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Abstract

The result of Siegel that the Tamagawa number of SL, over a function
field is 1 has an expression purely in terms of vector bundles on a curve,
which is known as the Siegel formula. We prove an analogous formula for
vector bundles with quasi-parabolic structures. This formula can be used to
calculate the betti numbers of the moduli of parabolic vector bundles using
the Weil conjucture.

1 Introduction

The Betti numbers of the moduli of stable vector bundles on a complex curve, in all
the cases where the rank and degree are coprime, were first determined by Harder
and Narasimhan [H-N] as an application of the Weil conjuctures. For this, they made
use of the result of Siegel that the Tamagawa number of the special linear group
over a function field is 1. In their refinement of the same Betti number calculation
in [D-R], Desale and Ramanan expressed the result of Siegel in purely vector bundle
terms. This result about the Tamagawa number, called the Siegel formula, was
later given a simple proof in the language of vector bundles by Ghione and Letizia
[G-L], by introducing a notion of effective divisors of higher rank on a curve, and
counting the number of effective divisors which correspond to a given vector bundle.
This purpose of this note is to introduce the notion of a quasi-parabolic divisor
of higher rank on a curve (Definition 3.1 below), and to prove a quasi-parabolic
analogue (Theorem 3.4 below) of the Siegel formula, which is done here by suitable
generalizing the method of [G-L]. In a note to follow, this formula is used to calculate
the Zeta function and thereby the Betti numbers of the moduli of parabolic bundles
in the case ‘stable = semistable’ (these Betti numbers have already been calculated
by a guage theoretic method for genus > 2 in [N] and for genus 0 and 1 by Furuta
and Steer in [F-S]).

Acknowledgement I thank M. S. Narasimhan for suggesting the problem of ex-
tending [H-N] to parabolic bundles.
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2 Divisors supported on X — S

Let X be an absolutely irreducible, smooth projective curve over the finite field
k = F,, and let S be any closed subset of X whose points are k-rational. Let K
denote the function field of X, and let Kx denote the constant sheaf K on X. Let g
denote the genus of X. Let r be a positive integer. Recall that (see [G-L]) a coherent
subsheaf D C K of generic rank r is called an r-divisor, and the r-divisor is called
effective (or positive) if O% C D. The support of the divisor is by definition the
support of the quotient D/O%, which is a torsion sheaf. The lenght n of D/O% is
called the degree of the divisor. Note that D is a locally free sheaf of rank r and
degree n.

Remark 2.1 Let Zx(t) be the zeta function of X. Then as S consists of k-rational
points, it can be seen that the zeta function Zx_g of X — .S is given by the formula

Zx-s(t) = (1 =1)"2Zx(t) (1)

where s is the cardinality of S.

Note that an effective r-divisor on X — S is the same as an effective r-divisor on X
whose support is disjoint from S. The part (1) of the proposition 1 of [G-L] gives
the following, with X — S in place of X.

Proposition 2.2 Let b") be the number of effective r-divisors of degree n on X
whose support is disjoint from S. Let Zg)_s(t) = Y nz0 0t". Then we have

Z8 )= 1 Zx-s(@™'t) (2)

1<j<r

In order to have the analogue of the part (2) of the proposition 1 of [G-L], we need
the following lemmas.

Lemma 2.3 Let V' be a finite dimensional vector space over k = F,, and s a
positive integer. For any 1 < i < s, let m; : k° — k be the linear projection. For
any surjective linear map ¢ : 'V — k%, let V; be the kernel of m;¢p : V. — k, which
is a hyperplane in 'V as ¢ is surjective. Let P = P(V), and P; = P(V;) denote the
corresponding projective spaces. Let N(¢) denote the number of k-rational points of
P —Uy<i<sP,. Then for any other surjective 1 : V- — k*, we have N(¢) = N(¢). In
other words, given s, this number depends only on dim(V').

Proof Given any two surjective maps ¢,1 : V — k*®, there exists an n € GL(V)
such that ¢n = 1. From this, the result follows.

Lemma 2.4 Let n be a positive integer, such that n > 2g — 2 + s where g s the

genus of X and s is the cardinality of s. Let b, is the total number of effective
1-divisors of degree n supported on X — S. Then for any line bundle L on X of
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degree n, the number of effective 1-divisors supported on X — S which define L is
b,/ Px (1), where Px(1) is the number of isomorphism classes of line bundles of any
fized degree on X.

(Here, Px(t) is the polynomial (1 —¢)(1 — qt)Zx(t).)

Proof Let L be any line bundle on X of degree n, where n > 2g — 2 + s. Then
HY(X,L(-S)) = 0, so the natural map ¢ : H°(X, L) — H°(X, L|S) is surjective.
Let V = H°X,L). Then dim(V) = n+ 1 — g. Choose a basis for each fiber Lp
for P € S. This gives an identification of H°(X,L|S) with k*. Now it follows
that the number N(¢) defined in the preceeding lemma depends only on n, and is
independent of the choice of L as long as it has degree n. But N(¢) is precisely the
number of effective 1-divisors supported on X — S, which define the line bundle L
on X.

Using the above lemma, the following proposition follows, by an argument similar
to the proof of part (2) of proposition 1 in [G-L]. The proof in [G-L] expresses the
number of r-divisors in terms of the number of 1-divisors, and the above lemma tells
us the number of 1-divisors with support in X — S corresponding to a given line
bundle on X.

Proposition 2.5 For L a line bundle of degree n, let b be the number of effective
r-divisors on X supported on X — S, having determinant isomorphic to L. Then
provided that n > 2g — 2 + s, we have

bt =)/ Px (1) (3)
Proposition 2.6
. bg) (q - 1)8_1 — —r
Jim 2 = Px ()= o Zxes(a™) - Zxos(a) (4)

Proof The above statement is the analogue of proposition 2 of [G-L], with the
following changes. Instead of all r-divisors on X in [G-L], we consider only those
which are supported over X —S, and instead of Zx (t), we use Zx_g(t). As Zx_s(t) =
(1—t)*Zx(t), the property of Zx(t) that it has a simple pole at t = g~! and is regular
at 1/¢’ for j > 2 is shared by Zx_s(t). Hence the proof in [G-L] works also in our
case, proving the proposition.

Remark 2.7 There is a minor misprint in the equation labeled (1) in [G-L] (page
149); the factor ¢?—! should be read as ¢* 9.

Let L be any given line bundle on X. Choose any closed point P € X — S, and let
[ denote its degree. For any Ox module E, set E(m) = E ® Ox(mP). If a vector
bundle E of rank r degree n has determinant L, then E(m) has determinant L(rm),
degree n 4+ rml and Euler characteristic x(m) = n+rmil +r(1 — g).
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The equations (3) and (4) above imply the following.

(r,L(rm))
n+rml

lim _ (q . 1)s—lq(r2_1)(g—1)—sZX_S(q—2> e ZX—S(q_T) (5)

m— 00 qT’X(m)

3 Quasi-parabolic divisors

For basic facts about parabolic bundles, see [S|] and [M-S]. We now introduce the
notion of a quasi-parabolic effective divisor of rank r. Let S C X be a finite subset
consisting of k-rational points. For each P; € S, let there be given positive integers
p; and 7 q1,..., 7, with ;3 + ... 4+ 1, = r. This will be called, as usual, the
quasi-parabolic data. Recall that a quasi-parabolic structure on a vector bundle F
of rank r on X by definition consists of flags Ep, = F; 1 D ... D Fj,, D Fjp,+1 = 0of
vector subspaces in the fibers over the points of S such that dim(F; ;/F; j+1) = i
for each j from 1 to p;.

Definition 3.1 Let X, S, and the numerical data (r;;) be as above. A positive
quasi-parabolic divisor (F, D) on X consists of (i) a quasi-parabolic structure F' on
the trivial bundle O%, consisting of flags F; in k" at points P, € S of the given
numerical type (75 ;), together with (ii) an effective r-divisor D on X, supported on
X -S.

Note that if (F, D) is a quasi-parabolic r-divisor, then the rank r vector bundle D has

a parabolic structure given by F'. We denote by Pg) the set of all effective parabolic
r-divisors whose associated parabolic bundle is isomorphic to a given parabolic bun-
dle E. For any vector bundle E of rank r, let Hom: (O%, E) denote the set of all

ing
injective sheaf homomorphisms O% — E which are injective when restricted to S.
For any quasi-parabolic bundle E, the group of all quasi-parabolic automorphisms

of E will be denoted by ParAut(E). Then ParAut(E) acts on Homg,.(O%, E) by

inj
composition. This action is free, and Pg) has a canonical bijection with the quotient
set Hom3 (0%, E)/ParAut(E). Hence the cardinality of Pg) is given by

inj

Hom?, (0%, E)|
P(r) _ | inj \~ X 6
1Pz |ParAut(E))| (6)

For 1 < ¢ < s, let Flag, be the variety of flags in k" of the numerical type
(Tiq, -, Tip,). Let Flagg = [Tj<;<, Flag;. Let f(q,7;;) denote the number of k-
rational points of Flagg. If a(") denotes the number of quasi-parabolic divisors of
flag data (r; ;) with degree n, rank r and determinant L, then we have

Al = [(qri, DY 7)

Now let J(r, L) denote the set of all isomorphism classes of quasi-parabolic vector
bundles of rank r, degree n, determinant L having the given quasi-parabolic data
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(i) over S. Hence the equation (6) above implies the following.

a1(1r,L) _ Z |H0mm](oX> )| (8)
ECTL) |ParAut(E)|

For any integer m, the map from J(r, L) — J(r, L(rm) which sends F to E(m) =
E ® Ox(mP) is a bijection which preserves |ParAut|. Hence for each m, we have

grEm) _ 3 |Hom;,,;(O%, E(m))] ()
nrm BETnL) |Par Aut(E)|

Lemma 3.2 With the above notations,

Y |Homs (0%, E(m))|  (¢" —1)°(¢" —q)*---(¢" —¢")°
1m =
m— oo rx(E( ) qr23

(10)

If S is non-empty, the limit is already attained for all large enough m (where ‘large
enough’ depends on E ).

Proof If S is empty, the above lemma reduces to lemma 3 in [G-L]. If S is
nonempty, then any morphism of locally free sheaves on X which is injective when
restricted to S is injective. Let m be large enough, so that F(m) is generated
by global sections, H'(X, E(m)) = 0, and h°(X, E(m)) = x(E(m)) > rs. Then
H°(X, E(m)) has a basis consisting of sections o; p,, 7o fori=1,....r, j=1,...,s,
and £ =1,...,x(E(m)) — rs, such that

(1) the sections 7, are zero on S,

(2) the sections o; p; are zero at all other points of S except P; (and hence o; p,
restrict at P; to a basis of the fiber of E(m) at P;.

Any element of Homo, (O%, E(m)) = Homy, (Fq", H*(X, E(m))) is given in terms
of this basis by a r x ¢X(F(™) matrix A. The condition that this lies in

O%, E(m)) C Hom(Ox, E(m))

H omm] (

is the condition that each of the s disjoint r X r-minors, corresponding to the part

O1,P;s -+ O P, of the basis, has nonzero determinant. This contributes the factor
GL(F)| _ (¢ =)@ —q)---(¢"—q")
|Mr(Fq)| qr2

for each P;, which proves the lemma.

Lemma 3.3 The following sum and limit can be interchanged to give

Y lim [Hom;, ;(O%, E(m))| | Hom,,;(O%, E(m))]
im = lim Z
m—oo grX(E(m))| Par Aut(E)| — m—oo g X(Em)| Par Aut(E)|

EeJ(r,L) EeJ(r,L)




This lemma has a proof entirely analogous to the corresponding statement in [G-LJ],
so we omit the details.

By equation (10), the left hand side in the above lemma equals

(¢ =1)q"—q)° (¢ —q"")° 1
2 )\ParAut(E)|

q-
EcJj(r,L

On the other hand, by (9), the right hand side is lim,, .o al}%7 /grxm) By
equations (5) and (7), this limit has the following value.
Flarig)q = 1) gm0 2y (g% Zxs(q )
By putting Zx_s(t) = (1 — t)*Zx(t) in the above, and cancelling common factors
from both sides, we get the following.
Theorem 3.4 (Quasi-parabolic Siegel formula)
1 gr*=Dig-1)

T = f(q, 1)
Eeg(;,L) |ParAut(E))| J qg—1

Zx(q %) Zx(q¢")

Remark 3.5 If S is empty or more generally if the quasi-parpbolic structure at
each point of S is trivial (that is, each flag consists only of the zero subspace and
the whole space), then on one hand ParAut(E) = Aut(E), and on the other hand
each flag variety is a point, and so f(q,7; ;) = 1. Hence in this situation the above
formula reduces to the original Siegel formula

1 g De-1)

= Zx(q7%) - Zx(q7")
EE%L) | Aut(E)| g—1 °F *
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