Quasi-parabolic Siegel Formula

Nitin Nitsure
Corrected version, 6 December 1996
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. e-mail: nitsure@math.tifr.res.in

Abstract

The result of Siegel that the Tamagawa number of $S L_{r}$ over a function field is 1 has an expression purely in terms of vector bundles on a curve, which is known as the Siegel formula. We prove an analogous formula for vector bundles with quasi-parabolic structures. This formula can be used to calculate the betti numbers of the moduli of parabolic vector bundles using the Weil conjucture.

1 Introduction

The Betti numbers of the moduli of stable vector bundles on a complex curve, in all the cases where the rank and degree are coprime, were first determined by Harder and Narasimhan $[\mathrm{H}-\mathrm{N}]$ as an application of the Weil conjuctures. For this, they made use of the result of Siegel that the Tamagawa number of the special linear group over a function field is 1 . In their refinement of the same Betti number calculation in [D-R], Desale and Ramanan expressed the result of Siegel in purely vector bundle terms. This result about the Tamagawa number, called the Siegel formula, was later given a simple proof in the language of vector bundles by Ghione and Letizia [G-L], by introducing a notion of effective divisors of higher rank on a curve, and counting the number of effective divisors which correspond to a given vector bundle. This purpose of this note is to introduce the notion of a quasi-parabolic divisor of higher rank on a curve (Definition 3.1 below), and to prove a quasi-parabolic analogue (Theorem 3.4 below) of the Siegel formula, which is done here by suitable generalizing the method of [G-L]. In a note to follow, this formula is used to calculate the Zeta function and thereby the Betti numbers of the moduli of parabolic bundles in the case 'stable $=$ semistable' (these Betti numbers have already been calculated by a guage theoretic method for genus ≥ 2 in $[\mathrm{N}]$ and for genus 0 and 1 by Furuta and Steer in $[\mathrm{F}-\mathrm{S}]$).
Acknowledgement I thank M. S. Narasimhan for suggesting the problem of extending $[\mathrm{H}-\mathrm{N}]$ to parabolic bundles.

2 Divisors supported on $X-S$

Let X be an absolutely irreducible, smooth projective curve over the finite field $k=\mathbf{F}_{q}$, and let S be any closed subset of X whose points are k-rational. Let K denote the function field of X, and let K_{X} denote the constant sheaf K on X. Let g denote the genus of X. Let r be a positive integer. Recall that (see [G-L]) a coherent subsheaf $D \subset K_{X}^{r}$ of generic rank r is called an r-divisor, and the r-divisor is called effective (or positive) if $\mathcal{O}_{X}^{r} \subset D$. The support of the divisor is by definition the support of the quotient D / \mathcal{O}_{X}^{r}, which is a torsion sheaf. The lenght n of D / \mathcal{O}_{X}^{r} is called the degree of the divisor. Note that D is a locally free sheaf of rank r and degree n.

Remark 2.1 Let $Z_{X}(t)$ be the zeta function of X. Then as S consists of k-rational points, it can be seen that the zeta function Z_{X-S} of $X-S$ is given by the formula

$$
\begin{equation*}
Z_{X-S}(t)=(1-t)^{s} Z_{X}(t) \tag{1}
\end{equation*}
$$

where s is the cardinality of S.
Note that an effective r-divisor on $X-S$ is the same as an effective r-divisor on X whose support is disjoint from S. The part (1) of the proposition 1 of [G-L] gives the following, with $X-S$ in place of X.

Proposition 2.2 Let $b_{n}^{(r)}$ be the number of effective r-divisors of degree n on X whose support is disjoint from S. Let $Z_{X-S}^{(r)}(t)=\sum_{n \geq 0} b_{n}^{(r)} t^{n}$. Then we have

$$
\begin{equation*}
Z_{X-S}^{(r)}(t)=\prod_{1 \leq j \leq r} Z_{X-S}\left(q^{j-1} t\right) \tag{2}
\end{equation*}
$$

In order to have the analogue of the part (2) of the proposition 1 of [G-L], we need the following lemmas.

Lemma 2.3 Let V be a finite dimensional vector space over $k=\mathbf{F}_{q}$, and s a positive integer. For any $1 \leq i \leq s$, let $\pi_{i}: k^{s} \rightarrow k$ be the linear projection. For any surjective linear map $\phi: V \rightarrow k^{s}$, let V_{i} be the kernel of $\pi_{i} \phi: V \rightarrow k$, which is a hyperplane in V as ϕ is surjective. Let $P=P(V)$, and $P_{i}=P\left(V_{i}\right)$ denote the corresponding projective spaces. Let $N(\phi)$ denote the number of k-rational points of $P-\cup_{1 \leq i \leq s} P_{i}$. Then for any other surjective $\psi: V \rightarrow k^{s}$, we have $N(\phi)=N(\psi)$. In other words, given s, this number depends only on $\operatorname{dim}(V)$.

Proof Given any two surjective maps $\phi, \psi: V \rightarrow k^{s}$, there exists an $\eta \in G L(V)$ such that $\phi \eta=\psi$. From this, the result follows.

Lemma 2.4 Let n be a positive integer, such that $n>2 g-2+s$ where g is the genus of X and s is the cardinality of s. Let b_{n} is the total number of effective 1 -divisors of degree n supported on $X-S$. Then for any line bundle L on X of
degree n, the number of effective 1-divisors supported on $X-S$ which define L is $b_{n} / P_{X}(1)$, where $P_{X}(1)$ is the number of isomorphism classes of line bundles of any fixed degree on X.
(Here, $P_{X}(t)$ is the polynomial $\left.(1-t)(1-q t) Z_{X}(t).\right)$

Proof Let L be any line bundle on X of degree n, where $n>2 g-2+s$. Then $H^{1}(X, L(-S))=0$, so the natural map $\phi: H^{0}(X, L) \rightarrow H^{0}(X, L \mid S)$ is surjective. Let $V=H^{0}(X, L)$. Then $\operatorname{dim}(V)=n+1-g$. Choose a basis for each fiber L_{P} for $P \in S$. This gives an identification of $H^{0}(X, L \mid S)$ with k^{s}. Now it follows that the number $N(\phi)$ defined in the preceeding lemma depends only on n, and is independent of the choice of L as long as it has degree n. But $N(\phi)$ is precisely the number of effective 1-divisors supported on $X-S$, which define the line bundle L on X.
Using the above lemma, the following proposition follows, by an argument similar to the proof of part (2) of proposition 1 in [G-L]. The proof in [G-L] expresses the number of r-divisors in terms of the number of 1-divisors, and the above lemma tells us the number of 1-divisors with support in $X-S$ corresponding to a given line bundle on X.

Proposition 2.5 For L a line bundle of degree n, let $b_{n}^{(r, L)}$ be the number of effective r-divisors on X supported on $X-S$, having determinant isomorphic to L. Then provided that $n>2 g-2+s$, we have

$$
\begin{equation*}
b_{n}^{(r, L)}=b_{n}^{(r)} / P_{X}(1) \tag{3}
\end{equation*}
$$

Proposition 2.6

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{b_{n}^{(r)}}{q^{r n}}=P_{X}(1) \frac{(q-1)^{s-1}}{q^{g-1+s}} Z_{X-S}\left(q^{-2}\right) \cdots Z_{X-S}\left(q^{-r}\right) \tag{4}
\end{equation*}
$$

Proof The above statement is the analogue of proposition 2 of [G-L], with the following changes. Instead of all r-divisors on X in [G-L], we consider only those which are supported over $X-S$, and instead of $Z_{X}(t)$, we use $Z_{X-S}(t)$. As $Z_{X-S}(t)=$ $(1-t)^{s} Z_{X}(t)$, the property of $Z_{X}(t)$ that it has a simple pole at $t=q^{-1}$ and is regular at $1 / q^{j}$ for $j \geq 2$ is shared by $Z_{X-S}(t)$. Hence the proof in [G-L] works also in our case, proving the proposition.

Remark 2.7 There is a minor misprint in the equation labeled (1) in [G-L] (page 149); the factor q^{g-1} should be read as q^{1-g}.

Let L be any given line bundle on X. Choose any closed point $P \in X-S$, and let l denote its degree. For any \mathcal{O}_{X} module E, set $E(m)=E \otimes \mathcal{O}_{X}(m P)$. If a vector bundle E of rank r degree n has determinant L, then $E(m)$ has determinant $L(r m)$, degree $n+r m l$ and Euler characteristic $\chi(m)=n+r m l+r(1-g)$.

The equations (3) and (4) above imply the following.

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{b_{n+r m l}^{(r, L(r m))}}{q^{r \chi(m)}}=(q-1)^{s-1} q^{\left(r^{2}-1\right)(g-1)-s} Z_{X-S}\left(q^{-2}\right) \cdots Z_{X-S}\left(q^{-r}\right) \tag{5}
\end{equation*}
$$

3 Quasi-parabolic divisors

For basic facts about parabolic bundles, see $[S]$ and $[M-S]$. We now introduce the notion of a quasi-parabolic effective divisor of rank r. Let $S \subset X$ be a finite subset consisting of k-rational points. For each $P_{i} \in S$, let there be given positive integers p_{i} and $r_{i, 1}, \ldots, r_{i, p_{i}}$ with $r_{i, 1}+\ldots+r_{i, p_{i}}=r$. This will be called, as usual, the quasi-parabolic data. Recall that a quasi-parabolic structure on a vector bundle E of rank r on X by definition consists of flags $E_{P_{i}}=F_{i, 1} \supset \ldots \supset F_{i, p_{i}} \supset F_{i, p_{i}+1}=0$ of vector subspaces in the fibers over the points of S such that $\operatorname{dim}\left(F_{i, j} / F_{i, j+1}\right)=r_{i, j}$ for each j from 1 to p_{i}.

Definition 3.1 Let X, S, and the numerical data $\left(r_{i, j}\right)$ be as above. A positive quasi-parabolic divisor (F, D) on X consists of (i) a quasi-parabolic structure F on the trivial bundle \mathcal{O}_{X}^{r}, consisting of flags F_{i} in k^{r} at points $P_{i} \in S$ of the given numerical type $\left(r_{i, j}\right)$, together with (ii) an effective r-divisor D on X, supported on $X-S$.

Note that if (F, D) is a quasi-parabolic r-divisor, then the rank r vector bundle D has a parabolic structure given by F. We denote by $P_{E}^{(r)}$ the set of all effective parabolic r-divisors whose associated parabolic bundle is isomorphic to a given parabolic bundle E. For any vector bundle E of rank r, let $\operatorname{Hom}_{i n j}^{S}\left(\mathcal{O}_{X}^{r}, E\right)$ denote the set of all injective sheaf homomorphisms $\mathcal{O}_{X}^{r} \rightarrow E$ which are injective when restricted to S. For any quasi-parabolic bundle E, the group of all quasi-parabolic automorphisms of E will be denoted by $\operatorname{Par} A u t(E)$. Then $\operatorname{Par} A u t(E)$ acts on $\operatorname{Hom}_{\text {inj }}^{S}\left(\mathcal{O}_{X}^{r}, E\right)$ by composition. This action is free, and $P_{E}^{(r)}$ has a canonical bijection with the quotient set $\operatorname{Hom}_{i n j}^{S}\left(\mathcal{O}_{X}^{r}, E\right) / \operatorname{Par} \operatorname{Aut}(E)$. Hence the cardinality of $P_{E}^{(r)}$ is given by

$$
\begin{equation*}
\left|P_{E}^{(r)}\right|=\frac{\left|\operatorname{Hom}_{i n j}^{S}\left(\mathcal{O}_{X}^{r}, E\right)\right|}{|\operatorname{Par} \operatorname{Aut}(E)|} \tag{6}
\end{equation*}
$$

For $1 \leq i \leq s$, let Flag_{i} be the variety of flags in k^{r} of the numerical type $\left(r_{i, 1}, \ldots, r_{i, p_{i}}\right)$. Let $\operatorname{Flag}_{S}=\Pi_{1 \leq i \leq s} \operatorname{Flag}_{i}$. Let $f\left(q, r_{i, j}\right)$ denote the number of k rational points of Flag ${ }_{S}$. If $a_{n}^{(r, L)}$ denotes the number of quasi-parabolic divisors of flag data $\left(r_{i, j}\right)$ with degree n, rank r and determinant L, then we have

$$
\begin{equation*}
a_{n}^{(r, L)}=f\left(q, r_{i, j}\right) b_{n}^{(r, L)} \tag{7}
\end{equation*}
$$

Now let $J(r, L)$ denote the set of all isomorphism classes of quasi-parabolic vector bundles of rank r, degree n, determinant L having the given quasi-parabolic data
$\left(r_{i, j}\right)$ over S. Hence the equation (6) above implies the following.

$$
\begin{equation*}
a_{n}^{(r, L)}=\sum_{E \in J(r, L)} \frac{\left|\operatorname{Hom}_{i n j}^{S}\left(\mathcal{O}_{X}^{r}, E\right)\right|}{|\operatorname{ParAut}(E)|} \tag{8}
\end{equation*}
$$

For any integer m, the map from $J(r, L) \rightarrow J(r, L(r m)$ which sends E to $E(m)=$ $E \otimes O_{X}(m P)$ is a bijection which preserves $|\operatorname{Par} A u t|$. Hence for each m, we have

$$
\begin{equation*}
a_{n+r m l}^{(r, L(r m))}=\sum_{E \in J(r, L)} \frac{\left|\operatorname{Hom}_{\text {inj }}^{S}\left(\mathcal{O}_{X}^{r}, E(m)\right)\right|}{|\operatorname{ParAut}(E)|} \tag{9}
\end{equation*}
$$

Lemma 3.2 With the above notations,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\left|H o m_{i n j}^{S}\left(\mathcal{O}_{X}^{r}, E(m)\right)\right|}{q^{r \chi(E(m))}}=\frac{\left(q^{r}-1\right)^{s}\left(q^{r}-q\right)^{s} \cdots\left(q^{r}-q^{r-1}\right)^{s}}{q^{r^{2} s}} \tag{10}
\end{equation*}
$$

If S is non-empty, the limit is already attained for all large enough m (where 'large enough' depends on E).

Proof If S is empty, the above lemma reduces to lemma 3 in [G-L]. If S is nonempty, then any morphism of locally free sheaves on X which is injective when restricted to S is injective. Let m be large enough, so that $E(m)$ is generated by global sections, $H^{1}(X, E(m))=0$, and $h^{0}(X, E(m))=\chi(E(m)) \geq r s$. Then $H^{0}(X, E(m))$ has a basis consisting of sections $\sigma_{i, P_{j}}, \tau_{\ell}$ for $i=1, \ldots, r, j=1, \ldots, s$, and $\ell=1, \ldots, \chi(E(m))-r s$, such that
(1) the sections τ_{ℓ} are zero on S,
(2) the sections $\sigma_{i, P_{j}}$ are zero at all other points of S except P_{j} (and hence $\sigma_{i, P_{j}}$ restrict at P_{j} to a basis of the fiber of $E(m)$ at P_{j}.
Any element of $\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}^{r}, E(m)\right)=\operatorname{Hom}_{\mathbf{F}_{q}}\left(\mathbf{F}_{\mathbf{q}}{ }^{r}, H^{0}(X, E(m))\right)$ is given in terms of this basis by a $r \times q^{\chi(E(m))}$ matrix A. The condition that this lies in

$$
\operatorname{Hom}_{i n j}^{S}\left(\mathcal{O}_{X}^{r}, E(m)\right) \subset \operatorname{Hom}\left(\mathcal{O}_{X}^{r}, E(m)\right)
$$

is the condition that each of the s disjoint $r \times r$-minors, corresponding to the part $\sigma_{1, P_{j}}, \ldots, \sigma_{r, P_{j}}$ of the basis, has nonzero determinant. This contributes the factor

$$
\frac{\left|G L_{r}\left(\mathbf{F}_{q}\right)\right|}{\left|M_{r}\left(\mathbf{F}_{q}\right)\right|}=\frac{\left(q^{r}-1\right)\left(q^{r}-q\right) \cdots\left(q^{r}-q^{r-1}\right)}{q^{r^{2}}}
$$

for each P_{j}, which proves the lemma.
Lemma 3.3 The following sum and limit can be interchanged to give

$$
\sum_{E \in J(r, L)} \lim _{m \rightarrow \infty} \frac{\left|\operatorname{Hom}_{i n j}^{S}\left(\mathcal{O}_{X}^{r}, E(m)\right)\right|}{q^{r \chi(E(m))}|\operatorname{ParAut}(E)|}=\lim _{m \rightarrow \infty} \sum_{E \in J(r, L)} \frac{\left|\operatorname{Hom}_{i n j}^{S}\left(\mathcal{O}_{X}^{r}, E(m)\right)\right|}{q^{r \chi(E(m))}|\operatorname{ParAut}(E)|}
$$

This lemma has a proof entirely analogous to the corresponding statement in [G-L], so we omit the details.
By equation (10), the left hand side in the above lemma equals

$$
\frac{\left(q^{r}-1\right)^{s}\left(q^{r}-q\right)^{s} \cdots\left(q^{r}-q^{r-1}\right)^{s}}{q^{r^{2} s}} \sum_{E \in J(r, L)} \frac{1}{|\operatorname{ParAut}(E)|}
$$

On the other hand, by (9), the right hand side is $\lim _{m \rightarrow \infty} a_{n+r m l}^{(r, L(r m))} / q^{r \chi(m)}$. By equations (5) and (7), this limit has the following value.

$$
f\left(q, r_{i, j}\right)(q-1)^{s-1} q^{\left(r^{2}-1\right)(g-1)-s} Z_{X-S}\left(q^{-2}\right) \cdots Z_{X-S}\left(q^{-r}\right)
$$

By putting $Z_{X-S}(t)=(1-t)^{s} Z_{X}(t)$ in the above, and cancelling common factors from both sides, we get the following.

Theorem 3.4 (Quasi-parabolic Siegel formula)

$$
\sum_{E \in J(r, L)} \frac{1}{|\operatorname{ParAut}(E)|}=f\left(q, r_{i, j}\right) \frac{q^{\left(r^{2}-1\right)(g-1)}}{q-1} Z_{X}\left(q^{-2}\right) \cdots Z_{X}\left(q^{-r}\right)
$$

Remark 3.5 If S is empty or more generally if the quasi-parpbolic structure at each point of S is trivial (that is, each flag consists only of the zero subspace and the whole space), then on one hand $\operatorname{Par} \operatorname{Aut}(E)=\operatorname{Aut}(E)$, and on the other hand each flag variety is a point, and so $f\left(q, r_{i, j}\right)=1$. Hence in this situation the above formula reduces to the original Siegel formula

$$
\sum_{E \in J(r, L)} \frac{1}{|A u t(E)|}=\frac{q^{\left(r^{2}-1\right)(g-1)}}{q-1} Z_{X}\left(q^{-2}\right) \cdots Z_{X}\left(q^{-r}\right)
$$

References

[D-R] Desale, U. V. and Ramanan, S. : Poincaré Polynomials of the Variety of Stable Bundles, Math. Annln. 216 (1975), 233-244.
[F-S] Furuta, M. and Steer, B. : Siefert-fibered homology 3-spheres and Yang-Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992) 38-102. [G-L] Ghione, F. and Letizia, M. : Effective divisors of higher rank on a curve and the Siegel formula, Composito Math. 83 (1992), 147-159.
[H-N] Harder, G. and Narasimhan, M. S. : On the Cohomology Groups of Moduli Spaces of Vector Bundles over Curves, Math. Annln. 212 (1975), 215-248.
[M-S] Mehta, V. B. and Seshadri, C. S. : Moduli of vector bundles on curves with parabolic structures, Math. Annln. 248 (1980) 205-239.
[N] Nitsure, N. : Cohomology of the moduli of parabolic vector bundles, Proc. Indian Acad. Sci. (Math. Sci.) 95 (1986) 61-77.
[S] Seshadri, C. S. : Fibres vectoriels sur les courbes algebriques, Asterisque 96 (1982).

