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Abstract

In this paper a new notion of power system stability, is intro-
duced, namely structural stability, and its significance in the
context of load modeling is examined. It is shown that beyond
certain values of load indices in the case of static models and
beyond certain value of the dynamic component in the load
such as induction motors, the system may become structurally
unstable. The immediate application of these results is in the
voltage stability problems.

1 Introduction

In this paper we investigate structural stability in power sys-
tems. Broadly speaking structural stability refers to the do-
main in the parameter space such that for small variations in
the parameter vector inside the domain, the phase portrait
does not change qualitatively. In Lyapunov stability we analo-
gously talk about the region of attraction of an equilibrium
point in the state space such that for any initial condition
in the region the trajectory approaches the equilibrium point
asymptotically. While considerable research has been done in
the Lyapunov stability area, comparatively very little has been
done in the structural stability area. It was partly because of
the inability to formulate theorems and condition for structural
stability in n dimensional space. However, research in bifur-
cation theory has thrown up an intimate connection between
it and structural stability. Stability regions in the parameter
space or under continuous structural variations with respect
to time (topology, load demands, nature of load, etc) are of
interest.

In this paper it is shown that when a system loses structural
stability we have bifurcation either local or global. Steady-
state stability and voltage stability are used as illustrations for
the physical system.

It is expected that this attempt at quantitatively applying
structural stability to power systems will complement the work
of Lyapunov stability via energy functions that has successfully
been applied in power systems over the last five decades.

This paper was presented at the 1993 Athens Power Tech
Conference held in Athens, Greece, September 5-8, 1993,

2 Structural Stability

The notion of structural stability was first proposed by An-
dronov and Pontryagin in 1937 [1]. The basic idea is that
under small perturbations, dynamical systems must preserve
their topological behavior to be structurally stable. From a
simulation point of view it is nice for a dynamical system to
have this property. Dynamical systems can never be modeled
exactly due to measurement errors, etc, and moreover the finite
precision of computers and the errors of floating point arith-
metic will introduce additional sources of uncertainty. Thus
the system that is being simulated is a perturbed version of
the exact system. If the system is structurally stable then
these errors will affect the simulation only marginally.

Mathematically, structural stability has to do with examin-
ing the change in qualitative behavior of a nonlinear dynamical
system

z = f(=z) 1

as we change the vector field f. If the qualitative behavior
remains the same for all nearby vector fields then the system
(1) is said to be structurally stable [2]. References [2-5] dis-
cuss structural stability in a rigorous mathematical framework.
Refs. [6-7] discuss it in an engineering context.

2.1 Result For Planar Systems [2-5]

Let fin (1) be a C* vector field on a compact, two-dimensional,
differentiable manifold M. Then f is structurally stable on M
if and only if
1. The number of equilibrium points and limit cycles of (1) is
finite and each is hyperbolic. An equilibrium point is hy-
perbolic if the linearized system at the equilibrium point
has no eigenvalues on the imaginary axis.

2. There are no trajectories connecting saddle points.

3. The set M consists of equilibrium points and limit cycles
only.

2.2 Numerical Example

The post-fault swing dynamics of a single machine infinite bus
system is given by

d% dbd . .
.01387_5 + DE =0.91 — 3.025sin § + .416 sin 26 (2)

If we vary D only, the number of equilibrium points remain
the same. Furthermore as we vary D over a wide range of
values even the nature of equilibrium points remain the same.
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However the global phase portrait changes qualitatively at a
critical value of D. This is shown in Figs. 1(a), (b) and (c),
where at the critical value of D = .04687, there is a trajectory
connecting two saddle points. From property 2 of Sec. 2.1,
the system is not structurally stable at this point since the
phase portrait for D < or > .04687, is qualitatively different.
Notice that for large D (Fig. 1(c)), both the left and right
unstable equilibrium points lie on the boundary of the region
of attraction of the stable equilibrium point. For small D (Fig.
1(b)), only the right unstable equilibrium point lies on the
boundary of the region of attraction of the stable equilibrium
point. The critical case (Fig. 1(a)) is the point where this
change occurs. In contrast to local bifurcation, this is called
global bifurcation [5]. An analytical expression for this can be
obtained using Fourier series [8].
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Figure 1: Phase portraits for different values of damping
D: (a) D = .04687 (b) D = .04 (c) D = .05
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3 Application In Multimachine
Systems With Static Nonlinear
Loads

In normal operation, a power system is structurally stable since
the operator steers the system with a safe margin. Under
stressed conditons this margin may get smaller. We wish to
know the critical value of a parameter such as the load, which
if increased incrementally will result in one or a pair of eigen-
values crossing over to the right half plane. This is the point
of local bifurcation and the system is structurally unstable at
this point. The analysis is done via small signal analysis of
power systems [9-11], and it is the principal tool to study both
low-frequency oscillations and voltage stability.
The system equations are of the form [12]

(3
(4)

y is the set of algebraic variables of the network power flow
equations and generator currents Iy, I,. p is the parameter
vector and u the input vector. For stability analysis we form
the linearized system. The overall linear dynamic model after
eliminating the generator currents and incorporating voltage
dependency of the load is obtained as

f(z,9,4,p)
9(z,9,p)

0

il

Az é[ A:z 1}'3 Az E
0 =| B B, Bs Az |+ 0 | AU (5)
0 & & G Av 0

where [AzT | AvT] = [AG, AVL, ..., AV;n | Abs, ..., Aby,
AVinit, ...y AVin]. Aw is the set of traditional load flow vari-
ables.

Now Cjs is the load flow Jacobian Jir and Biz -@a =
Cas Cs

Jagp is defined as the algebraic Jacobian in [11]. The system
A matrix is obtained as

Az = A,y,Az + EAU (6)

where

| Agys = A1 —[A; As][Jam]™ [ le ] )

G

For the 3-machine case [13] the results are summarized in
Table 1 for increasing constant power loading at bus 5. The
last column indicates the states associated with the critical
mode using participation factor analysis [14]. The model is a
two axis model with an IEEE Type I exciter. The complete
equations are available in Refs. [11-12] with the minor change
of neglecting turbine governor dynamics. The equations are
omitted for lack of space.

When the load is increased, it is observed that the critical
modes for the unstable eigenvalues are the electrical ones as-
sociated with the excitation system (EjandR;). From Table 1
we observe that when the load at bus 5 is increased from 4.7 pu
to 4.8 pu, the complex pair of unstable eigenvalues splits into
real ones which move in the opposite directions along the real
axis. The one moving along the positive real axis (9.2464) is
sensitive to the rotor angle mode and eventually comes back
to the left-half plane via 400 when the load at bus 5 is in-
creased from 4.8 pu to 4.9 pu. This is the point when detJag
changes sign. This is the point of singularity induced bifur-
cation. The other unstable real eigenvalue moves to the left



611

Table 1: Modal Behaviour for Different Loads

Load at Bus 5 | sign(detJor) | sign(detJag) | Critical Eigenvalue(s) | Associated States
4.3 + + -0.1433+j2.0188 E;ﬁk Rp
4.4 + + 0.0057j2.2434 El, & Ry
4.5 + + 0.3400£j2.5538 E, & Rp
4.6 + + 1.135042.8016 E;l & Ry
4.7 + + 2.59611j2.2768 :11 & Ry
4.8 + + 9.2464, 1.8176 62 & wy, Eyy & Ry,
4.9 + - 1.0542 E! & Ry
5.0 + - 0.6298 E!, & Rp
5.1 + - 0.2463 El & Rp
5.15 + - -0.6832 ' & Rj
5.2 Load flow does not converge

and is sensitive to the exciter mode. This eigenvalue returns
to the left-half plane at the loading of approximately 5.15 pu
at bus 5, and the system is again dynamically stable. For the
load at bus 5 = 5.2 pu, theload flow does not converge. This
phenomenon is pictorially indicated in the P — V curve of Fig.
2 and the s-plane plot of Fig. 3.
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Figure 2: P-V curve for bus 5

At point A there is Hopf-bifurcation which has been shown
to be subcritical. However a load flow solution still exists. In
this region E; & Rj; state variables are clearly dominant
initially. As we approach towards B, 8, & w» state variables
start participating substantially in the trajéectory of unstable
eigenvalues as indicated in the Table 1.

Hopf bifurcation phenomena in power systems was first dis-
cussed in Ref. [15] for a single machine case. In their studies
the electro-mechanical mode was the critical one. In studies
relating to voltage collapse [16] it was shown that the exciter
mode may go unstable first. We have shown that both exciter
modes and electromechanical modes are critical in steady state
stability and voltage collapse and that they both participate
in the dynamic instability.

In conventional bifurcation theory terms, one ¢an think of
solving g(z,y) = 0 for y = h(z) and substituting this in the
differential equation to get = f(z, h(z)). The change in sign
of detJ g is the instant when solution of y is no longer possi-
ble. A concrete mathematical underpinning of this idea in the
context of power systems is known as “Singularly induced bi-
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Figure 3: Critical modes of j,y, as a function of the load
at bus-5

furcation” in {17]. The concept of “Impasse surface” [18] may
also be useful.

Structural stability region is the same as the ‘Typal’ region
discussed in [17]. The ‘feasibility’ region is the region around
a point in the parameter space for which the system is small
signal stable.

4 Effect of Static and Dynamic
Load Modeling

In this section we discuss the effects of load modeling on struc-
tural stability. We emphasize the problem with the existence
of solutions to the network/load model. We also present results
concerning induction motor load models.

4.1 Bifurcations leading to loss of solution

The study of feasible operating points for use in steady-state
stability studies has been addressed in the literature [19-23].
Beyond load flow, the topic of existence of solutions to net-
work/load equations during dynamic analysis has been given
somewhat less consideration in the literature. Interestingly,
in [24] a distinction is made between bifurcations of the sys-
tem algebraic equations and the bifurcations of the complete
dynamic system. Whereas bifurcations of the dynamic system
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may occur, bifurcations in the algebraic equations may indicate
an unacceptable model at this point. A model must exhibit a
real solution if it represents a physical system. One of the
objectives in [18, 25] is to determine which static load models
guarantee that a solution exists to the network/load equations.
Specifically the common load model relating consumed power
to an exponential of bus voltage magnitude is examined:

P(VY4+3iQ(V) = P.V* +jQ. V™. (8)

Here we present a general result for multimachines systems.

Main Result: Assuming that the transmission network can be
modeled by passive elements and loads are represented by (8)
with parameters constrained by

P,>0
kp, kg>1

then the network/load quasi-static algebraic equations will ex-
hibit at least one solution. The proof is given in [27).

Now we present a simple example in which the conditions
above are made clear. Consider the single unity power factor
load connected to a source through a lossless transmission line
shown in Figure 4.

T 70.1 I,

P= P,V.’

Figure 4: A single source/single load system
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Figure 5: Load voltage vs. power coefficient

Assuming E = 1, the solutions for V as a function of k, and
P, are shown in Figure 5. We emphasize that a real solution
for V always exists for any Po > 0 with k, > 1 but may not
exist for k, < 1. This simple example helps to illustrate the
bounds on the load model such that a solution exists.

To demonstrate explicitly how these results affect dynamic
analysis, we perform a nonlinear simulation on the IEEE 10-
machine/39-bus system. Initially the system is at its base load-
ing, and the generators are modeled using a two-axis model

with IEEE type I voltage regulator and a third-order tur-
bine/governor model.

At the base loading level, the two most heavily loaded trans-
mission lines are those connecting bus 21 to bus 36 and bus 39
to bus 36. The simulation involves disconnecting these lines.
At time t = 0 sec the system 1is in steady state. At time ¢t =1
sec the line connecting buses 21 and 36 is removed. At time
t = 2 sec the line connecting buses 39 and 36 is removed.
The bus with the lowest voltage in the system is bus 21. In
Fig. 6, the voltage at this bus is shown assuming different val-
ues for the load exponents. The trajectory labeled “k = 0”
corresponds to the transients when all loads are modeled as
constant power. The trajectory labeled “k = 1” corresponds
to loads modeled as constant current magnitude at a constant
power factor. The trajectory labeled “k = 2” corresponds to
constant impedance loads. In the constant power case, the
simulation fails to converge shortly after the second line is re-
moved. The other two cases result in severe voltage conditions,
yet the system is stable.
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Figure 6: Low voltage after line outages

The simulations denoted by “k = 1” and “k = 2” correspond
to possible power system transients. The simulation denoted
by “k = 0 represents an impossible system transient since it
fails to depict the transient after finite time. In actual com-
mercial grade programs, this is avoided by switching the bus
to constant impedance when the voltage falls below a certain
value.

One may argue that the constant power load model (or any
model kp, kg < 1) is valid for some (high) voltage levels but
is not valid over the complete range of possible transient con-
ditions. These types of models are typically used to represent
induction motor presence in a power system. For voltage insta-
bility studies in which low voltages transients are expected, it is
necessary to include more detailed models of induction motors
to capture low voltage transient induction motor phenonena.

4.2 Bifurcations of the dynamic system

In this section we examine bifurcations in the total dynamic
system using two different loads: a constant power model and
an induction motor model.

The test systems are shown in Figs. 7 and 8. Both systems
consist of a single generator connected to a single load through
a lossless transmission line. In Fig. 7 the load is constant
active power. In Fig. 8 the load is a compensated induction
motor such that at a given operating point the resistor con-
sumes 50% of the active power, the induction motor consumes



50% of the active power, and the shunt capacitance provides
100% compensation for reactive losses in the induction motor.
The generator is represented by a two-axis model with an IEEE
type I voltage regulator and a third-order turbine and gover-
nor model. The induction motor is represented by a third-order
model in which the mechanical torque load is assumed to be
linear to rotational speed. It is used as an aggregate to model
many small induction motors in parallel.

S.M. P

Figure 7: Single machine, constant active power load
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1

- R | %.jxc I M.

Figure 8: Compensated induction motor, unity power fac-
tor load

Detection of global bifurcations is difficult, so we begin by
examining local bifurcations which can be detected from an
eigenvalue analysis. In each case, the constant power load and
the compensated induction motor load, the total active power
of the load is increased until an eigenvalue crosses the imagi-
nary axis of the complex plane. The eigenvalues at this point
are given in Table 2, and the participation factors correspond-
ing to the critical eigenvalues are shown in Table 3.

Table 2: Eigenvalues at Critical Levels of Load

Constant P ™M

Py, = 2.36pu

P, =3.16pu

0.0010 £ 71.854
—0.1852 & j0.2770
—2.963

—4.673

—5.153 £ 77.643
—20.08

—0.000

N/A

N/A

0.0042 £ ;1.906
—0.2067 + j0.2699
—2.165

—4.698

—5.277 & j7.763
—20.08

0.000

-10.96

—47.41 + j48.57

It is interesting to note the significance of Tables 2 and 3. Al-
though the instability boundary occurs at different loadings for
the constant power and the induction motor examples, qual-
itatively they are similar. The eigenvalues of the linearized
systems have comparable values and the critical unstable eigen-
values are strongly related to the E; and Ry states in the gen-
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Table 3: Participation Factors for the Unstable Eigenval-
ues

P ™

5 || 0.000 0.036
w || 0.000 0.038
E, || 0.439  0.287
E, [ 0.12¢ 0.094
Efq || 0.101  0.061
R; || 0.267 0.159
V. || 0.070 0.043
T || 0.000 0.005
P.r. || 0.000 0.005
P,, || 0.000 0.002
Ep 0.126
E, 0.083

s 0.060

erator model. The critical eigenvalues are a complex pair which
cross the jw axis at some point other than the origin. This is
a “Hopf bifurcation.” It corresponds to an intersection of an
equilibrium point (a limit set) with a limit cycle (another limit
set). It is expected that in the vicinity of this bifurcation either
stable or unstable limit cycles should exist. It is called “sub-
critical” if the limit cycles are unstable and “supercritical” if
the limit cycles are stable.

The Hopf bifurcation for the constant power case has been
studied and is subcritical [28]. This means that, as the loading
is increased towards the bifurcation point, there is an unstable
limit cycle which bounds the region of attraction of the stable
system. Because there are ten state variables in the model, the
entire phase plane cannot be visualized. Since the participation
factors indicate that the critical mode is associated with the
E, and Ry variables, view the E, — R; plane, keeping in mind
that this is only a cross section of the entire state space. To
examine the flow in this plane, a perturbation in the value
of E; is introduced and the resulting trajectories are plotted.
Starting with a constant power load of Pr = 2.35 pu, the flow
in Fig. 9 indicates an unstable limit cycle (solid line) around
the locally stable equilibrium point. Trajectories lying inside
the limit cycle spiral in towards the equilibrium; trajectories
outside the limit cycle spiral outwards. Changing the loading
to Py, = 2.37 pu, the flow in Fig. 10 does not show any limit
cycle and the equilibrium point is unstable. All trajectories
spiral outwards. This is consistent with the observation that
this Hopf bifurcation is subcritical.

Now examine the induction motor example. A calculation of
participation factors indicates that again the E; and Ry vari-
ables greatly affect the critical mode. At a loading of Py, = 3.15
pu, the flow is examined by introducing a perturbation in E;.
The trajectory in Fig. 11 indicates that the equilibrium point
is stable and is surrounded by two limit cycles, one unstable
(inner) and one stable (outer). At a loading of Pr = 3.17 the
trajectories in Fig. 12 indicate that there is one stable limit
cycle around the unstable equilibrium point. The difference
between these graphs is seen by the change in the behavior of
the innermost trajectories. The innermost (and unstable) limit
cycle shown in Fig. 11 does not appear in Fig. 12. The Hopf
bifurcation is still subcritical; however, the presence of the sta-
ble limit cycle makes the dynamics significantly different from
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Figure 9: The constant power case, P, = 2.35pu
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Figure 10: The constant power case, Py = 2.37pu

those for the constant power case. Physically this means that
the power system will exhibit sustained oscillations, either if
the system is unstable or if a large disturbance is applied to
the stable system. '

08

Rf

06 [

04

02

02 . L . 1 L n .
1

0 0.2 04 0.6 08

Figure 11: The IM model, P, = 3.15pu

The differences between the flow in the phase planes are
important. One of the traditional justifications for the con-
stant power load model is the presence of induction motors.

Figure 12: The IM model, Py, = 3.17pu

This may even be supported, in part, by the standard stabil-
ity studies in which the eigenvalues of both models indicate an
instability on the top half of the P-V curve. In addition, the
participation factors indicate that this instability is associated
with the E; and Ry variables in the generator. However, the
flow in state space shows that they are fundamentally differ-
ent. As the constant power load is increased, the region of
attraction around the equilibrium point shrinks, and after the
bifurcation, the system is unstable with no limit cycles. When
the eigenvalue becomes positive using induction motor param-
eters, the system exhibits stable limit cycles which appear as
oscillations in the power system. The choice of load model
greatly affects the dynamic behavior of the system.

Research into the effects of load modeling needs to be pur-
sued further to gain a full understanding of the critical phe-
nomena.

5 Conclusion

We summarize some of our results and indicate further areas
of research.

1. Structural stability has been examined through several
power system examples and related to bifurcation phe-
nomena which have been reported in the literature. In
particular, the concepts of global and local bifurcations
were illustrated as structural instabilities. At this point,
the task of finding regions in parameter space on the
boundary of which the phase portraits change qualita-
tively is straightforward only for second order systems.
Work is needed in this area to extend the application to
realistic systems.

2. The maximum loadability for constant power load was
compared to that of an induction motor. It was shown
that while both models have a maximum load level, the
dynamic nature of the induction motor limiting instability
was considerably different than that of constant power.
Both experienced Hopf bifurcations, but the induction
motor instability was bounded by a stable limit cycle.
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