg € Q[A], with the following properties.

(i) The underlying set af s consists of alls € S such that the Hilbert polynomial of
F; is f, whereF; denotes the pull-back df to the schematic fibrE} overs of the
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projections : P; — S. All but finitely manys » are empty(only finitely many Hilbert
polynomials occur: In particular, the S are mutually disjointand their set-theoretic
union isS.

(i) For eachr > m, the higher direct image®/m,(F(r)) are zero forj > 1 and the
subschemeS give the flattening stratification for the direct image(F(r)), that
is, the morphismi : ]_[f Sy — Sinduced by the locally closed embeddifys— S
has the universal property that for any morphigm 7 — S, the sheag* . (F(r))
is locally free onT if and only ifg factors viai : ]_[f Sy — 8.

(iif) The subscheme® give the flattening stratification faF, that is, for any morphism
g : T — S,the sheatF;r = (1 x g)*F onP% is flat overT if and only ifg factors
viai : ]_[f Sy — S.In particular, F is flat overS if and only if eachS, is an open
subscheme .

(iv) LetQ[A] be totally ordered by puttingy < f2if f1(p) < fo(p) forall p > 0. Then
the closure of ; in S is set-theoretically contained (n/,-. » S,. Moreoverwhenever
Sy andS, are non-emptywe havef < g if and only if f(p) < g(p) forall p > m.

The following elementary lemma of Grothendieck on base-change does not need any
flatness hypothesis. The price paid is that the integeray depend on. (See [N2] for a
cohomological proof.)

Lemmab. Let¢p : T — S be a morphism of noetherian schemks F a coherent
sheaf orP%, and let 77 denote its pull-back under the induced morphB— Pg. Let
ns . Pg — Sandrr : P, — T denote the projections. Then there exists an integer
such that the base-change homomorphisms,, F(r) — 7, Fr(r) is an isomorphism
forall r > ro.

Proof of Theoreni. The implication(1) = (2) follows by [EGA], Il 7.7.8, 7.7.9, while
the implication(2) = (3) follows by taking€ = L®~". Therefore it now remains to show
the implication(3) = (1). This we do in a number of steps.

Stepl: Reduction taS = SpecR with R local, X = PgandL = Op:(1). Suppose that
F is not flat oversS, but the linear functoG) on S-schemes, defined by (T) =
HO(X7, Fr ® L®"), is representable by a linear sche@® over S for arbitrarily large
integersr. As F is not flat, by definition there exists somee X such that the stalk
F is not a flat module over the local ri@s () Wherer : X — S is the projection.
Let U = SpedDs (), let Fy be the pull-back ofF to Xy = X xg U and IetGg)
denote the pull-back o) to U. Then Fy is not flat overU but given any integer
m, there exists an integer > m such that the functo@l(,’) on U-schemes, defined by
g[(]’)(T) = HYXr, Fr ® L®"), is representable by tHé-schemeG(U’).

Therefore, by replacing by U, we can assume thdtis of the form Spe® whereR
is a noetherian local ring. Lét: X — P be the embedding given k. Then replacing
F by i,F, we can further assume th&it= P andL = Opfsl(l).

Step2: Flattening stratification oSpecR. There exists aninteger as asserted by Theo-
rem 4, such that for any > m, the flattening stratification dof for the sheafr, 7 (r) on S is
the same as the flattening stratificatior§dor the sheaf~ onP%. Letr > m be any integer.
As F is not flat overS = Specr, the sheafr, F(r) is not flat. LetM, = HO(S, n, F(r)),
which is a finiteR-module. Letn C R be the maximal ideal, and let= R/m the residue
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field. Lets € S = SpecR be the closed point, and lét= dimy (M, /mM,). Then there
exists a right-exact sequence®fmodules of the form

R® 1—//> RY - M, — 0.
Let I C R be the ideal formed by the matrix entries of thiex §)-matrix ¢. ThenI
defines a closed subschemsiec S which is the flattening stratification &f for M,. As

M, is not flat by assumptior, is a hon-zero proper ideal iR.
It follows from Theorem 4 that is independent of as long ag > m.

Step3: Reduction to Artin local case with principalwithm/ = 0. Letl = (a1, ..., a;)
whereay, ... , a, is a minimal set of generators o6f Let J C R be the ideal defined by

J=(az,...,a)+ml.

Then note that c I C m, and the quotienR’ = R/J is an Artin localR-algebra with
maximal idealm’ = m/J, andI’ = I/J is a non-zero principal ideal which satisfies
m’I’ = 0. For the base-change undgr: SpecR’ — SpecRr, the flattening stratifica-
tion for f*m,F(r) is defined by the ideal’ for r > m. Let 7' denote the pull-back of
F to P%,, and letz” : P}, — SpecR’ the projection. Asf is a morphism of noethe-
rian schemes, by Lemma 5 there exists some integsuch that the base-change homo-
morphismf*m, F(r) — m,F (r) is an isomorphism whenever> m’. Choosing some
m’ > m with this property, and replacing by R’, F by 7’ andm by m’, we can assume
that R is Artin local, and! is a non-zero principal ideal witm/ = 0, which defines the
flattening stratification forr, 7 (r) for all r > m.

Step4: Decomposition ofr, F (r) via lemma of Srinivas.

Lemma(Srinivag. Let R be an Artin local ring with maximal ideah, and letE be any
finite R module whose flattening stratification is defined by an ideahich is a non-zero
proper principal ideal withm/ = 0. Then there exist integefs> 0 and j > 0 such that
E is isomorphic to the direct suR’ @ (R/I)’.

Proof. See Lemma 4 in [N1].

We apply the above lemma to ttRemoduleM, = HO(S, 7. F(r)), which has flatten-
ing stratification defined by the principal idebwith m/ = 0, to conclude that (up to
isomorphismWM, has the form

M, = RI™M o (R/[)j(r)

for non-negative integei$r) and; (r) with j (r) > 0. Note thai ) + j (r) = ®(r) where
® is the Hilbert polynomial ofF.

Step5: Structure of the hypothetical representing scheie. Let ¢ : Spe¢R/I) —
SpecR denote the inclusion ar&’ denote the pull-back of underP ,; < Pj. The sheaf

Fisflatoverr/I, and the functogg/)l, which is the restriction of ", is represented by
the linear schemAy, ; = SpecR/I)[y1, ... , ya] over R/1, whered = &(r) whered is

the Hilbert polynomial ofF. Hence, the pull-back of the hypothetical representing scheme
G to R/I is the linear schemA‘,’e/,. We now use the following fact (see Lemmas 6 and

7 of [N1] for a proof).
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Lemma. LetR be a ring and/ a nilpotent ideal(/* = 0 for somen > 1). Let X be
a scheme oveBpecr, such that the closed subscheihe= X ®g (R/I) is isomorphic
over R/I to SpecB whereB is a finite-typeR /[-algebra. Lethy, ... , by € B be a set of
algebra generators foB overR/I. ThenX is isomorphic oveR with SpecA whereA is
a finite-typeR-algebra. Moreoverthere exists a set at-algebra generatoray, ... , a4
for A, such that eacla; restricts moduldl to b; € B overR/I. LetR[x1, ... ,x4] be a
polynomial ring ind variables overR, and consider the surjectivR-algebra homomor-
phismR[x1, ..., x4] — A defined by sending eaahto a;, and letJ be its kernel. Then
J C IR[x1, ..., x4].

It follows from the above lemma thai" is affine of finite type over, and its co-
ordinate ringA as anRr algebra is of the form

A = Rla1,...,aq] = R[x1,...,x41/J,

whereg; is the residue of;, andasy, ... , ay restrict overR/I to the linear coordinates
Y1, ..., yq On the linear schemA‘}w, andJ is an ideal withJ c I - R[x1, ..., x4]-
Being an additive group-schemé,””) has its zero section : Speck — G, and
this corresponds to aR-algebra homomorphism™* : A — R. Modulo I, the section
o restricts to the zero section @fj’e/l over Spec€R/I), thereforec*(a;) € I for all
i=1...,d Letx] = x; —0*(a;) € R[x1,... ,xq] anda] = a; — 0*(a;) € A be
its residue moduld/. ThenR[x1, ... ,xq] = R[x},...,x}], the elements:;, ..., a
generated as ank-algebra, and moreover thgrestrict overR/1 to the linear coordinates
y; on the linear schemA‘{w. Therefore, by replacing the by thex! and thea; by the
a;, we can assume that for eagtwe have

c*(@a;) =0.
Next, consider any elemenf(xi,...,x4) € J. Then f(a1,...ay) = 01in A, so
o*f(a1,...ag) = 0 € R, which shows that the constant coefficient pfis zero, as
0*(a;) = 0. As we already know that C I - R[x1, ... , x4], the vanishing of the constant

term of any element of now establishes that
JCI-(x1,...,x4).

From the above, using? = 0, it follows that for any(b1, ... , by) € I¢, we have a well-
definedR-algebra homomorphism

yees

We now express the linear-scheme structur& 6t in terms of the ringA, using the fact
that eachy; restricts toy; modulo/, andG(,g} , is the standard linear-schemé, ;1 With

linear co-ordinates; . Note that the vector addition morphisfh‘fe/, XR/I Afw — A‘}e/,
corresponds to th& /I-algebra homomorphism

(R/Dly1, ..., yal = (R/Dy1, ..., yal ®ryr (R/Dy1, ..., yal: yi
HyQR1l+1Qy;
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while the scalar-multiplication morphism}?/, XR/I Afw — Aﬁ’e/, corresponds to the
R/I-algebra homomorphism

(R/Dly1, ..., yal = (R/D[t, y1, ..., ydl
= (R/D[t] ®r/1 (R/D[y1, ..., yal: yi = tyi.

It follows that the addition morphism : G x x G — G corresponds to an algebra
homomorphisnx™ : A — A ®r A which has the form

ai—>a; ®1+1® a; +u; whereu; € I1(A Qg A).
Let the element; in the above equation far*(a;) be written as a polynomial expression
ui=fia®1,...,a,91,1®a1,...,1Q0ay)

with coefficients in/. The additive identity 0 o6 (R) correspondste* : A — R with
o*(a;) = 0,and we have 0 = 0in G (R). This implies thatf; (0, ... , 0) = 0, and so
the constant term of; is zero. From this, using? = 0, we get the important consequence
that

fitwg, ..., wy) =0forallwy, ..., wyy € I.

The scalar-multiplication morphisp : AL xz G — G prolongs the standard scalar
multiplication onA‘fe ;» and sou corresponds to an algebra homomorphjgin: A —
A[t] = R[t] ®& A which has the form

a; — ta; + v; wherev; € TA[t].

Let v; be expressed as a polynomial = g;(z, a1, ... , ag) with coefficients inl. As
multiplication by the scalar 0 is the zero morphism®f?, it follows by specialising under
t — Othatg;(0,ay,...,ay) = 0. Thismeans; = g;(¢,a1, ... ,ay) can be expanded as
a finite sum

v = Zt’hi,j(al,--. ,aq),

jz1

where thei; j(ay, ... , aq) are polynomial expressions with coefficientdinAs the zero
vector times any scalar is zero, it follows by specialising uadehatg; (¢, 0, ... ,0) = 0.
It follows that the constant term of eaéh; is zero. From this, and the fact thet = 0,
we get the important consequence that

gi(t,b1,...,bg) =0forallby, ..., bg €l
Step6: The kernel of the mag ") (R) — G (R/I).

Lemma. LeW, ., : A — R be theR-algebra homomorphism defined in terms of
the generators bW, . b, (ak) = bi. Let W : J G Homg_ag(A, R) be the set-map
defined by(b1, ... ,bs) = (Y@y... b, : A = R). ThenW¥ is a homomorphism aR-
moduleswhere theR-module structure oRlomg_aig(A, R) is defined by its identification
with the R-moduleG ) (R).

The mapV is injective and its image is th&-submoduléer G (¢) ¢ G (R), where
¢ : Spe¢R/I) — SpecRr is the inclusion.
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Proof. For any(b, ... , bg) and(cy, ... , cq) in 14, we have

(Yiby.... by + Yier.o.ca) @) = Wby, bg) ® Yey.... cq) (@ (@i))
=bi+c + filbr,... ,bg,c1,...,¢cq)
by substituting forx* (a;)
=b; +c;asby,cy €1

= Wbitct,... ,baeq) (@)

This shows the equalit¥ s, . b, + Yier,....ca) = Ybu,... .ba)+(cr.... .cq)» WhICh means the
map¥ : 1Y — G (R) is additive.

For anyr € R, let f5 : R[t] — R be theR-algebra homomorphism defined by
f.(t) = A. Then for any(by, ... , by) € I? we have

AWy, b)) @) = (fi @ Yoy b)) (" (@)
= (fa @ Ypy.... b)) (ta; + gi(t, a1, ... ,aq))
— abi + g (0 b, . s ba)
= Ab; asbh, €1

= Wirby,... abg) (@i).

This shows the equality - W, b, = Ya.(by.... by, NENCE the maw : 14 — G(R)
preserves scalar multiplication. This completes the proofthat /Y — G (R) is a
homomorphism ofR-modules.

The mapV is clearly injective. The mag ) (¢) : GV (R) — GT(R/I) is in alge-
braic terms the map Hoplag(A, R) — Homg_ag4(A, R/I) induced by the quotient
R — R/I.Anelemeng € Homg_ag(A, R/I) represents the zero element@f’ (R/1)
exactlywherg(a;) = 0 € R/I forthe generators; of A. Thereforef € Homg_ag(A, R)
is in the kernel of G (¢) precisely whenf(q;) € I for the generators;. Putting
b; = f(a;), we see that such afiis the same a¥,, . »,).

This completes the proof of the lemma that k&P (¢) = 19.

In particular, asn/ = 0, it follows from the above lemma that k6t") (¢) is annihilated
by m, so it is a vector space ové/m, and its dimension as a vector space aR¢m is
d = ®(r), as by assumptioh is a non-zero principal ideal.

The above determination of the dimension owm of the kernel ofG™) (¢) will
contradict a more direct functorial description, which is as follows.

Step7: Functorial description of kernel & (R) — G"(R/I). As Fgy(r) is flat
over R/I, and as for > m all higher direct images af () vanish,G")(R/I) is iso-
morphic to ther /I-module(R/I)¢ whered = & (r). By Lemma 5, there exisis” > m
such that forr > m” the inclusiong : Spe¢R/I) — SpecR induces an isomorphism
¢ . F(r) — n, F'(r) wherer’ : P’I‘w — SpedR/I) is the projection andF’ is the
pull-back of 7 underP% ; < P%. Note thatG") (R) = R @ (R/I)/", and so for
r > m” we get an induced decomposition

GOR/D) = (R/D'D @ (R/ 1)
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such that the mag® (¢) : G (R) — G (R/I) is the map
q.1): RI(™) ey (R/I)j(r) - (R/I)i(r) ® (R/I)j(r),

whereg is the quotient map modulk It follows that the kernel of ) (¢) is the R-module
I''@0c R @ (R/I)I™ = G (R). This is a vector space ov&/m of dimension
ir)y<i(r)+jr)=e@).

We thus obtain two different values for the dimension of the same vector space
kerG ™) (¢) = kerG") (¢), which shows that our assumption tig#t’ is representable for
arbitrarily large values of is false. This completes the proof of Theorem 1.
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