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Abstract Results are presented for computations of un-
steady viscous transonic ¯ows past a stationary NACA0012
airfoil at various angles of attack. The Reynolds number,
based on the chord-length of the airfoil, is 10,000 and the
Mach number is 0.85. Stabilized ®nite-element formula-
tions are employed to solve the compressible Navier-
Stokes equations. The equation systems, resulting from the
discretization, are solved iteratively by using the pre-
conditioned GMRES technique. Time integration of the
governing equations is carried out for large values of the
non-dimensional time to understand the unsteady dy-
namics and long-term behavior of the ¯ows. The results
show interesting ¯ow patterns and a complex interaction
between the boundary/shear layers, shock/expansion
waves and the lateral boundaries of the computational
domain. For transonic ¯ow past an airfoil at various angles
of attack in a narrow channel/wind-tunnel one can observe
solutions that are qualitatively different from each other.
At low angles of attack an unsteady wake is observed. At
moderate angles of attack the interaction between the
shock system and the lateral walls becomes signi®cant and
the temporal activity in the wake decreases and eventually
disappears. At high angles of attack a re¯ection shock is
formed. Hysteresis is observed at an angle of attack 8�. For
the ¯ow in a domain with the lateral boundaries located far
away, the unsteadiness in the ¯ow increases with an in-
crease in the angle of attack. Computations for a Mach 2,
Re 106 ¯ow past an airfoil at 10� angle of attack compare
well with numerical and experimental results from other
researchers

1
Introduction
Accurate computation of viscous transonic ¯ows past
wings and airfoils is vital to the design of advanced air-
planes. There have been numerous efforts in the past to

compute steady inviscid transonic ¯ows (Hughes and
Tezduyar 1984; Bristeau et al. 1985; Lohner et al. 1985; Le
Beau and Tezduyar 1991; Tezduyar and Hughes 1983;
Peraire et al. 1993; Johan 1992). Viscous ¯ow computa-
tions for steady transonic ¯ows have also been carried out
by various researchers (Bristeau et al. 1988; Muller and
Rizzi 1988; Jameson and Schmidt 1985; Boivin and Fortin
1993; Aliabadi and Tezduyar 1995). Some of these studies
involve computations of ¯ow past an entire airplane.
However, fewer studies have been conducted for unsteady,
transonic, viscous ¯ows (Bristeau et al. 1988; Boivin and
Fortin 1993; Sarkis et al. 1996; Mittal 1998). It is interesting
to note that unsteady computations for incompressible
¯ows past wings and airfoils are carried out quite routinely
(Mittal and Tezduyar 1992, 1994, 1995). Some other un-
steady ¯ow results can be found in articles by Karanth
et al. [18] and Tezduyar et al. (1996). Unsteady compress-
ible ¯ows involving airfoils at low Mach numbers, in the
subsonic regime, have also been computed by various
researchers, for example, by Dortmann (1988) and Alia-
badi and Tezduyar (1993).

In this article, results are presented for the computation
of unsteady viscous transonic ¯ows past airfoils at various
angles of attack. Such ¯ows are associated with complex
unsteady interactions between the boundary/shear layers
and shock/expansion waves and, in the numerical simu-
lations, care must be taken to adequately resolve the as-
sociated temporal and spatial structures. Another issue
that deserves utmost attention is the one of imposing the
right set of boundary conditions for the compressible
Navier-Stokes equations. The interested reader is referred
to the work by Oliger and Sundstrom (1978) and Gust-
afssons and Sundstrom (1978). In the present work,
computations for Mach 0.85 and Re 10,000 ¯ow past a
NACA0012 airfoil are carried out for two locations of the
lateral boundaries. When the lateral boundaries are lo-
cated at 12 chord-lengths, each, from the airfoil, there is no
interaction between the ¯ow and the two boundaries. It is
observed that the lambda shock, formed near the airfoil
surface, becomes stronger as the angle of attack of the
airfoil increases. The unsteadiness in the wake also in-
creases as the angle of incidence of the airfoil, with the
free-stream ¯ow, increases. The situation changes when
the lateral boundaries are brought closer to the airfoil.
Computations have been carried out for the case when the
lateral boundaries are located at 4.25 chord-lengths, each,
from the airfoil. This case is quite similar to the ¯ow past
an airfoil in a narrow channel. The channel walls are,
however, assumed to allow for the slip-¯ow. Except at
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small angles of attack �a� there is a signi®cant interaction
between the ¯ow and channel walls. Beyond a certain angle
of attack, increasing a leads to a decrease in the un-
steadiness in the wake of the ¯ow, till at a � 8� the ¯ow
becomes steady. Beyond a � 8� the ¯ow remains steady
while the shock-structure goes through a qualitative
change. At a � 10� a set of shocks re¯ected from the lat-
eral boundaries can be observed in the solution. When this
solution is used as an initial condition to compute the ¯ow
at a � 8�, by slowly ramping the angle of attack, a steady-
state ¯ow is achieved again. However, the shock-structure
of this ¯ow is quite different than the one obtained earlier.
This suggests that there is hysteresis in the ¯ow close to
a � 8�, i.e., the solution depends on the initial conditions.
When the angle of attack is decreased further, the ¯ow
becomes unsteady again and is independent of the initial
conditions. It is interesting to note that Bristeau et al.
(1985) also reported the existence of multiple solutions for
their computation of steady inviscid potential transonic
¯ows past a NACA0012 airfoil at various angles of attack. It
must, however, be pointed out that the reasons for the
presence of multiple solutions reported by Bristeau et al.
(1985) and for the present computations are quite differ-
ent. The multiple solutions in the present computations
are a result of strong interaction of the ¯ow and lateral
boundaries. In the case of inviscid potential ¯ows the
Kutta-Joukowsky condition needs to be satis®ed explicitly
for airfoils with sharp trailing edge. This along with other
conditions are not suf®cient to ensure uniqueness of the
solution as observed by Bristeau et al. (1985).

The organization of the remaining article is as follows.
First, the governing equations for the ¯ow are reviewed in
Sect. 2. The equations are written in the conservation law
form. The stabilized variational formation of these equa-
tions in terms of the conservation variables is presented in
Sect. 3. The SUPG (Streamline-Upwind/Petrov-Galerkin)
stabilization technique is employed to stabilize the com-
putations against spurious numerical oscillations due to
advection dominated ¯ows. The SUPG technique was ®rst
introduced by Hughes and Brooks (1979) for the advec-
tion-diffusion equation and for incompressible ¯ows. It
was introduced in the context of inviscid compressible
¯ows by Tezduyar and Hughes (1983, 1982) and Hughes
and Tezduyar (1984). In addition to the SUPG stabiliza-
tions, a shock-capturing term is added to the formulation
to provide stability of the computations in the presence of
discontinuities and large gradients in the ¯ow. This idea,
in the context of conservation variables, was demonstrated
by Le Beau and Tezduyar (1991). In Sect. 4 numerical
results for computations of ¯ows past airfoils at various
angles of attack are presented and discussed. Finally, a few
concluding remarks are made in Sect. 5.

2
The governing equations
Let X � Rnsd and (0, T) be the spatial and temporal do-
mains respectively, where nsd is the number of space di-
mensions, and let C denote the boundary of X. The spatial
and temporal coordinates are denoted by x and t. The
Navier-Stokes equations governing the ¯uid ¯ow, in con-
servation form, are

oq
ot
� $ � �qu� � 0 on X for �0;T� ; �1�

o�qu�
ot
�$ � �quu� � $pÿ $ � T�0 on X for �0;T� ; �2�

o�qe�
ot
� $ � �qeu� � $ � �pu�

ÿ $ � �Tu� � $q � 0 on X for �0;T� : �3�
Here q, u, p, T, e, and q are the density, velocity, pressure,
viscous stress tensor, the total energy per unit mass, and
the heat ¯ux vector, respectively. The viscous stress tensor
is de®ned as

T � l
ÿ�$u� � �$u�T�� k�$ � u�I : �4�

where l and k are the viscosity coef®cients. It is assumed
that l and k are related by

k � ÿ 2
3 l : �5�

Pressure is related to the other variables via the equation
of state. For ideal gases, the equation of state assumes the
special form

p � �cÿ 1�qi ; �6�
where c is the ratio of speci®c heats and i is the internal
energy per unit mass that is related to the total energy per
unit mass and velocity as

i � eÿ 1
2kuk2 : �7�

The heat ¯ux vector is de®ned as

q � ÿj$h ; �8�
where j is the heat conductivity and h is the temperature.
The temperature is related to the internal energy by the
following relation

h � R

cÿ 1
i ; �9�

where R is the ideal gas constant. Prandtl number �Pr�,
assumed to be speci®ed, relates the heat conductivity to
the ¯uid viscosity according to the following relation

j � cRl
�cÿ 1�Pr

: �10�

The compressible Navier-Stokes equations (1), (2), and
(3) can be written in the conservation variables

oU

ot
� oFi

oxi
ÿ oEi

oxi
� 0 on X for �0;T� ; �11�

where U � �q; qu1; qu2; qe�, is the vector of conservation
variables, and Fi and Ei are, respectively, the Euler and
viscous ¯ux vectors de®ned as

Fi �

uiq

uiqu1 � di1p

uiqu2 � di2p

ui�qe� p�

0BBB@
1CCCA ; �12�
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Ei �

0

si1

si2

ÿqi � sikuk

0BBB@
1CCCA : �13�

Here ui; qi, and sik are the components of the velocity, heat
¯ux, and viscous stress tensor, respectively. In the quasi-
linear form Eq. (11) is written as

oU

ot
� Ai

oU

oxi
ÿ o

oxi
Kij

oU

oxj

� �
� 0 on X for �0;T� ;

�14�
where

Ai � oFi

oU
; �15�

is the Euler Jacobian Matrix, and Kij is the diffusivity
matrix satisfying

Kij
oU

oxj
� Ei : �16�

Corresponding to Eq. (14), the following boundary and
initial conditions are chosen

U � g on Cg for �0;T� ; �17�
n � E � h on Ch for �0;T� ; �18�

U�x; 0� � U0 on X0 : �19�

3
Finite element formulation
Consider a ®nite element discretization of X into subdo-
mains Xe; e � 1; 2; . . . ; nel, where nel is the number of el-
ements. Based on this discretization, we de®ne the ®nite
element trial function space Sh and weighting function
spaceVh. These function spaces are selected, by taking the
Dirichlet boundary conditions into account, as subsets of
�H1h�X��ndof , where H1h�X� is the ®nite-dimensional func-
tion space over X and ndof is the number of degrees of
freedom.

Sh � �UhjUh 2 H1h�X�� �ndof
;

UhjXe 2 P1�Xe�� �ndof ;

Uh � ek �: gk on Cgk

	
; �20�

Fig. 1. M � 2:0, Re � 106, a � 10� ¯ow past a NACA0012 airfoil:
density ®eld for the steady-state solution from the present
computations

Fig. 2. M � 2:0, Re � 106,
a � 10� ¯ow past a NACA0012
airfoil: density ®eld for the stea-
dy-state solution; measurements
(left) from Allegre et al. and nu-
merical results (right) from Haase
(1987)
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Fig. 4. Mach � 0:85, a � 0�, H � 4:25 ¯ow past a NACA0012
airfoil: the ®nite element mesh; 19,014 nodes and 18,772 elements

Fig. 5. Mach � 0:85, Re � 2000, a � 0� ¯ow past a NACA0012
airfoil: density ®eld for the steady-state solution

Fig. 6. Mach � 0:85, Re � 2000, a � 0� ¯ow past a NACA0012
airfoil: Cp distribution on the airfoil surface and the stream-wise
variation of density in the domain at three vertical locations for
the steady-state solution

Fig. 7. Mach � 0:85, Re � 10;000, a � 0�, H � 4:25 ¯ow past a
NACA0012 airfoil: density ®eld at ®ve instants during one cycle of
lift coef®cient for the temporally periodic solution

Fig. 3. Flow past an airfoil in a channel problem description
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Vh � �WhjWh 2 H1h�X�� �ndof
;

WhjXe 2 P1�Xe�� �ndof ;

Wh � ek �: 0 on Cgk

	
; �21�

where �P1�X�e�� represents the ®rst order polynomial in
Xe, and k � 1; . . . ; ndof . The stabilized ®nite element for-
mulation of Eq. (14) is written as follows: ®nd Uh 2Sh

such that 8Wh 2Vh,Z
X

Wh � oUh

ot
� Ah

i

oUh

oxi

� �
dX

�
Z

X

oWh

oxi

� �
� Kh

ij

oUh

oxj

� �
dX

�
Xnel

e�1

Z
Xe

s Ah
k

ÿ �T oWh

oxk

� �
� oUh

ot
� Ah

i

oUh

oxi
ÿ o

oxi
Kh

ij

oUh

oxj

� �� �
dX

�
Xnel

e�1

Z
Xe

d
oWh

oxi

� �
� oUh

oxi

� �
dX

�
Z

Ch

Wh � hh dC : �22�

Remarks
1. In the variational formulation given by Eq. (22), the

®rst two terms and the right-hand-side constitute the
Galerkin formulation of the problem.

2. The ®rst series of element-level integrals in Eq. (22)
are the SUPG stabilization terms added to the variational
formulation to stabilize the computations against node-to-
node oscillations in the advection-dominated range. The
second series of element level integrals in the formulation
are the shock capturing terms that stabilize the computa-
tions in the presence of sharp gradients. The stabilization
coef®cients d and s are quite similar to the ones that are
used by Le Beau (1990) and Le Beau and Tezduyar (1991)
and are de®ned as

s � max 0; sa ÿ sd� � ; �23�

sa � 2�c� kuk�
h

� �2

� 12m
h2

� �2
 !ÿ1

2

I : �24�

Fig. 8. Mach � 0:85, Re � 10;000, a � 0�, H � 4:25 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
their power spectra, the Cp distribution on the airfoil surface and
the stream-wise variation of the density at various vertical loca-
tions corresponding to the peak value of the lift coef®cient

Fig. 9. Mach � 0:85, Re � 10;000, a � 2�, H � 4:25 ¯ow past a
NACA0012 airfoil: density ®eld at ®ve instants during one cycle of
lift coef®cient for the temporally periodic solution
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sd � d

2�c� kuk�2 I ; �25�

d �
 oU

ot � Ai
oU
oxi


Aÿ1

0J1i
oU
oxi


Aÿ1

0
� J2i

oU
oxi


Aÿ1

0

" #1
2

; �26�

where c is the wave speed, h is the element length, Jjk are
the components of Jacobian transformation matrix from
physical to the local coordinates and Aÿ1

0 is the inverse of
Reimannian metric tensor related to the transformation
between the conservation and entropy variable (Hughes
and Mallet 1986). Matrix sd is subtracted from sa to ac-
count for the shock-capturing term as shown in Eq. (23).
The de®nition of d used in Eq. (26) is the same as in (Le
Beau and Tezduyar 1991; Le Beau 1990; Aliabadi 1994;
Aliabadi et al. 1993) except that it includes the unsteady
term in the numerator. The inclusion of this term renders
consistency to the formulation, even for unsteady com-
putations, at-least in the case of inviscid ¯ows.

3. The time discretization of the variational formulation
given by Eq. (22) is done via the generalized trapezoidal
rule. For unsteady computations, we employ a second-
order accurate-in-time procedure.

4
Results and discussions
All the computations reported in this article are carried
out on Digital work-stations at IIT Kanpur. The method
has already been tested on various benchmark problems
(Le Beau and Tezduyar 1991; Aliabadi and Tezduyar 1995;
Mittal 1998; Le Beau 1990; Aliabadi et al. 1993). The non-
linear equation systems resulting from the ®nite-element
discretization of the ¯ow equations are solved using the
Generalized Minimal RESidual (GMRES) technique (Saad
and Schultz 1986) in conjunction with diagonal and block-
diagonal preconditioners. Computations at each time-step
involve solution for two non-linear iterations. With 10
inner iterations of the (GMRES) procedure the residual of
the linearized equation system at each non-linear step is
reduced by, approximately, three orders of magnitude. We
have observed that a further increase in the number of
inner (GMRES) iterations, although improves the con-
vergence of the linearized algebraic equation system, does
not result in any signi®cant changes in the ¯ow results.
Sarkis et al. (1996) have reported results for a new variant

Fig. 10. Mach � 0:85, Re � 10;000, a � 2�, H � 4:25 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
their power spectra, the Cp distribution on the airfoil surface and
the stream-wise variaton of the density at various vertical loca-
tions corresponding to the peak value of lift coef®cient

Fig. 11. Mach� 0:85, Re� 10;000, a � 5�, H � 4:25 ¯ow past a
NACA0012 airfoil: density ®eld at ®ve instants during one cycle of
lift coef®cient for the temporally periodic solution
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of the Schwarz preconditioned (GMRES) methods for
unsteady compressible ¯ow calculations with various
preconditioners and for various values of the Courant
Number. The interested reader is referred to their article
for an interesting discussion on the performance of var-
ious preconditioners in the context of unsteady compres-
sible ¯ows. For all the cases the viscosity and thermal
conductivity coef®cients are constant, the Prandtl Number
is 0.72 and the ratio and the ratio of speci®c heats, c, is 1.4.
The Reynolds number is based on the chord of the airfoil,
the free-stream velocity and kinematic viscosity.

4.1
Mach = 2, Re = 106, a = 10� flow past
a NACA0012 airfoil
Experimental results for this ¯ow are available (Bristeau et
al. 1988; Allegre et al. 1987) and, therefore, this case has
become a standard test problem. The airfoil surface is
assumed to be adiabatic and the no-slip condition is
speci®ed for the velocity on its wall. All the variables are
speci®ed on the upstream boundary. At the downstream
boundary the viscous stress and heat ¯ux vectors are as-
signed a zero value. On the lateral boundaries the com-
ponents of velocity and heat ¯ux normal to and the
component of viscous stress vector along these boundaries
are prescribed zero values. The upstream and downstream

boundaries are located at 4.25 and 7.75 chord-lengths,
respectively, from the mid-chord point of the airfoil. The
lateral boundaries are located at 12 chord-lengths, each
from the airfoil. The computations are initiated with free-
stream conditions in the entire domain. Figure 1 shows the
density ®eld for the steady state solution. Shown in Fig. 2
are the density ®elds from laboratory experiments and
numerical results from other researchers (Bristeau et al.
1988; Allegre et al. 1987; Haase 1987). It can be observed
that the present solutions compare quite well with those
obtained by others. The steady state drag and lift coef®-
cients for the present solution are 0.496 and 0.333, re-
spectively. The value of drag coef®cient reported by other
researchers varies between 0.41±0.49 while that for lift
coef®cient is between 0.31±0.41 (Haase 1987; Bristeau et al.
1987; Bassi et al. 1988).

4.2
Mach = 0:85 flow past a NACA0012 airfoil
A NACA0012 airfoil is placed in a Mach 0.85 ¯ow. Figure 3
shows the boundary conditions that are prescribed for the
simulations. The airfoil surface (A) is assumed to be

Fig. 12. Mach � 0:85, Re� 10;000, a � 5�, H � 4:25 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
their power spectra, the Cp distribution on the airfoil surface and
the stream-wise variation of the density at various vertical loca-
tions corresponding to the peak value of the lift coef®cient

Fig. 13. Mach � 0:85, Re� 10;000, a � 7�, H � 4:25 ¯ow past a
NACA0012 airfoil: density ®eld at t � 2:3, 43.1, 104.7, 226.4, 654.6
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adiabatic and the no-slip condition is speci®ed for the
velocity on its wall. At the upstream boundary �B1±B4�,
density and both components of velocity are assigned free-
stream values while the component of heat ¯ux vector
normal to the boundary is assumed to be zero. At the
downstream boundary �B2±B3�, the pressure is prescribed
while the viscous stress vector is assigned zero value. On
the upper and lower boundaries �B1±B2 and B3±B4�, the
components of velocity and heat ¯ux vector normal to and
the component of viscous stress vector along these
boundaries are prescribed zero values. The airfoil is lo-
cated at the origin of the coordinate axes. The location of
the upstream and downstream boundaries, from the mid-
chord point of the airfoil, correspond to L1 � 4:25 and
L2 � 7:75 chord-lengths, respectively. Unless speci®ed, the
computations are initiated with free-stream conditions in
the entire domain. A time step of 0.01 is used to ensure
time accuracy of the results. The chord-length of the air-
foil, the free-stream speed, temperature and density of the
¯ow are used to non-dimensionalize the various quan-
tities. On a Digital 250-4/266 work-station, each time-step
takes approximately 1 minute of CPU time.

Computations are carried out for two locations of the
lateral boundaries. In the ®rst case the upper and lower
boundaries are, each, located at H � 4:25 chord-lengths
away from the mid-chord point of the airfoil. The mesh
employed consists of 18,772 quadrilateral elements and
19,014 nodes. It is observed that when the angle of attack
of the airfoil, with respect to the free-stream ¯ow, is 5� and
above there is signi®cant interaction between the ¯ow and
the lateral boundaries. In the second case, the lateral
boundaries are, each, located at H � 12 chord-lengths
away from the mid-chord point of the airfoil. The ®nite-
element mesh, for this case, consists of 22,132 elements
and 22,414 nodes. For both the cases, the mesh close to the
airfoil, is same. The mesh for the ®rst case, and its close-
up, is shown in Fig. 4.

4.2.1
Mach = 0:85, Re = 2000, a = 0� flow past
a NACA0012 airfoil
This is a standard benchmark problem from one of the
GAMM workshops (Bristeau et al. 1988). At this Reynolds
number the present computations converge to a steady-
state solution. Shown in Fig. 5 is the density ®eld for the
steady-state solution. These solutions agree quite well with
the ones reported by other researchers (Bristeau et al.
1988; Boivin and Fortin 1993). The steady-state drag
coef®cient is 0.15. The value of drag coef®cient reported by
other researchers varies between 0.1±0.14 (Bristeau et al.
1987). Figure 6 shows the pressure distribution on the
airfoil surface and the stream-wise variation of density in
the domain at three vertical locations. It is observed that
the ¯ow is symmetric about the chord-line of the airfoil.
Unlike the case of Euler solution, in the present case, the
presence of shock does not lead to a jump in the pressure
on the airfoil surface. More details on this calculation and
comparison of results for various other cases, with ex-
perimental and numerical results from other researchers,
are given in Mittal (1998).

Fig. 14. Mach� 0:85, Re � 10;000, a � 7�, H � 4:25 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
the Cp distribution on the airfoil surface and the stream-wise
variation of the density at various vertical locations corre-
sponding to the temporally periodic solution at t � 654:6

Fig. 15. Mach � 0:85, Re� 10;000, a � 7�, H � 4:25 ¯ow past a
NACA0012 airfoil: time history of the density, and its power
spectrum, recorded by a probe located at (0.462, ÿ0:044) with
respect to the center of the airfoil
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4.2.2
Mach = 0:85, Re = 10;000, flow past a NACA0012 airfoil;
H = 4:25
This case corresponds to transonic ¯ow past an airfoil in a
channel or a wind-tunnel. Solutions are computed for
various values of the angle of attack of the airfoil. It is
observed that at low angles of attack �a � 0�; 2�� the lateral
boundaries do not interact with the ¯ow signi®cantly. At
a � 5� and beyond the effect of the side-walls becomes
important and leads to interesting solutions. At a � 8�
`hysteresis' is observed, i.e., one obtains two different
stable solutions depending on the initial conditions of the
simulation.

Figure 7 shows the density ®eld at ®ve instants during
one cycle of lift coef®cient for the temporally periodic

solution at a � 0�. The interaction between the shock and
expansion waves, and the boundary and shear layers can
be clearly observed. Downstream of the nose of the airfoil,
the ¯ow expands till, approximately, the mid-chord point.
By this point, the boundary layer thickness increases
causing the ¯ow to constrict, resulting in the formation of
a weak oblique shock. The interaction between the
boundary layer and shock wave results in the separation of
¯ow and one can observe the formation of a shear layer
downstream of the shock. Another shock is formed further
downstream that combines with the shock and expansion
waves formed upstream resulting in a lambda shock. One
vortex shed alternately from each of the upper and lower
surfaces of the airfoil constitutes one cycle of vortex-
shedding. These ¯ow patterns compare quite well with the
computational results reported in Bristeau et al. 1988 and
with the experimental results reported in Shapiro (1958,
p. 414). It must be pointed out that the laboratory ex-
periments (Shapiro 1958) correspond to a much larger
Reynolds number. Figure 8 shows the time histories of the
lift and drag coef®cients, their power spectra, the Cp dis-
tribution on the airfoil surface and the stream-wise var-
iation of the density at various vertical locations

Fig. 18. Mach � 0:85, Re � 10;000, a � 10�, H � 4:25 ¯ow past a
NACA0012 airfoil: density ®eld at t � 3:6, 50.3, 100.3, 120.3, 150.3

Fig. 17. Mach � 0:85, Re� 10;000, a � 8�, H � 4:25 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
Cp distribution on the airfoil surface and the stream-wise varia-
tion of density in the domain at three vertical locations for the
steady-state solution

Fig. 16. Mach� 0:85, Re � 10;000, a � 8�, H � 4:25 ¯ow past a
NACA0012 airfoil: density ®eld for the steady-state solution
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corresponding to the peak value of the lift coef®cient. The
Strouhal number corresponding to the lift coef®cient
variation is 1.58 while the drag coef®cient is almost con-
stant during each cycle of vortex shedding. In Fig. 7, from
the pictures showing the ¯ow close to the airfoil, it can be
observed that the unsteadiness in the pressure felt by the
airfoil surface, due to vortex shedding, is con®ned to a
small region near the trailing edge. For a � 0, the airfoil
surface close to the trailing edge is almost in the free-
stream direction and therefore, the unsteady pressure
forces contribute mainly to the unsteadiness in lift and
have a negligible effect on the time-variation of the drag
force. It should be noted that the chord-length of the
airfoil (and not its thickness) has been used to obtain the
non-dimensional quantities. If the Strouhal number is
non-dimensionalized with respect to the thickness of the
airfoil than one obtains a value of 0.19. Notice that this
value of the Strouhal number is very close to the one for a
bluff-body in an incompressible ¯ow. This observation is
consistent with that made by other researchers that it is
possible to de®ne a `universal' Strouhal number for any

section based on the separation distance between shear
layers. The effect of vortex shedding and the shocks/ex-
pansion waves can be clearly observed in the plot of
stream-wise density variation. The effect is mostly felt
close to the airfoil surface while far away, close to the
upper wall, the effect is negligible.

Solutions for ¯ow at angle of attack 2� is shown in Figs. 9
and 10. The asymmetry between the ¯ows on the upper
and lower surfaces of the airfoil is clearly visible. Com-
pared to the ¯ow for a � 0� the unsteadiness in the ¯ow is
stronger. Also, the lambda shock on the upper surface is
stronger compared to the previous case. This can also be
observed from the comparison of the stream-wise density
distribution for the two cases. The effect of the presence of
the airfoil on the density at y � 4, close to the upper wall,
is still quite negligible. The Strouhal number correspond-
ing to the lift coef®cient variation has the same value as for
a � 0� case. The drag coef®cient also oscillates with the
same frequency as the lift coef®cient. This is in quite
contrast to the observation one makes for ¯ows past bluff
bodies where the drag coef®cient oscillates at twice the
frequency of the lift coef®cient. Recall, the unsteady ¯ow
past a circular cylinder involves ¯ow separation at both,
the lower and upper surfaces. During each cycle of the
temporal variation of the lift coef®cient the unsteadiness
on both the lower and upper surfaces contribute to the

Fig. 20. Mach � 0:85, Re � 10;000, a � 10�, H � 4:25 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
Cp distribution on the airfoil surface and the stream-wise varia-
tion of density in the domain at three vertical locations for the
steady-state solution

Fig. 19. Mach � 0:85, Re � 10;000, a � 10�, H � 4:25 ¯ow past a
NACA0012 airfoil: density ®eld at t � 200:3, 300.3, 400.3, 500.3,
645.5
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unsteadiness in the drag coef®cient. On the other hand, for
¯ow past an airfoil at an angle of attack, one observes
separation of ¯ow only on the upper surface while the ¯ow
on the lower surface is attached and steady. Therefore, the
drag coef®cient oscillates at the same frequency as the lift
coef®cient.

Figures 11 and 12 show the solution for ¯ow at a � 5�.
Compared to the previous cases, lambda shock becomes
even stronger. This can be seen from both, the iso-density
contours in Fig. 11 and from stream-wise variation in
density at various vertical locations in Fig. 12. Ad-
ditionally, in this case, the effect of shock on the upper
wall is not negligible as can be observed from the plot of
stream-wise variation of density at y � 4. The Strouhal
number corresponding to the lift and drag coef®cient
variation is 1.69. This value is higher than that in the
previous cases. It will be seen later that when the distance
between the airfoil and the lateral boundaries is increased
the Strouhal number for the resulting ¯ow has a much
lower value. Therefore, it can be concluded that the in-

teraction between the shock and the upper wall is re-
sponsible for the increased Strouhal number.

At a � 7� the interaction between the lateral boundaries
and the shocks increases even further and leads to very
interesting observations. Figure 13 shows the density ®eld
for the solution at various time instants during the simu-
lation. At t � 2:3 one can see the upstream propagation of
the initial bow-shock. A lambda shock forms on the upper
surface of the airfoil. At t � 43:1 the lambda shock is quite
well developed and one can observe the von Karman
vortex street in the wake of the airfoil. The lambda shock
develops even further by t � 104:7 and extends up to the
upper wall. Beyond t � 100 the ¯ow quantities on the
surface of the airfoil do not change much while the wake
and rear part of the lambda shock go through some
changes. At t � 226:4 the downstream part of the lambda
shock becomes weaker. This causes a decrease in the ad-
verse pressure gradient as a result of which the unsteadi-
ness in the wake decreases. Beyond t � 300, the ¯ow in the
near wake, close to the airfoil, does not go through any
signi®cant change. At approximately t � 500 the ¯ow
reaches a temporally periodic state. The last two frames of
Fig. 13 show the density ®eld corresponding to the tem-
porally periodic solution at t � 654:6: Figure 14 shows the
time histories of the lift and drag coef®cients the Cp

Fig. 22. Mach � 0:85, Re � 10;000, a � 8�, H � 4:25 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
Cp distribution on the airfoil surface and the stream-wise varia-
tion of density in the domain at three vertical locations for the
steady-state solution. The steady-state solution at a � 10� (see
Fig. 19) is used as an initial condition

Fig. 21. Mach � 0:85, Re � 10;000, a � 8�, H � 4:25 ¯ow past a
NACA0012 airfoil: density ®eld at t � 29:4, 97.1, 187.1, 263.7,
327.4. The steady-state solution at a � 10� (see Fig. 19) is used as
an initial condition
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distribution on the airfoil surface and the stream-wise
variation of the density at various vertical locations for the
temporally periodic solution. The lift and drag coef®cients
reach a steady-state value at approximately t � 300. This
observation is consistent to the one that was made with
regards to the ¯ow ®eld. From the plot for the stream-wise
variation of density at various locations it can be observed
that the lambda shock is signi®cantly stronger in this than
at lower angles of attack. However, the unsteadiness in the
wake is much lower at a � 7�. Additionally, the shock
extends all the way up to the upper wall and this can also
be seen from the jump in the density for y � 4. Figure 15
shows the time history of the density recorded by a probe
located at (0.462,±0.044) with respect to the center of the
airfoil. Also shown in the ®gure are the power spectra of
the density variation for 40 � t � 60 and 500 � t � 600.
In the initial stages of the simulation, when the shock has
still not reached the upper wall, the Strouhal number
corresponding to the dominant frequency of density var-
iation is 1.41 which is quite clsoe to the one for ¯ows at
lower angles of attack. However, for the temporally peri-

odic solution, the Strouhal number is 2.08. The effect of
these temporal variations in the wake is quite negligible on
the lift and drag coef®cients.

Computations at a � 8� show a similar behavior as for
a � 7� except that the ¯ow ®nally reaches a steady-state.
The density ®eld for the ®nal steady solution is shown in
Fig. 16. It can be observed that for this case the shocks
extend to both the lateral boundaries. Compared to the
solution at a � 7�, the expansion fan at the front half of
the airfoil is much stronger for this case, while the
downstream branch of the lambda shock, close to the
airfoil surface, is a much more gradual compression.
Therefore, the shear layer emanating from the upper sur-
face of the airfoil remains stable and results in a steady
wake. Figure 17 shows the time histories of the lift and
drag coef®cients, the Cp distribution on the airfoil surface
and the stream-wise variation of the density at various
vertical locations for the steady-state solution.

Figures 18 and 19 show the density ®eld at various time
instants during the simulation for the a � 10� case. At
t � 3:6 one can observe the upstream propagation of the
initial bow-shock and the development of the shock and
shear layers. At t � 50:3 the lambda shock is formed and
the von Karman vortex street develops in the wake. The
Strouhal number corresponding to the dominant fre-

Fig. 24. Mach � 0:85, Re � 10;000, a � 7�, H � 4:25 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
Cp distribution on the airfoil surface and the stream-wise varia-
tion of density in the domain at three vertical locations for the
solution at t � 1100. The steady-state solution at a � 8� (see Fig.
21) is used as an initial condition

Fig. 23. Mach � 0:85, Re � 10;000, a � 7�, H � 4:25 ¯ow past a
NACA0012 airfoil: density ®eld at t � 20:0, 296.4, 590.2, 798.5,
1118.5. The steady-state solution at a � 8� (see Fig. 21) is used as
an initial condition

183



quency of lift coef®cient is, approximately, 1.5. At later
times, the expansion fan on the front part of the airfoil
becomes stronger while the downstream branch of the
lambda shock, close to the airfoil surface, transforms into
a much more gradual compression. Therefore, the shear
layer emanating from the upper surface of the airfoil re-
mains stable and results in a steady wake. At t � 120:3 the
wake becomes steady and the solution looks quite similar
to the one for the a � 8� case. However, this shock
structure is unstable and at t � 150:3 one can observe the
development of a re¯ection shock. Figure 19 shows the
various stages of development of the re¯ection shock and
the steady-state solution. It is interesting to notice that the
near ®eld solution, close to the airfoil, remains steady
beyond t � 150. Figure 20 shows the time histories of the
lift and drag coef®cients, the Cp distribution on the airfoil
surface and the stream-wise variation of the density at
various vertical locations for the steady-state solution.

The next computation, for a � 8�, reveals the interest-
ing phenomenon of hysteresis. Using the solution from the
previous case for a � 10� as an initial condition, the angle

of attack of the airfoil is changed from a � 10� to a � 8� in
200 time steps. Recall, all the computations in the earlier
cases were initiated with free-stream conditions in the
entire domain. Figure 21 shows the steady-state density
®eld and the ones at various item instants during the si-
mulation. The ®nal solution is quite similar to the one at
a � 10�. Compared to the solution in Fig. 16, where the
computations are initiated with free-stream conditions in
the entire domain, two major differences are observed.
Unlike the ¯ow in Fig. 16, the present solution involves a
system of shocks re¯ected from the lateral boundaries. The
downstream branch of the lambda shock, close to the
airfoil surface, results in a much more gradual compres-
sion, in the present case. However, the near ®eld solution,
very close to the airfoil, is quite similar in the two cases.
Figure 22 shows the time histories of the lift and drag
coef®cients, the Cp distribution on the airfoil surface and
the stream-wise variation of the density at various vertical
locations for the steady-state solution. On comparing
Fig. 17 and 22 it can be observed that the steady-state
values of the lift and drag coef®cients and the Cp dis-
tribution on the airfoil surface are very close for the two
cases. These computations suggest that if a corresponding
experiment is conducted in a wind-tunnel then it is pos-
sible to see two stable solutions for a � 8� depending on
whether one achieves the ¯ow by keeping a � 8� and then

Fig. 26. Mach � 0:85, Re � 10;000, a � 5�, H � 12 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
their power spectra, the Cp distribution on the airfoil surface and
the stream-wise variation of the density at various vertical loca-
tions corresponding to the peak value of the lift coef®cient

Fig. 25. Mach � 0:85, Re � 10;000, a � 5�, H � 12 ¯ow past a
NACA0012 airfoil: density ®eld at ®ve instants during one cycle of
lift coef®cient for the temporally periodic solution
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starting the tunnel or by decreasing the angle of attack in
an already developed ¯ow at a larger a. However, it should
be pointed out that there are differences between the initial
conditions employed for the present calculations and the
start-up conditions for a real wind-tunnel.

In the next simulation, the solution from the previous
case for a � 8� is used as an initial condition and in 200
time steps the angle of attack of the airfoil is changed from
a � 8� to a � 7�. Figure 23 shows the density ®eld at
various time instants during the simulation. At a � 7� the
re¯ection shock solution is not stable and it degenerates to
the temporally periodic solution as obtained in the pre-
vious case when the computations are initiated with the
free-stream conditions in the entire domain (Fig. 13).
Figure 24 shows the time histories of the lift and drag
coef®cients, the Cp distribution on the airfoil surface and
the stream-wise variation of the density at various vertical
locations for the solution at t � 1100:

Starting from the solution at a � 7�, as the angle of
attack is decreased further, the resulting solutions re-
semble the ones obtained earlier when the computations

are initiated with the free-stream conditions in the entire
domain. Therefore, for the present case, hysteresis is ob-
served only at a � 8�. Perhaps, in reality, there is a range
of values around a � 8� where this phenomenon can be
observed. Locating this band of a will form an interesting
study. It is also expected that the behaviour of the ¯ow for
various angles of attack strongly depends on the location
of the lateral boundaries.

4.2.3
Mach = 0:85, Re = 10;000, flow past a NACA0012 airfoil;
H = 12
In the previous section it was seen that at a beyond 2� the
interaction between the lateral boundaries and the ¯ow
becomes quite signi®cant. To study the ¯ow past an airfoil
in `free-¯ight' conditions the lateral boundaries are moved
farther away (H � 12, refer to Fig. 3). Figure 25 shows the
density ®eld at ®ve instants during one cycle of lift coef-
®cient for the temporally periodic solution at a � 5�
computed on the extended domain. The ®gures show so-
lutions on same part of the domain as before, to assist in
comparison with the solutions obtained in previous sec-
tion. Figure 26 shows the time histories of the lift and drag
coef®cients, their power spectra, the Cp distribution on the
airfoil surface and the stream-wise variation of the density
at various vertical locations corresponding to the peak

Fig. 28. Mach � 0:85, Re � 10;000, a � 8�, H � 12 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
their power spectra, the Cp distribution on the airfoil surface and
the stream-wise variation of the density at various vertical loca-
tions corresponding to the peak value of the lift coef®cient

Fig. 27. Mach � 0:85, Re � 10;000, a � 8�, H � 12 ¯ow past a
NACA0012 airfoil: density ®eld at ®ve instants during one cycle of
lift coef®cient for the temporally periodic solution

185



value of the lift coef®cient. These ®gures can be compared
to Fig. 11 and 12 to study the effect of the location of
lateral boundaries on the ¯ow. Compared to the present
computation, for the H � 4:25 case, there is a much more
rapid acceleration of the ¯ow near the nose of the airfoil
causing a stronger expansion of the ¯ow. This has a sta-
bilizing effect on the shear layer leading to a reduced
temporal activity in the wake. This can also be observed by
comparing the amplitude of the lift and drag coef®cients
for the two cases. The Strouhal number for the present
case is 1.4.

Figures 27 and 28 show the solution for a � 8� while
those for a � 10� are shown in Figs. 29 and 30. Unlike the
solutions for H � 4:25, all the computations for the pre-
sent case result in temporally periodic solutions. The un-
steadiness in the ¯ow increases as the angle of attack of the
airfoil, with respect to the incoming ¯ow, increases. One
can also observe that the shocks become stronger, the
point of separation of the ¯ow on the upper surface moves
towards the leading edge as a increases. However, the
Strouhal number for all the cases remains constant at
approximately 1.4. The computations are repeated with

different sets of initial conditions. In all the cases, the ¯ow
develops to the same temporally periodic state as de-
scribed above. These observations are in sharp contrast to
the ones made, earlier, for the H � 4:25 case.

Behr et al. (1995) have carried out a careful study to
investigate the dependence of computed ¯ow ®eld on the
location of the lateral boundaries on the incompressible
¯ow past a circular cylinder. They observed that, for in-
compressible ¯ows, bringing the lateral boundaries close
to the cylinder results in an increase in the unsteadiness of
the ¯ow. This is manifested in the increased values of the
Strouhal number and amplitude of lift coef®cient. How-
ever, for the present study for transonic ¯ows, it is seen
that bringing the lateral boundaries close to the airfoil
results in alleviation of the unsteadiness of the ¯ow. Figure
31 summarizes the behavior of the various aerodynamic
coef®cients for the ¯ows at various angles of attack for
both locations of the lateral boundaries.

5
Concluding remarks
Results have been presented for the computation of un-
steady, laminar, viscous transonic ¯ows past a stationary
airfoils at various angles of attack. The computations in-
volve long-time integration of Navier-Stokes equations
and demonstrate the robustness of the numerical scheme.

Fig. 30. Mach � 0:85, Re � 10;000, a � 10�, H � 12 ¯ow past a
NACA0012 airfoil: time histories of the lift and drag coef®cients,
their power spectra, the Cp distribution on the airfoil surface and
the stream-wise variation of the density at various vertical loca-
tions corresponding to the peak value of the lift coef®cient

Fig. 29. Mach � 0:85, Re � 10;000, a � 10�, H � 12 ¯ow past a
NACA0012 airfoil: density ®eld at ®ve instants during one cycle of
lift coef®cient for the temporally periodic solution
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Wherever available, good agreement has been observed
with experimental and numerical results from other re-
searchers. The results show interesting ¯ow patterns and a
complex interaction between the boundary/shear layers,
shock/expansion waves and the lateral boundaries of the
computational domain. For transonic ¯ow past an airfoil
at various angles of attack in a narrow channel/wind-
tunnel one can observe solutions that are qualitatively
different from each other. At a low angles of attack an
unsteady wake is observed. At moderate angles of attack
the interaction between the shock system and the lateral
walls becomes signi®cant and the temporal activity in the
wake decreases and eventually disappears. At high angles
of attack a re¯ection shock is formed. Hysteresis is ob-
served at an angle of attack 8�. For the ¯ow in a domain
with the lateral boundaries located far away, the un-
steadiness in the ¯ow increases with an increase in the
angle of attack.
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