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Model Reduction in Power Systems Using
Krylov Subspace Methods

Dimitrios Chaniotis, Member, IEEE, and M. A. Pai, Life Fellow, IEEE

Abstract—This paper describes the use of Krylov subspace
methods in the model reduction of power systems. Additionally,
a connection between the Krylov subspace model reduction and
coherency in power systems is proposed, aiming at retaining some
physical relationship between the reduced and the original system.

Index Terms—Coherency, Krylov subspaces, power system dy-
namics, power system simulation, reduced-order systems.

I. INTRODUCTION

I N power systems, the dimension of the models may easily
reach the order of several thousands of state variables in ap-

plications like dynamic simulation, trajectory sensitivity anal-
ysis, control etc. Therefore, these types of analyses pose a for-
midable computational burden. Model reduction consists of re-
placing the original system with one of a much smaller dimen-
sion according to the following guidelines.

• The reduced system must be an accurate representation of
the original one for the analysis performed.

• The cost of generating the reduced model must be much
smaller than the cost of performing the analysis using the
original model.

Most methods of model reduction focus on linear systems,
which, in many cases, provide accurate descriptions of the
physical systems. Depending on the properties of the orig-
inal system that are retained in the reduced model, there are
different model reduction methodologies. Hence, there are
techniques based in directly identifying and preserving certain
modes of interest (modal model reduction [1], [2]) or based
on the singular value decomposition (SVD), such as balanced
truncation [3], Hankel norm approximation [4], etc., focusing
on the observability and controllability properties of the system.
Another family of model reduction techniques, on which this
paper builds on, is the moment matching methods [5], [6]. The
property of interest here is the leading coefficients of a power
series expansion of the transfer function of the reduced system
around a user-defined point that have to match those of the
original system transfer function.

Modal model reduction has been proven efficient, yet the de-
termination of the full set of truly dominant modes of the system
is not a fully resolved question although significant progress has
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been made [7]–[9]. SVD based methods are also very efficient
but computationally intensive. In [10] SVD model reduction is
shown to yield excellent global approximation in the frequency
domain when compared to moment matching techniques whose
performance is good in a limited range of frequencies. Never-
theless, moment matching methods based on Krylov subspaces
present less computational effort and less storage requirements,
requiring little empirical parameter adjusting.

The bulk of model reduction techniques in power systems are
tailored for the tasks of control design and transient/small signal
stability analysis. Concepts like coherency treated in [11]–[15],
synchrony introduced in [16] and [17], singular perturbation
analysis in [18] and [19], and modal analysis in [7], [8], [18]
and [20] form the basis for a wide variety of model reduction
tools developed.

For model reduction, power systems may be partitioned
into two areas: the study area and the external area [13]. The
study area contains the variables of interest, and therefore it is
modeled in detail. The external area is important only as far as
it influences the analysis in the study area and is represented
by a linear model for studies such as small signal stability
analysis. Furthermore, it is often the case that the external area
input/output behavior is of interest only in very low frequencies
(less than 2 Hz) depending on the nature of its interconnection
to the study area and the level of generator modeling. This
characteristic makes moment matching methods suitable for
model reduction application on the external area.

In this paper, a moment matching model reduction method-
ology based on projection on Krylov subspaces is presented.
The application of such techniques in moment matching model
reduction has been introduced and analyzed in [21]–[29]. Here,
a validation of this approach is attempted on power systems by
reducing the size of the linearized model of the external area
and observing the effect of the approximation by simulating a
fault in the study area, which retains a nonlinear representa-
tion. The second goal of this paper is to demonstrate that the
Krylov subspace bases derived by projecting linear power sys-
tems onto them may be used in identifying coherent generators
in the external area. This is the first step in the model reduction
of nonlinear power systems, as it is observed that coherent gen-
erators may be replaced in a straightforward way by an equiv-
alent generator, which reproduces their behavior in simulation
studies [12], [13].

The paper is organized as follows: In the first part a brief pre-
sentation of the Krylov subspace methodology in the model re-
duction of linear systems is given. In the second part, the appli-
cation of the Krylov subspace model reduction on the linearized
power system is illustrated via a numerical example. The main
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thrust of the paper is in its third part, where the Krylov subspace
associated with the linearized power system is used to determine
sets of coherent generators.

II. KRYLOV SUBSPACE MODEL REDUCTION

A. Krylov Subspaces

For a square matrix of dimension and a vector , the
subspace spanned by the vectors is called a
Krylov subspace of dimension generated by denoted
as . Krylov subspaces are characterized by two im-
portant properties.

• The Krylov vectors gradually point to the dominant eigen-
vector of as increases.

• Every vector belonging to the Krylov subspace is a result
of an operation of a polynomial of on vector .

It is these two properties that make Krylov subspace methods
suitable for eigenvalue calculations and the solution of linear
systems of equations [30]. Frequently, one seeks to construct
a base for the Krylov subspace , whose
eigenvalue characteristics are more suitable for certain analyses
(preconditioning). is in general an easily invertible matrix.

The main challenge in constructing a basis for a Krylov sub-
space is to avoid the ill-conditioning caused by repeated multi-
plications by the matrix A. Most proposed approaches are vari-
ations of the Lanczos and the Arnoldi methods, which build the
Krylov base in an iterative manner. Their implementation in-
volves, in general, matrix-vector multiplications, inner vector
products and/or the solution of “easy” linear systems of equa-
tions. These operations are computationally fast and highly par-
allelizable; hence the popularity of Krylov based methods when
large, sparse linear systems are concerned.

B. Moment Matching and Krylov Subspaces

Consider the linear, single-input single-output, time-invariant
system of dimension

(1)

and the expansion of its transfer function around

The shifted moments of the system represent the value and
the subsequent derivatives of the transfer function around and
are given by

Borrowing the notation from [27], let the right and left non-
singular transformation matrices decomposed as

and

where and are the complements of and respec-
tively. The application of this transformation to (1) yields

(2)

where . Then, assuming is nonsingular,
the leading subsystem is retained to form the reduced model of
dimension

(3)
or

In [27], it is shown that if and are chosen to be bases the
Krylov subspaces

and

respectively, for an interpolation point , then the shifted mo-
ments of the reduced system

match the first moments of the original system. This argument
is generalized for multiple interpolation points by taking the
union of the generated Krylov subspaces for each point (rational
interpolation). Consequently, the transfer function of the reduced
system (3) is a good approximation to the transfer function of the
original system (1) for a range of frequencies corresponding to
the chosen interpolation points. The reduced system effectively
retains the modes that are most important to the input-output
behavior of the system at certain user-defined frequency ranges.

A major problem that arises in many cases of Krylov subspace
model reduction concerns the stability of the reduced model. It is
necessary, when approximating a stable model, that the reduced
model be also stable. Unfortunately, this is not guaranteed using
this methodology. There have been successful attempts to obtain
stable reduced models via implicit restarts as described in [28]
and [29]. When an unstable reduced model is derived it is par-
titioned into its stable and unstable components and the stable
ones are retained [29].

Power systems are rarely modeled as single-input, single-
output systems. Then, one has to extend the previous analysis
to include multi-input, multi-output systems. The Krylov sub-
spaces are replaced by block-Krylov subspaces to account for
the multidimensional input and output matrices and . There
are a number of well-established block-Krylov methods in the
literature, see for example [30]. The consequence of using block
Krylov algorithms is that the dimension of the reduced model is
significantly larger compared to the single-input single-output
case since the block-Krylov subspace has to contain all the in-
formation generated by the individual Krylov subspaces corre-
sponding to the columns of and .
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Fig. 1. Block–Arnoldi for multiple interpolation points.

There is a plethora of implementation approaches for the con-
struction of the bases and in transformation (2). For a
description of a number of algorithms see [30]. The Lanczos
method has the advantages of being simple, efficient, and very
fast but it suffers from numerical stability issues, as analyzed
in [31]–[33]. Because of that, the choice in this paper is the
Arnoldi method that is far more stable [30], [34]. Specifically,
we use the Rational Krylov method [35]–[37], adjusted for mul-
tiple starting vectors. This algorithm, shown in Fig. 1, is equiva-
lent to a shifted-inverted Arnoldi with the addition that the shift
is updated when the desired number of iterations has been per-
formed with its current value. Imaginary points are incorporated
by restricting the resulting complex vectors to their real parts.
Because of the structure of the matrix in the examples to
follow, operating on the real or the imaginary part of the com-
plex vector makes no significant numerical difference.

III. APPLICATION TO POWER SYSTEMS

The following set of dynamic equations are considered for the
study of model reduction of an -machine -bus power system:

(4)

Fig. 2. System configuration of the study and the external areas.

This model represents the external system connected to the
study area via tie-lines. and represent the inertia and
damping coefficients, respectively, of machine , and are
the angle and voltage magnitude of bus , and each machine
is modeled as a voltage of constant magnitude behind
a transient reactance . Loads and are modeled
as constant impedances. The reader is referred to [38] for a
step-by-step description of how to reach (4) from a detailed
model of the system as well as for a discussion of the notation
used here. The inputs of the external system, denoted as , are
considered to be the angles and voltages of the connected
buses belonging to the study area. The outputs of the system,
denoted as , are considered to be the angles and the voltages
of the corresponding buses of the external area.

Equation (4) is linearized around an equilibrium point
and the network algebraic equations are eliminated,

yielding

(5)

This formulation allows the external area to be modeled
along the lines of (1), and the Krylov subspace model reduc-
tion methodology described in Section II can be applied in a
straightforward manner.

A. Fifty-Machine System Connected to the Study Area via
Three Tie-Lines

For the examples to follow, a 16-machine, 68-bus system
taken from [39] is assumed to be the study area. A nonlinear
two-axis model is used for each generator with an IEEE Type
I exciter, resulting in seven differential equations per machine
[38]. This system is connected to a 50-machine system also
taken from [39] that serves as the external area as shown in
Fig. 2. The external area is represented in its linear form as in
(5).

The external area has six inputs (angles and voltage magni-
tudes of study area) and six outputs (angles and voltage mag-
nitudes of the external area). A reduced-order model is con-
structed as discussed in Section II by interpolating the system
at zero frequency since the slow inter-area modes are
of interest. In order to limit the size of the Krylov subspaces,
we consider that the matrix in the algorithm in Fig. 1 for
building base is the sum of the input (output) matrices
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TABLE I
MODES OF THE ORIGINAL AND THE REDUCED SYSTEMS

Fig. 3. Frequency response for the linearized system.

corresponding to the angle and voltage inputs (outputs).1 The
size of the reduced model is set at 18 18, which indicates that
the reduced model matches the first 6 coefficients of the power
series expansion around zero of the transfer function matrix of
the original system.

Although eigenvalues are not being explicitly retained, it is
interesting to see whether the slowest modes are present in the
reduced model. Indeed, from Table I one may see that the two
slowest modes are reproduced adequately in the reduced model,
with the second and third slowest modes being significantly
overestimated in terms of their damping.

The same information is conveyed in Fig. 3, showing the di-
agonal terms of the frequency response matrix of the unreduced
(solid line) and the reduced systems (dotted line). For economy
of space, nondiagonal terms of the transfer function matrix are
omitted. For frequencies above 3 rad/s the reduced system fre-
quency response is not accurate.

A time domain simulation permits the evaluation of the re-
duced-order model. A self-clearing fault at bus 24 of the study
area, occurring at 0.1 s and cleared at 0.2 s is simulated. Note
that the study area retains a nonlinear representation. The out-
comes of the simulation using the unreduced (solid lines) and

1In general, such kind of heuristics for economy in the size of the base when
a block-Krylov algorithm is used does not work well. However, we expect that
the input (output) vectors corresponding to the angle and the voltage magnitudes
for the same bus will contain the same information regarding the construction
of the subspace.

Fig. 4. Real power flows on tie-lines.

TABLE II
MODES OF THE ORIGINAL AND THE REDUCED SYSTEMS

the reduced linear models (dotted lines) for the external area are
shown in Fig. 4 in terms of the active power flow on the tie-lines.

From Fig. 4, one can see that the reduced-order model ap-
proximates the external system well only for low frequencies.
The overestimation of the damping of the second slowest mode
is more evident on the flow on the first tie-line.

There are two ways to improve the quality of the reduced
model. Either the dimension of the Krylov subspace is increased
by matching additional moments of the transfer function around
zero, or by interpolating another point and thus matching the
moments of the transfer function around that frequency as well.
The second choice is adopted here by interpolating the transfer
function at 0 and at j3 (imaginary interpolation point, corre-
sponding at 3 rad/s). Hence, the accuracy above 0.5 Hz is ex-
pected to increase. Note that the size of the reduced system is
increased to 24 24.

Table II shows that the seven slowest modes are retained in
the reduced system among which the faster ones are erroneous
as far as their damping is concerned.

Figs. 5 and 6 show the frequency response and the results
of the same simulation as before where the improvement in the
approximation by the reduced model is clear. It has to be noted
that when the size of the reduced model reaches 30, the error in
the approximation for these frequencies is negligible.
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Fig. 5. Frequency response for the linearized system.

Fig. 6. Real power flows on tie-lines.

IV. KRYLOV SUBSPACE MODEL REDUCTION AND COHERENCY

The mechanics of the Krylov subspace model reduction dic-
tate that the states of the unreduced system are confined to the
subspace as deduced from (1) and (3), i.e.,

(6)

Therefore, the rows of may be a good indication about
the relative movement of the states of the unreduced system.
Note, however, that (6) does not imply that the actual trajectories
lie on subspace , but rather that if the trajectories lie on this
subspace, then the output of the reduced system matches the
output of the unreduced system. From (6)

(7)

According to [13], the states and are coherent if the differ-
ence between and in (7) is small. A possible criterion to
determine the “closeness” of and is the angle between
rows and defined as

(8)

Therefore, one can term and as coherent if the angle
is less than a pre-specified tolerance. Let be the matrix

(9)

TABLE III
COHERENT GROUPS FOR THE 50-MACHINE SYSTEM

Thus, the entries of determine whether or not two states are
coherent. Equation (9) does not distinguish between the modes of
the reduced system; it assumes that all modes may be excited. It
is possible to eliminate certain high-frequency modes that are of
no interest and correspond to parasitic modes observed in the last
rowsofTablesIandII,byignoringthestatesof thereducedsystem
thathavearelativelylargeparticipationonthesemodes.Thesmall
dimensionof the reducedsystemallowsacompleteeigenanalysis
in a robust and efficient way. Therefore, the contribution of each
state to the modes of the reduced system can be identified through
the use of participation factors [40]. Let and be the right and
lefteigenvectorsof thereducedsystemcorrespondingtoaneigen-
value . For complex vectors, the magnitudes of each entry of
and are considered. Then, the participation factor of state to
the eigenvalue is defined as

(10)

The participation factors can be normalized so that the largest
one is 1. The modes of interest are isolated (for example, the
ones corresponding to the low frequencies) and the participation
of each state of the reduced system on a certain mode can be
computed from (10). The states that contribute the least to the
modes of interest are discarded. This is equivalent to ignoring the
corresponding columns of in (9). Then, is constructed using
the reduced .

To illustrate the method, the Krylov base of dimension 24 24
used in the simulations of Section III is taken for building matrix

in (9), tabulating the resulting coherent generators in Table III.
The modes retained are the ones with imaginary part less than 5
andrealpartgreater than 1, that is, thelow-frequencymodesthat
mostly affect the steady state solution. States with participation
factors less than 0.7 in those modes are omitted.

In order to validate these results, a simulation using the full-
order linear model for the external area and a nonlinear model for
the study area is performed. A fault at bus 24 of the study area, oc-
curring at 0.1 s and cleared at 0.2 s is simulated. Fig. 7 shows the
simulation results and it verifies that the generators belonging to
the same group according to Table I are indeed coherent.

From Fig. 7 it is evident that this approach yields conservative
results. For example, one may suggest that generators in groups
2, 4 and 5 seem to be coherent even though our method groups
themseparately.Thus, inordertotest thevalidityofthemethodwe
perform the same simulation considering the fault to occur in bus
19 of the study area. The coherent groups should remain the same
despite the different location of the fault. Indeed, as observed in
Fig. 8, generators in the same group remain coherent with respect
to the low frequencies. Furthermore, the responses for generators
in groups 2, 4 and 5 are no longer similar. Extensive simulations
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Fig. 7. Angle curves for generators in all coherency groups.

Fig. 8. Angle curves for generators in all coherency groups.

on this particular system for different fault locations confirm this
result.

V. CONCLUSIONS

In this paper, an approach to model reduction in power
systems based on Krylov subspaces has been presented. The re-
duction process considers the external area of the power system
as an input-output system, whose behavior is approximated
by the reduced model by matching the leading coefficients
of a power series expansion of the transfer function around

pre-specified frequencies. The method was illustrated by per-
forming time domain simulations, and it was shown that the
trajectories of the reduced model match these of the original
one for sufficiently large Krylov subspaces. Therefore, without
performing the potentially expensive eigenvalue decomposi-
tion, this method seems to adequately reproduce the dominant
modes of the original system guided by their influence in its
input-output behavior. The method was tested on a 50-machine
power system considered as the external area.

The Krylov subspace model reduction in power systems was
shown to be able to provide information useful in identifying
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coherency as well. The merits of this method lie in its ability
to determine coherency with respect to any subset of the dom-
inant modes of the system. Therefore, it requires no a priori
knowledge of the system and reduces the need for adjustments
based on empirical knowledge of the system. Application of this
methodology on the 50-machine system has yielded very good
results.

Krylov subspace techniques seem to be very promising when
applied to power system model reduction. Future research
would be focused on explicitly testing these methods on large
systems and dealing with the problem of unstable reduced
models.
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