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Unsteady flow past a circular cylinder is computed for 100 6 Re 6 107. A stabilized
finite element formulation is utilized to solve the incompressible flow equations in the
primitive variables form. Close to the cylinder and in the wake region, the finite element
mesh has very high resolution. The phenomenon of drag crisis (sudden drop in drag v/s
Re at Re ∼ 2×105) is captured by the present, two-dimensional, computations. With an
increase in Re the transition point of the shear layer, separated from the cylinder surface,
moves upstream. Our computations indicate that at the critical Re the instability reaches
the point of flow separation and energizes the local flow causing it to re-attach. Energy
spectra for these highly resolved flows at various Re are computed and the effect of
various parameters involved in their calculation is investigated. It is found that despite
the high shear in the flow, the kinetic energy shows the same structure as observed for
2D isotropic turbulence. For large Re flows it is found that the energy, E(k), varies as
k−5/3 below the energy injection wave number and as k−3 for higher wave numbers.

1. Introduction

The flow past a circular cylinder undergoes several interesting changes as the Reynolds
number is varied (Williamson (1996)). For low Reynolds numbers (10 < Re < 47) the flow
separates from the cylinder surface and a pair of attached vortices appear in the wake. The
flow is steady and symmetric about an axis passing through the center of the cylinder and
along the free-stream direction. The vortices become stronger and larger with increase
in Re. This arrangement becomes unstable beyond a certain critical Reynolds numbers
(Re ∼ 47) and von Karman vortex shedding takes place. At this point the flow is still two-
dimensional and laminar. At Re ∼ 194 the flow starts becoming three-dimensional due
to the appearance of span-wise deformation of the vortices. Various modes of instabilities
are observed as the Reynolds number is increased further. This marks the beginning of
the transition of flow from laminar to turbulent. However, the boundary layer remains
laminar. For Re larger than ∼ 1000 the shear layer separating from the cylinder surface
becomes unstable. The Kelvin-Helmholtz instability of the shear layer is believed to be
a two-dimensional phenomenon (Braza, Chassaing & Ha Minh (1990)). With increase
in Re the turbulent transition point for the separated shear layer moves upstream. At
Re ∼ 2 × 105 the transition of the boundary layer flow to a turbulent state is observed.
This is associated with a sudden decrease in the drag coefficient often referred to as drag
crisis. Thereafter, for larger Re, the boundary layer achieves a fully developed turbulent
state.

In the present work the two-dimensional flow past a cylinder is computed using a
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stabilized finite element method. The mesh consists of a structured component occupying
an annular ring close to the cylinder and an unstructured part, obtained via Delaunay
triangulation, farther away from it. The mesh resolution is kept fine enough to capture the
boundary layer and the related instabilities at all the Re considered. It is well known that
the flow past a cylinder is three-dimensional beyond Re ∼ 200. However, it is also believed
that the Kelvin-Helmholtz instability of the separated shear layer is essentially two-
dimensional. The present work is part of our effort to simulate the shear layer instability
and study the mechanism of the transition of boundary layer to a turbulent state. The
specific objective of this paper to study the energy spectrum for the flow past a cylinder
at various Re (100 6 Re 6 1×107). The results are compared to that for two-dimensional
homogeneous isotropic turbulence. The effect of various parameters used in computing
the energy spectrum from the finite element solution on an unstructured mesh is studied
and presented.

In three-dimensional turbulence, energy injected into a flow system at a low wave
number cascades to higher wave numbers via vortex stretching. In this inertial range the
structure of energy density E(k) is determined solely by the non-linear interactions while
the total energy

∫

E(k)dk is conserved. In the inertial range E(k) varies as k−5/3 down
to the length scales where viscous effects cause a rapid decay of E(k). In two-dimensional
flows, the vortex stretching mechanism is absent. Consequently, both, energy (

∫

E(k)dk)
and enstrophy (square of L2 norm of vorticity,

∫

Ω |ω|2dΩ) are conserved. This implies
that any flow of energy from low to high wave numbers is accompanied with another flux,
back from small to larger length scales. This characteristic of two-dimensional turbulence
is called inverse cascade (Kraichnan (1967)). The enstrophy cascade follows the k−3

law. More details on the structure of 2D turbulence can be found in Paret & Tabeling
(1998), Frisch (1995), Kraichnan (1967), Doering & Gibbon (1995), Lesieur (1990).

There have been some efforts in computing flow past a cylinder at moderate to high
Reynolds numbers. Selvam (1997) has carried out two-dimensional Large Eddy Simula-
tion (LES). He observes the drag crisis but not to the same extent as indicated by the
measurements. Furthermore, his results are sensitive to whether or not the Van Driest
damping is utilized. The grids used are fairly coarse and the wake structure observed
for high Re flows are very similar to that for laminar flows at much lower Re. Tamura,
Ohta & Kuwahara (1990) have carried out computations without any turbulence model
using a third order upwind finite difference scheme in two and three dimensions. For a
certain choice of grid, they observe drag crisis. However, on increasing the number of
grid points, the drag coefficient at Re = 106 increases significantly. Large Eddy Simula-
tion (LES) of flow past a cylinder have been carried out by Kravchenko & Moin (2000)
with a high order accurate scheme. The Reynolds number for their simulation is 3900.
Good match with the experimental data was achieved. Simulations were also performed
with and without the subgrid scale model. It was found that the mean velocity profiles
from the two cases do not show any significant differences. However, the one-dimensional
spectrum of velocity at a downstream location, shows a slower decay of energy at large
wave numbers for the simulations without a subgrid scale model. Mittal & Moin (1997)
have shown that for higher order upwind-biased finite difference schemes, the numerical
viscosity removes substantial energy from the high wave number regime. They found
that a central difference scheme does not suffer from such a problem but poses additional
difficulties related to high dispersion errors. It was shown by Akin, Tezduyar, Ungor
& Mittal (2002) that the numerical viscosity generated by the stabilization terms for
the finite element formulation, being used here, are much larger than the eddy viscos-
ity obtained using a Smagorinsky turbulence model except in regions very close to the



Energy spectra of flow past a cylinder 3

cylinder. In the present work, the finite element simulations are carried out on very fine
grids without using any turbulence model.

The governing equations for the fluid flow are the incompressible Navier-Stokes equa-
tions. They are solved via a stabilized finite element formulation in the primitive vari-
ables. Equal-in-order linear basis functions for velocity and pressure are used and a 3
point Gaussian quadrature is employed for numerical integration. The non-linear equa-
tion systems resulting from the finite element discretization of the flow equations are
solved using he Generalized Minimal RESidual (GMRES) technique(Saad & Schultz
(1986)) in conjunction with diagonal preconditioners. The solution obtained from solving
the Navier-Stokes equations over an unstructured mesh are interpolated on a structured
mesh. The two-dimensional, discrete Fast Fourier Transform (FFT) of the velocity field is
carried out by using the subroutines in the library from the Numerical Algorithm Group
(NAG).

2. The governing equations

The spatial and temporal domains are denoted as Ω ⊂ IR2 and (0, T ), respectively. x
and t are the spatial and temporal coordinates and Γ represents the boundary of Ω. The
Navier-Stokes equations governing incompressible fluid flow are

ρ(
∂u

∂t
+ u · ∇∇∇u− f) −∇∇∇ · σσσ = 0 on Ω for (0, T ), (2.1)

∇∇∇ · u = 0 on Ω for (0, T ). (2.2)

Here ρ, u, f and σσσ are the density, velocity, body force and the stress tensor, respectively.
The stress tensor is related to the velocity u and pressure p by σσσ = −pI + T where
T = 2µεεε(u). Here I is the identity tensor, µ is the dynamic viscosity and εεε(u) = 1

2
((∇∇∇u)+

(∇∇∇u)T ). The boundary conditions are represented as u = g on Γg and n · σσσ = h on Γh

where Γg and Γh are complementary subsets of the boundary Γ. The initial condition on
the velocity is specified on Ω as u(x, 0) = u0 on Ω, where u0 is divergence free.

3. The Fast Fourier Transform (FFT)

The velocity field obtained from the finite element formulation on the unstructured
mesh is utilized to compute the energy spectrum. A structured mesh with n×m points,
equally spaced in each direction, is created in a rectangular domain, Ω, of size Lx × Ly.
The velocity field u(x, y, t) is interpolated on this structured mesh. Its discrete Fourier
transform is defined as (Press, Teukolsky, Vetterling, & Flannery (1992)):

û(kx, ky, t) =
1√
mn

m−1
∑

j1=0

n−1
∑

j2=0

u(x, y, t)e−i(
j1kx

m
+

j2ky

n
), (3.1)

where, kx(n1) = 2πn1

Lx
and ky(n2) = 2πn2

Ly
are the wave numbers along the x and y

directions, respectively. The index n1 varies from −n/2 to n/2 while n2 varies from
−m/2 to m/2.
The inverse transform corresponding to equation 3.1 is given as

u(x, y, t) =

m−1
∑

kx=0

n−1
∑

ky=0

û(kx, ky, t)ei(
j1kx

m
+

j2ky

n
). (3.2)
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The Fourier coefficients û are the complex amplitudes of the modes labeled by the wave

number k, where, k =
√

k2
x + k2

y. The kinetic energy density in wave number space Ē(k)

is defined as 1
2 |û(k,t)|2. It is integrated over a thin shell of thickness 2∆k around k to

give the contribution to the kinetic energy in the flow field from motion on the length
scale 2π/k. In the situation involving discrete wave numbers E(k) can be represented as

E(k) =
∑

k−∆k6k6k+∆k

Ē(kx, ky). (3.3)

Nk, the number of bands, each of thickness 2∆k, are used to derive the energy spectrum
from the FFT data. The various parameters that are needed to compute the energy
spectrum, for a given velocity data on a certain finite element mesh, are the domain size
(Lx × Ly), size of the structured mesh (n × m) and the number of wave number bands
(Nk). The energy injection scale, for flow past a cylinder, is of the order of its diameter
(=2 units in our case). The corresponding wave number, k/2π, is 1/2.

4. Results

Details on the finite-element formulation can be found in papers by Tezduyar, Mittal,
Ray & Shih (1992) and Mittal (2000). The formulation has been utilized, in the past, to
solve unsteady flow past a circular cylinder at lower Re. (for example, see Mittal, Kumar
& Raghuvanshi (1997)). Equal-in-order linear basis functions for velocity and pressure
are used and a 3 point Gaussian quadrature is employed for numerical integration. The
non-linear equation systems resulting from the finite element discretization of the flow
equations are solved using the Generalized Minimal RESidual (GMRES) technique in
conjunction with diagonal preconditioners.

4.1. Boundary conditions

The cylinder of diameter D resides in a rectangular computational domain whose up-
stream and downstream boundaries are located at 8D and 30D from the center of the
cylinder, respectively. The upper and lower boundaries are placed at 8D, each, from
the cylinder. A schematic of the domain is shown in Figure 1. The no-slip condition is
specified for the velocity on the cylinder surface while free-stream values are assigned
for the velocity at the upstream boundary. At the downstream boundary a Neumann
type boundary condition for the velocity is specified that corresponds to zero viscous
stress vector. On the upper and lower surface boundaries the component of velocity nor-
mal to the component of stress vector along these boundaries is prescribed zero value.
The Reynolds number is based on the diameter of the cylinder, free-stream velocity and
viscosity of the fluid.

4.2. Finite element mesh

The finite element mesh consists of two parts. A structured mesh close to the cylinder
provides the desired resolution to capture the boundary layer flow. It consists of Nt

points in the circumferential direction. The radial thickness of the first layer of elements
on the cylinder surface is h1

r. Farther away from the cylinder, to save on the computational
resources, an unstructured mesh is generated via Delaunay’s triangulation. Figure 2 shows
a typical mesh and its close-up around the cylinder. The various meshes used for the
computations are given in Table 1. Most of the computations in this article have been
carried out with a mesh consisting of 47, 011 nodes and 93, 574 elements (mesh M2).
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Figure 1. Flow past cylinder: schematic of the computational domain for the flow analysis
(solid lines) and FFT (broken lines).

The time-averaged drag coefficient (CD) from the computations for Re = 106 is 0.591.
Computations on a much finer mesh with 116, 166 nodes and 231, 484 (mesh M3) result
in a value of CD = 0.607. The time-averaged flows from the two meshes are also very
close to each other. This suggests that mesh M2 is fine enough to capture most details
that are significant in determining, at least, the mean flow. Later, it will be shown that
the energy spectra from the two meshes are also almost identical.

Mesh nodes elements h1
r/D Nt Re

M1 34613 68858 5 × 10−3 320 102

M2 47011 93574 5 × 10−5 400 104, 105, 106

M3 116166 231484 5 × 10−6 800 106, 107

Table 1. Flow past a cylinder at various Re: description of the finite element meshes
employed.

4.3. Overview of the solution at various Re

Computations are carried out for Re = 102, 104, 105, 106 and 107. For each Reynolds
number the time integration is continued till the unsteady solution is fully developed.
This is monitored by observing the time histories of the aerodynamic coefficients and the
velocity components at certain points in the wake of the cylinder. Figure 3 shows the
instantaneous vorticity fields and their close-up views for the fully developed unsteady
solution. The time averaged drag coefficient for Re = 105 is 1.07 while it is 0.607 and
0.897 for Re = 106 and 107, respectively. Clearly, the present computations are able to
capture the phenomenon of drag crisis. The sudden drop in drag is accompanied with
a narrowing of the wake. From Figure 3 it can be observed that the instability of the
separated shear layer reaches the cylinder surface at Re = 106, thereby, energizing the
boundary layer and causing it to re-attach.

4.4. The Fast Fourier Transform (FFT)

The solution obtained from the Navier-Stokes equations is interpolated on a structured
mesh to compute the energy spectrum. The resolution of the mesh for the finite element
computations is very fine close to the cylinder and it becomes coarser further away. For
carrying out the FFT only a part of the original computational domain is utilized. It is
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Figure 2. Flow past a cylinder: the finite element mesh M2 with 47, 011 nodes and 93, 574
triangular elements.

a rectangular region of size Lx ×Ly. The schematic of this choice of domain is shown in
Figure 1. The number of grid points in the structured mesh is n × m. Ideally, we would
like to carry out the FFT on the entire finite element domain. We would also like the
resolution of the structured mesh for FFT to match the finest resolution of the finite
element mesh. However, this is is not possible because of the severe demands it places
on computational resources. Therefore, for given computational resources, we can either
compute with high resolution on a small domain or with moderate resolution on a large
domain. While the grid spacing of the mesh restricts the maximum wave number that
can be resolved, the size of the domain puts a limit on the lowest wave number that can
be studied. The sensitivity of the various parameters on the energy spectrum is studied
in the following subsections. The instantaneous solution for the fully developed unsteady
flow for Re = 106 computed on mesh M2 is used to carry out these studies.

4.4.1. Effect of periodicity of data

Usually, the Fast Fourier Transform is useful for data sets that are periodic. The effect
of lack of periodicity of data, in the present situation, is studied by comparing the results
from the actual data set and a synthesized one. A new data set is constructed from the
actual data by taking its mirror images about the x and y axes. The new data set is four
times the size of the original one. The values of Yf , Xfu and Xfd (indicated in Figure 1)
for the domain considered for the study are 4D, 4D and 15D, respectively. It is observed
that both the cases show very similar results and indicate the variation of E(k) as k−3.
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Figure 3. Flow past cylinder at various Re: instantaneous vorticity field and its close-up for
the fully developed unsteady solution.
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This study establishes that the lack of periodicity of the flow data is not a significant
issue. In the remaining study, the actual (non-periodic) data set is employed.

4.4.2. Effect of size of domain

The finite element solution computed on mesh M2 is interpolated on four different
structured meshes. Details of the various parameters used in this study are listed in
Table 2. The grid size (n×m) for each case is chosen such that the resolution is same for
all the four cases. Energy spectra for all the cases are shown in Figure 4. It is observed
that the k−3 variation exists in all the cases whereas the k−5/3 variation is seen only
in the case with largest domain size (Lx × Ly = 38D × 16D). The smaller length scale
flow structures, corresponding to larger values of k, are mostly present in the vicinity of
the cylinder and included in all the domains considered. Therefore, the k−3 variation is
seen in all the cases. However, the large scale flow structures that correspond to smaller
values of k/2π are missed out in the domains of relatively small size. Therefore, the k−5/3

variation of E(k) is not observed for the smaller domains. This study shows that the size
of the domain should be chosen depending on the range of wave numbers one wishes to
resolve. Even though the location of the lateral boundaries beyond a certain distance,
from the cylinder, may cease to affect the solution one may be forced to compute on
a larger domain if energy spectrum is to be computed. It is also observed from Figure
4 that the domains 2.75D × 2.75D and 2.75D × 1.5D show very comparable results.
This implies that the difference between the energy spectra using a square or rectangular
domain is not significant.

Domain size Xfu Xfd Yf grid size Nk

Lx × Ly n × m

38D × 16D 8D 30D 8D 2432× 1024 200
19D × 8D 4D 15D 4D 1216× 512 100

2.75D × 2.75D 1D 1.75D 1.375D 176× 176 100
2.75D × 1.5D 1D 1.75D 0.75D 176× 96 95

Table 2. Energy spectrum of flow past a cylinder at Re = 106: description of the various
parameters for computing FFT on different domains.

4.4.3. Effect of resolution

Spacing between the nodes in the structured grid limits the largest wave number
that can be resolved in the energy spectrum using FFT. As the number of nodes is
increased, while keeping the domain size fixed, the resolution becomes better. The effect
of resolution on the energy spectrum is studied for two domain sizes: Lx ×Ly = 2.75D×
1.5D and 38D × 16D. The results for the smaller and larger domains are shown in
Figures 5 and 6, respectively. In both the cases the increase in grid points result in
resolution of higher wave numbers. However, the basic structure of the variation of E(k)
remains same. As noted in the last section, the k−5/3 variation of E(k) is observed only
for the large domain. It is also observed that, irrespective of the resolution of FFT,
energy build-up occurs beyond a certain wave number. This implies that the piling up
of energy at large wave numbers is not an artifact of the poor resolution for FFT but
is intrinsic to the present finite element solution. This reflects the inadequacy of the
present finite element mesh in resolving all the possible scales at such high Reynolds
numbers. An appropriate turbulence model that will drain out the excess energy at large
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Figure 4. Re = 106 flow past cylinder: effect of domain size on the energy spectrum.

scales is needed (Mathieu & Scott (2000)). It was shown by Akin, Tezduyar, Ungor
& Mittal (2002) that a Smagorinsky type of eddy viscosity model is not too effective
for finite element computations using bilinear/linear interpolation functions. The eddy
viscosity is overwhelmed by the numerical viscosity due to the stabilization terms. A
similar conclusion was drawn by Mittal & Moin (1997) in the context of upwind-biased
higher order finite difference schemes.

From Figure 6 we conclude that a grid with 1216×512 nodes is adequate for a domain
of size 38D × 16D to compute the energy spectrum.

4.4.4. Effect of number of wave number bands (Nk)

The energy spectrum E(k) is obtained by integrating the energy density, Ē(k), over a
thin band of thickness 2∆k around k. The entire wave number space is discretized into
Nk equispaced bands of thickness 2∆k. Nk is an important parameter in calculating the
energy spectrum from the FFT data. If Nk is too large, then ∆k is very small and not
enough points are present in the band for computing a good average. However, if Nk

is too small, the results are not expected to be accurate because the structure of E(k)
is lost in the averaging. Figure 7 shows the effect of Nk on energy spectrum. A smooth
variation is observed for Nk ∼ 300 while the spectrum becomes oscillatory at higher
values of k/2π when Nk ∼ 2000. The k−3 variation of E(k) is observed for all values of
Nk. However, the k−5/3 variation is a little sensitive to the choice of Nk. More work is
needed to establish the nature of energy spectrum in this wave number regime. In the
remaining study, unless it is mentioned otherwise, Nk is set to 300.

4.4.5. Instantaneous v/s time-averaged spectrum

Figure 8 shows the time-averaged spectrum for the unsteady data from, approximately,
three periods of vortex shedding cycles. Also shown in the same figure is the spectrum
obtained for an instantaneous velocity field. Both the results are very similar.
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Figure 5. Re = 106 flow past cylinder: effect of the resolution of the FFT on the energy
spectrum for the domain of size 2.75D × 1.5D.

4.4.6. Effect of the resolution of the finite element mesh

The time-averaged energy spectra are calculated for meshes M2 and M3 (see Table 1
for details on the meshes) are shown in Figure 9. The structured grid used for the FFT is
same for both the finite element solutions. Both curves match each other in the moderate
to high wave number region where E(k) varies as k−3. These results suggest that the
mesh M2 is fine enough to study the energy spectrum of the flows at such high Reynolds
numbers. However, the k−5/3 variation is less prominent in the solution corresponding to
mesh M3. At present, we are unable to explain this behavior and more work is needed
to understand the energy cascade at lower wave numbers. Perhaps, the flow should be
recomputed with a larger domain size so that more points are available in the low wave
number regime.

4.4.7. Effect of Reynolds number

Figure 10 shows energy spectra for the flows at Re = 100, 104, 105, 106 and 107. The
Re=105, 106 and 107 flows show very similar behavior and, both, the k−5/3 and k−3

variations in E(k) are observed. At Re = 104, the slope of the E(k) v/s k curve is close
to −3 for all k while, the Re = 100 flow does not show either of the two slopes. We
conclude that the Re = 100 flow is laminar while it is turbulent for the other Re cases
that have been studied. This is in line with the existing understanding of such flows. The
wake starts becoming turbulent at Re ∼ 200 but the transition of the boundary layer
flow to turbulence begins at Re ∼ 2× 105. It is quite remarkable that the turbulence for
such highly sheared flows also displays the same structure as is observed for 2D isotropic,
homogeneous turbulence. In all our computations the k−3 variation is consistently ob-
served for high Re flows. However, the k−5/3 variation of E(k) is observed only for some
cases.
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Figure 6. Re = 106 flow past cylinder: effect of the resolution of the FFT on the energy
spectrum for the domain of size 38D × 16D.
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Figure 7. Re = 106 flow past cylinder: effect of number of wave number bands (Nk) on the
energy spectrum.

4.4.8. Power spectra of the time series

Most of the features in the flow field that appear in the spatial description also appear
in the temporal description of a field quantity reported at fixed point(s) in the flow. To
further check the results that have been reported in this article, the power spectrum
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Figure 8. Re = 106 flow past cylinder: comparison of instantaneous and time-averaged energy
spectrum.

corresponding to the time history of the velocity at a point in the wake has been studied.
The result of this study for the Re = 106 flow, computed with the mesh M3, is shown in
Figure 11. In this figure, the variation of the energy is shown with respect to the frequency
which has been nondimensionalized with the cylinder diameter and free-stream speed. It
can be observed that the power spectra obtained from, both, the temporal and spatial
descriptions display the k−5/3 and k−3 variation.

5. Conclusions

Results have been presented for computation of two-dimensional flow past a circular
cylinder at Reynolds numbers ranging from 100 to 107. The sudden drop in the drag
coefficient with increase in Re is predicted fairly accurately by the present computations.
The Kelvin Helmholtz instability of the separated shear layer is captured very well in
these simulations. The onset of the instability of the shear layer moves upstream as Re
increases. At Re = 106 the shear layer becomes unstable right at the separation. This
energizes the local flow and leads to its re-attachment. Consequently, the wake for the
Re = 106 flow is much narrower than that for Re = 105.

The energy spectrum for flow at various Re has been studied. It is found that for
Re = 104 and higher the energy spectrum resembles, very closely, the structure for
2D isotropic homogeneous turbulence. The k−3 variation of E(k), beyond the energy
injection wave number, is observed for all cases. In certain cases the k−5/3 variation,
below the energy injection wave number, is seen as well.

To establish confidence in these results the effect of various parameters on the energy
spectrum was investigated. The flow field data was reflected about the cartesian axes to
generate a periodic data set. No significant differences are noticed between the results for
the actual and the synthesized periodic data. The effect of increasing the resolution of the
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Figure 10. Flow past cylinder: energy spectra for various Re.

finite element mesh and the structured mesh for FFT was also studied. It is found that
the base meshes, that have been utilized for solving the fluid flow and for FFT, provide
sufficient resolution. The size of the domain limits the lowest wave number content in
the simulations. It is observed that the k−5/3 variation of E(k) occurs only for the cases
with large domain size. More work needs to be done, including computations with larger
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domain size, to understand the E(k) variation at low wave numbers. The high wave
number content of the flow is mainly restricted to regions close to the cylinder. That is
why, the k−3 variation of E(k) is observed for all cases, irrespective of the size of domain.
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