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This paper gives a review of our research efforts on the stabilized space-time finite element formulation of unsteady
incompressible flows, including those involving moving boundaries are interfaces. Iterative solution techniques employed to
solve the equation systems resulting from the space-time finite element discretization of these flow problems are also
reviewed. Results are presented for certain unsteady flow problems, including large-amplitude sloshing and flows past

oscillating cylinders.

1. Introduction

This manuscript is a written version of the
lectures of the second author at the Ninth Sum-
mer School on Computing Techniques in Physics,
held at Skalsky dvur, Czechoslovakia. The lec-
tures focused on review of our research efforts on
the stabilized space-time finite element formula-
tion of unsteady incompressible flows, including
those involving moving boundaries and interfaces.
Iterative solution techniques employed to solve
the equation systems resulting from the space-
time finite element discretization of these flow
problems are also reviewed. Most of the material
in this manuscript has been extracted from recent
paper by Tezduyar et al. [1,2], Liou and Tezduyar
[3], Tezduyar [4], Tezduyar and Mittal [5], and
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Mittal et al. [6]. Results are presented for certain
unsteady flow problems, including large-ampli-
tude sloshing and flows past oscillating cylinders.

The space-time formulation reviewed in this
article is used in conjunction with the GLS
(Galerkin /Least-squares) stabilization. The GLS
stabilization prevents the numerical oscillations
that might be produced by the presence of domi-
nant advection terms in the governing equations
or by not using an acceptable combination of
interpolation functions to represent the velocity
and pressure fields. In this kind of stabilization, a
series of stabilizing terms are added to the
Galerkin formulation of the problem. These terms
can be obtained by minimizing the sum of the
squared residual of the momentum equation inte-
grated over each element domain. The GLS sta-
bilization leads to a consistent formulation, in the
sense that an exact solution still satisfies the
stabilized formulation. Consequently, it intro-
duces minimal numerical diffusion, and therefore
results in solutions with minimal loss of accuracy.
This approach has been successfully applied to
Stokes flows by Hughes and Franca [7], to com-
pressible flows by Hughes, Franca and Hulbert
[8] and Shakib [9], and to incompressible flows at
finite Reynolds numbers by Tezduyar et al. [1,2],
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Liou and Tezduyar [3], Mittal et al. [6,10] and
Hansbo and Szepessy [11].

The space-time finite element formulation
with the GLS stabilization has recently been used
for various problems with fixed spatial domains.
These authors are most familiar with the work of
Shakib [9], Hansbo and Szepessy [11], Hughes et
al. [12], and Hughes and Hulbert [13]. The funda-
mentals of the space—time formulation, its imple-
mentation, and the associated stability and accu-
racy analysis can be found in these references. In
_the space-time formulation, the finite element
discretization is applied not only spatially but also
temporally. Consequently, the deformation of the
spatial domain is taken into account automati-
cally. This feature of the stabilized space-time
formulation was first exploited by Tezduyar et al.
[1,2]. They introduced the DSD /ST (deforming-
spatial-domain /space-time) procedure and ap-
plied it to several unsteady incompressible flow
problems involving moving boundaries and inter-
faces, such as free-surface flows, liquid drops,
two-liquid flows and flows with drifting cylinders.
In the DSD/ST procedure the frequency of
remeshing is minimized. We define remeshing as
the process of generating a new mesh, and pro-
jecting the solution from the old mesh to the new
one. Since remeshing, in general, involves projec-
tion errors, minimizing the frequency of remesh-
ing results in minimizing the projection errors.
Minimizing the frequency of remeshing also re-
sults in an increase in the parallelization poten-
tial of the computations.

It is important to realize that the finite ele-
ment interpolation functions are discontinuous in
time so that the fully discrete equations are solved
one space—time slab at a time, and this makes the
computations feasible. Still, the computational

cost associated with the space-time finite ele-’

ment formulations using piecewise linear func-
tions in time is quite heavy. For large-scale prob-
lems it becomes imperative to employ efficient
iteration methods to reduce the cost involved.
This was achieved in Liou and Tezduyar [3] by
using the generalized minimal residual (GMRES)
[14] iteration algorithm with the clustered ele-
ment-by-element (CEBE) preconditioners.

The CEBE preconditioning is a generalized

version of the standard element-by-element
(EBE) preconditioning. The EBE precondition-
ers, which were first introduced by Hughes, Levit
and Winget [15] and Hughes, Winget, Levit and
Tezduyar [16], are defined as sequential products
of element level matrices. The iterative computa-
tions with EBE preconditioners are performed in
an element-by-element fasluon and are highly
vectorizable (see Hughes and Ferencz [17]). In
the CEBE preconditioning the elements are par-
titioned into clusters of elements, with a desired
number of elements in each cluster, and the
iterations are performed in a cluster-by-cluster
fashion. The number of clusters should be viewed
as an optimization parameter to minimize the
computational cost (both memory and CPU time).
By specifying the number of clusters, one can
select an algorithm anywhere in the spectrum of
algorithms ranging from the direct solution tech-
nique (when the number of clusters is one) to the
standard element-by-clement method (when the
number of clusters is same as the number of
elements). Parallel implementation of the CEBE
preconditioning is very similar to that of the
grouped element-by-element (GEBE) [18,19] pre-
conditioning.

Computation of time-dependent incompress-
ible flow problems on fixed spatial domains can
also be performed by using the finite element
discretization in space only, rather than in both
space and time. In this case first the GLS stabi-
lization for the steady-state equations of incom-
pressible flows is considered. Then in the defini-
tion of the stabilizing terms, the residual of the
steady-state equations is replaced with the ones
for the time-dependent equations. These stabiliz-
ing terms are added to the Galerkin formulation
of the time-dependent equations. Furthermore,
if, at the element interiors, the contribution to
the weighting function from the viscous terms is
neglected (it is identically zero for linear velocity
interpolation) one obtains a formulation with the
combination of SUPG (streamline-upwind /Pet-
rov-Galerkin) and PSPG (pressure-stabilizing /
Petrov—-Galerkin) stabilizations.

The SUPG formulation, which prevents the
numerical oscillations caused by the presence of
dominant advection terms, was introduced by
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Hughes and Brooks [20]. A comprehensive de-
scription of the formulation, together with vari-
ous numerical examples, can be found in Brooks
and Hughes [21]. For hyperbolic systems in gen-
eral, and compressible Euler equations in particu-
lar, the SUPG stabilization was first reported by
Tezduyar and Hughes [22]. The implementation
of the SUPG formulation in Brooks and Hughes
[21] was based on Q1PO (bilinear velocity/con-
stant pressure) elements and one-step time-in-
tegration of the semi-discrete equations obtained
by using such elements. The SUPG stabilization
for the vorticity-stream function formulation of
incompressible flow problems, including those
with multiply-connected domains, was introduced
by Tezduyar et al. [23].

It was shown that (see Brezzi and Pitkaranta
[24], and Hughes et al. [25]), with proper stabi-
lization, elements which do not satisfy the Brezzi
condition can still be used for Stokes flow prob-
lems. The Petrov-Galerkin stabilization pro-
posed in Hughes et al. [25] is achieved, just like in
the SUPG stabilization, by adding to the Galerkin
formulation a series of integrals over element
domains. The PSPG stabilization proposed in
Tezduyar et al. [26] is a generalization, to finite
Reynolds number flows, of the Petrov-Galerkin
stabilization proposed in Hughes et al. [25] for
Stokes flows. In Tezduyar et al., [26], the SUPG
and PSPG stabilizations are used together with
both one-step (T1) and multi-step (T6) time-in-
tegration schemes. With the T1 scheme, the
SUPG and PSPG stabilizations are applied simul-
taneously. With the T6 scheme, on the other
hand, the SUPG stabilization is applied only to
the steps involving the advective terms, while the

PSPG stabilization is applied only to the steps

involving the pressure terms. Both schemes were
implemented in Tezduyar et al. [26] based on the
Q1Q1 (Bilinear velocity and pressure) and P1P1
(linear velocity and pressure) elements, and were
successfully applied to a set of nearly standard
test problems. _

In the SUPG, PSPG and GLS stabilizations
the stabilizing terms added involve the residual of
the momentum equation as a factor. Conse-
quently, when an exact solution is substituted into
the stabilized formulation, these added terms

vanish, and as a result the stabilized formulation
is satisfied by the exact solution in the same way
as the Galerkin formulation is satisfied. It is
because of this property of the SUPG, PSPG and
GLS stabilizations that numerical oscillations are
prevented without introducing excessive numeri-
cal diffusion (i.e. without “over-stabilizing”) and
therefore without compromising the accuracy of
the solution.

Results are presented for applications to cer-
tain unsteady flows including those involving
moving boundaries and interfaces, such as large-
amplitude sloshing, liquid drops and flows past
oscillating cylinders. In the flows involving oscil-
lating cylinders, either the motion is prescribed or
it needs to be determined as part of the solution.

2. The governing equations of unsteady incom-
pressible flows

Let 2, € R"s¢ be the spatial domain at time
t€(0, T), where ny is the number of space
dimensions. Let I, denote the boundary of (2,.
We consider the following velocity—pressure for-
mulation of the Navier—Stokes equations govern-
ing unsteady incompressible flows:

0
p(—;-:- +u- Vu) -V:o0=0, on 2¥:t€(0,7),
(1)
V-u=0, on 2,Vte(0,T), (2)

where p and u are the density and velocity, and
o is the stress tensor given as :

o(p, u) = —pl+2ue(u), (3)
with
e(u) = 3(Vu+(Vu)"). (4)

Here p and p are the pressure and the dynamic
viscosity, and I is the identity tensor. The part of
the boundary at which the velocity is assumed to
be specified is denoted by (I}),:

u=g on(I,),Vte(0,T). (5)
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The “natural” boundary conditions associated
with (1) are the conditions on the stress compo-
nents, and these are the conditions assumed to be
imposed at the remaining part of the boundary:

n-o=h on(I),Vte(0T). (6)

The homogeneous version of (6), which corre-
sponds to the “traction-free” (i.e. zero normal
and shear stress) conditions, is often imposed at
the outflow boundaries. As initial condition, a
divergence-free velocity field u,(x) is specified
- over the domain (2, at t =0:

u(x,0)=uy(x) on £, @)

Let us now consider two immiscible fluids, A
and B, occupying the domain £2,. Let (Q,), de-
note the subdomain occupied by fluid A, and
(I,), denote the boundary of this subdomain.
Similarly, let (£2,)5 and (I,)g be the subdomain
and boundary associated with fluid B. Further-
more, let (I',),5 be the intersection of (I,), and
(I,)g, i.e. the interface between fluids A and B.

The kinematical conditions at the interface
(I,)sp are based on the continuity of the velocity
field. The dynamical conditions at the interface,
for two-dimensional problems, can be expressed
by the following equation:

np oatng-og=nyy/R,

on (I})ap V1€ (0, T), (8
where n, and ng are the unit outward normal
vectors at the interface, o, and oy are the stress

tensors, y is the surface tension coefficient, and
R, is the radius of curvature defined to be posi-

h+1

tive when n, points towards the center of curva-
ture. The condition (8) is applicable also to free-
surface flows (i.e. when the second fluid does not
exist), provided that subdomain (£2,), is the one
assigned to be occupied by the fluid.

3. The stabilized space-time finite element for-
mulation

In the space-time finite element formulation,
the time interval (0, T') is partitioned into subin-
tervals I, = (¢, ¢, ), where ¢, and ¢,,, belong
to an ordered series of time levels 0 =1¢,<1t, <

- <ty=T. It was first shown by Tezduyar et
al. [1,2] that the stabilized space~time finite ele-
ment formulation can be effectively applied to
fluid dynamics computations involving moving
boundaries and interfaces. In this formulation the
spatial domains at various time levels are allowed
to vary. We let 2, =2, and I, =T, , and define
the space-time slab Q, as the space-time do-
main enclosed by the surfaces 2,, 2, ., and P, .
(see fig. 1). Here P,, the lateral surface of Q,, is
the surface described by the boundary I', as ¢
traverses /,. Similar to the way it was represented
by egs. (5) and (6), P, is decomposed into (P,),
and (P,), with respect to the type of boundary
condition being imposed.

Finite element discretization of a space-time
slab Q, is achieved by dividing it into elements

ce=1,2,..., (n,),, where (n,), is the num-
ber of elements in the space-time slab Q,,. Asso-
ciated with this discretization, for each space-
time slab we define the following finite element

Fig. 1. The space~time slab for the DSD /ST formulation.
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interpolation tunction spaces for the velocity and
pressure:

(81, = {"1u" € [H™Q,)]™,

u'=g" on (P,),}, )
(V;‘h),, = {wh |wh e [th(Q”)]"s‘”
w' = 0on (P,),}, (10)

($3),=(V"),=la"ld"e™(Q,)}. (1)

Here H'"(Q,) represents the finite-dimensional
function space over the space-time slab Q,. This
space is formed by using, over the parent {(ele-
ment) domains, first-order polynomials in space
and time. It is also possible to use zeroth-order
polynomials in time. In either case, globally, the
interpolation functions are continuous in space
but discontinuous in time.The space-time formu-
lation of (1)-(8) can be written as follows: start
with

(")o = (up)"; (12)

sequentially for Q,, Q,,...,Qy_,, given (u");,
find u” €(S}), and p" €(S%),, such that

Yw"e (V}), and Vg" € (Vph)n’
u h

fw p(—é—-+u Vu)dQ

+[Q e(w"):o(p", u")dQ

- w' hdP - wh-n,y/R, dP
(P,), f P)as AY/

hV. h d
+[an u" dQ
+f (W) - p((u")y = (u"), ) 402

(n.), 1 ow
+ Y f T— p(-——+u - Vwh )
=170, P

—V°o-(q", wh)| -

-V o(p". u")| dQ=0, (13)

where (P,),p is the space-time surface described
by the boundary (I,),g as ¢ traverses the time
interval (¢,, ¢, ,).

In the variational formulation given by (13),
the following notation is being used:

(u")y = 11m u'(t, +8), (14)
‘/[Q”(°~-)dQ=j;an(...)dﬂdt, (15)
fpn(---)dl’=[1”fr(...)drdt. (16}
Remarks

1. If we were to consider a spatial finite ele-
ment discretization, rather than a space-time one,
the Galerkin formulation of (1)-(8) would have
consisted of the first five integrals (their spatial
versions of course) appearing in equation (13). In
the space-time formulation, because the interpo-
lation functions are discontinuous in time, the
sixth integral in eq. (13) enforces, weakly, the
temporal continuity of the velocity field. The re-
maining series of integrals in eq. (13) are the
least-squares terms added to the Galerkin varia-
tional formulation to assure the numerical stabil-
ity of the computations. The coefficient 7 deter-
mines the weight of such added terms.

2. This kind of stabilization of the Galerkin
formulation is referred to as the Galerkin/least-
squares (GLS) procedure, and can be considered
as a generalization of the stabilization based on
the streamline-upwind /Petrov—-Galerkin (SUPG)
and the pressure-stabilizing/Petrov-Galerkin
(PSPG) procedure employed for incompressible
flows [26]. It is with such stabilization procedures
that it is possible to use elements which have
equal-order interpolation functions for velocity
and pressure, and which are otherwise unstable.

3. It is important to realize that the stabilizing
terms added involve the momentum equation as a
factor. Therefore, despite these additional terms,
an exact solution is still admissible to the varia-
tional formulation given by eq. (13).

The coefficient = used in this formulation is
obtained by a simple multi-dimensional general-
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ization of the optimal 7 given in Shakib [9] for
one-dimensional space-time formulation. The ex-
pression for the 7 used in this formulation is

Ml favyd)
T= ( A ) +(F) . (17)

where v is the kinematic viscosity, and /4 is the
spatial element length. For derivation of 7 for
higher-order elements see Franca et al. [27].

Remarks

4. Because the finite element interpolation
functions are discontinuous in time, the fully dis-
crete equations can be solved one space—-time
slab at a time. Still, the memory needed for the
global matrices involved in this method is quite
substantial. For example, in two dimensions, the
memory needed for space—time formulation (with
interpolation functions which are piecewise linear
in time) of a problem is approximately four times
more compared to using the finite element
method only for spatial discretization. However,
iteration methods can be employed to substan-
tially reduce the cost involved in solving the lin-
ear equation systems arising from the space-time
finite element discretization (see section 4).

5. In the DSD /ST procedure, to facilitate the
motion of free-surfaces, interfaces and solid
boundaries, we need to move the boundary nodes
with the normal component of the velocity at
those nodes. Except for this restriction, we have
the freedom to move all the nodes any way we
would like to. With this freedom, we can move
the mesh in such a way that we only need to
remesh when it becomes necessary to do so to
prevent unacceptable degrees of mesh distortion
and potential entanglements. By minimizing the
frequency of remeshing we minimize the projec-
tion errors expected to be introduced by remesh-
ing. In fact, for some computations, as a byprod-
uct of moving the mesh, we may be able to get a
limited degree of automatic mesh refinement,
again with minimal projection errors. For exam-
ple, a mesh moving scheme suitable for a single
cylinder drifting in a bounded flow domain is
described in Tezduyar et al. [2]. We use the same

mesh moving scheme for all the results involving
flow past oscillating cylinders to be presented in
this article.

4. The clustered element-by-element (CEBE)
method

It was pointed out before, in remark 4, that
the memory needed for the global matrices in-
volved in the space-time method is quite sub-

- stantial. It was shown in Liou and Tezduyar [3]

that the clustered element-by-element (CEBE)
preconditioners, together with the generalized
minimal residual (GMRES) method [14] can be
effectively used to reduce the associated cost
significantly. In this section we review the clus-
tered element-by-element method.

After linearization of the fully discretized
equations, the following systems needs to be
solved for the nodal values of the unknowns:

Ax=b. (18)

We rewrite (18) in a scaled form

Ai=b, (19)
where

A=W"VYyw-1/2, (20)
=WV, (21)
b=w"1p, (22)
The scaling matrix W is defined as

W = diag 4 (23)

With this definition of W, diag 4 becomes an
identity matrix.

For the formulations presented in this article,
the matrix 4 is not in general symmetric and
positive-definite. Therefore, the proposed CEBE
preconditioner will be used in conjunction with
the GMRES (generalized minimum residual)
method; an outline of the GMRES method used
is given below.

0. Set the iteration counter m = 0, and start with

an initial guess X,
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i. Calculate the residual scaled with the precon-
ditioner matrix P:

P = P~\(4£, —b). (24)
ii. Construct the Krylov vector space:

eV =7/ |l (25)
i-1

fO=P Y=V = ¥ (P~'4eV~h, D),
i=1

2<j<k, (26)

e =f0 /|| fO, (27)

where k is the dimension of the Krylov space
and e, i=1,2,..., k, are the basis vectors.
iii. Update the unknown vector:

k
B =%,+ Y sje(’), (28)
j=1

where s = {s;} is the solution of the equation
system

Os =z, (29)
with

Q0= [(P"“A-e("’, I;"l/fe‘f’)], 1<i,j<k,
(30)

z={(FYe®, -7,)}, 1sisk.  (31)

iv. For next iteration, set m <~ m + 1 and goto i:
The iterations continue until |7, || falls be-
low a predetermined value. It should be noted
that the matrix @ is symmetric and positive-
definite.

Remark

6. The convergence rate of this algorithm de-
pends on the condition number of the matrix
P~ 4. Therefore one would like to select a pre-
conditioner that involves minimal inversion cost,
and provides, within cost limitations, an optimal
representation of A.

Let € denote the set of all elements resulting
from the finite element discretization of the com-
putational domain {2 into subdomains 0°, ¢ =1,
2,..., hg, where n is the number of elements.
The clustered element-by-element method is
based on the clustering of the elements set € into
€, J=1,2,... N,, where N, is the number of
the clusters, such that

Ncl
€= U €, (32)
J=1
Ncl
2=e- (33)
J=1

A=Y 4, (34)

with the cluster matrix 4, defined as
A,= ¥ 4, (35)
e€ey

where A° is the element level matrix. ;
Consider the factorization of the matrix (I + B,):

(I+B,)=L,0,, J=1,2,..., N, (36)
where
B,=A,-W,, J=1,2,..., N, (37)

and _i ; and l7, are the lower and upper triangu-
lar factors of (I + B,). The CEBE preconditioner
is defined as '

Ny 1

F=TIL, I10,. (38)
J'—- 1 .’= ol

Remarks

7. The convergence of the algorithm depends
on numbering of the clusters but not on the
numbering of the elements within each cluster.
By treating each cluster as a super-clement, we
can identify the clustered element-by-element
procedure as a generalization of the standard
element-by-element method.
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Fig. 2. Pulsating drop: time histories of the axial dimensions of the drop.
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Fig. 3a. Pulsating drop: flow field and finite element mesh corresponding (approximately) to point “a” in fig. 2.
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Fig. 3b. Pulsating drop: flow field and finite element mesh corresponding (approximately) to point “b” in fig. 2.

8. We have the option of storing the cluster
matrices and their inverses, or recomputing them
as they are needed.

9. The method is highly vectorizable and paral-
lelizable.

5. Numerical examples

All solutions using the space-time formula-
tion, presented here, were obtained with linear-
in-time interpolation functions. For the details of
the computations see Tezduyar et al. [1,2] and
Mittal et al. [6].

5.1. Pulsating drop

In this problem the drop is initially of elliptical
shape with axial dimensions 1.25 (horizontal) and

0.80 (vertical). The density, viscosity and the sur-
face tension coefficient are 1.0, 0.001 and 0.001,
respectively. The effect of gravity is neglected.
The number of elements is 380, and the time step
size is 1.0. Figure 2 shows the time histories of
the axial dimensions of the drop. Figures 3a and
3b show the field and finite element mesh corre- -
sponding, approximately, to points “a”, and “b”
in fig. 2.

5.2. Large-amplitude sloshing

This problem is similar to the one that was
considered in Huerta and Liu [28]. Initially the
fluid is stationary and occupies a 2.667 X 1.0 rec-
tangular region. The density and viscosity are 1.0
and 0.002. The gravity is 1.0, and the surface
tension is neglected. The wave is created by ap-
plying a horizontal body force of A4 sin(wt), where
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A =001 and o =0.978. The Reynolds number
(based on the height of the fluid and the gravity)
is 514. Inviscid boundary conditions are assumed
at the walls of the “tank”. Compared to the
problem considered here, the Reynolds number
used in Huerta and Liu [28] is 514000. Further-
more, in Huerta and Liu [28] the horizontal body
force is removed after ten cycles; in this case, on
the other hand, this force is maintained during
the entire computation. The number of elements
is 441, and the time step size is 0.107. With these
. values of the frequency and the time step size, a
single period of the forcing function takes 60 time
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steps. Figure 4 shows the time histories of the
vertical location (relative to the stationary level of
1.0) of the free-surface along the left- and right-
hand-sides of the “tank”. Figures 5a and 5b show
the flow field and finite element mesh corre-
sponding, approximately, to points “a”, and “b”
in fig. 4.

5.3. Unsteady flows past a circular cylinder

fn all cases, the computational values for the
cylinder radius and the free-stream velocity are,
respectively, 1.0 and 0.125; a time step of 1.0 is
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Fig. 5b. Large-amplitude sloshing: flow field and finite element mesh corresponding (approximately) to point “b” in fig. 4.
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used for the computations. The dimensions of the
computational domain, normalized by the cylin-
der radius, are 61.0 and 32.0 in the flow and
cross-flow directions, respectively. The mesh em-
ploved consists of 4060 elements and 4209 nodes.
Symmetry conditions are imposed at the upper
and lower computational boundaries, and the
traction-free condition is imposed at the outflow
boundary. The periodic solution is obtained by
introducing a short term perturbation to the sym-
metric solution. For all computations, we use the
_CEBE iteration method to solve the resulting
equation system. At each time step about 25000
equations are solved simultaneously. We chose a
Krylov vector space of dimension 25 and an aver-
age cluster size of 23 elements. This cluster size,
determined by numerical experimentation, is
nearly optimal in minimizing the CPU time. For

S. Mittal. T.E. Tezduvar / Stabilized space —time finite-element formulation of unsteady incompressible flows

this set of problems, the CEBE technique takes
less then one-sixth the CPU time and less then
one-third the storage needed by the direct
method. The nodal values of the stationary stream
function (normalized with the free-stream veloc-
ity) and vorticity are obtained by the least-squares
interpolation. All the flow-field pictures shown in
the rest of the article display the part of the
domain enclosed by a rectangular region, with the
lower left and upper right co-ordinates (13, 10)
and (43.22), respectively, relative to the lower left
corner of the domain.

5.3.1. A fixed cylinder at Reynolds number 100

In this problem the cylinder location is fixed at
(16, 16) relative to the lower left corner of the
domain. Figure 6 shows the time histories of the
drag, lift and torque coefficients for the fixed

g
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Fig. 6. Flow past a fixed cylinder at Re = 100: time histories of the drag, lift and torque coefficients.
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cylinder. The Strouhai number obtained is 0.167.
The difference between this value and the ones
reported in Tezduyar et al. [26], computed with
different formulations and on a finer mesh, is less
than 2%. Figure 7 shows a sequence of frames for
the vorticity during one period of the lift coeffi-
cient. The first and last frames correspond to the
trough and crest of the lift coefficient, respec-
tively; the middle frame corresponds to zero lift
coefficient. As expected the first and third frames
are mirror images of each other.

5.3.2. A cylinder with forced horizontal oscillations

at Reynolds number 100

It is well known that at Reynolds number 100,
the flow past a fixed circular cylinder leads to the
classical unsymmetrical vortex shedding. In such
a case the lift and torque coefficients oscillate
with a frequency corresponding to the related
Strouhal number, while the drag oscillates with
twice that frequency.

Fig. 7. Flow ‘past a fixed cylinder at Re =100: vorticity at
various instants during one period of the lift coefficient.

The case in which the cylinder is subjecizd to
forced horizontal osciilations shows some very
interesting features. Depending on the amplitude
and the frequency (f;) of the forced oscillations
of the cylinder, two modes of vortex shedding are
possible. This phenemenon, for vortex-induced
oscillations, has been discussed in the review pa-
pers by King [29] and Sarpkaya {20]. Osciilations
with a low reduced frequency (F;=2f;a/U,,
where a is the radius of the cylinder and U, is
the free-stream velocity) lead to unsymmetric
modes of vortex shedding. For higher values of
F;, on the other hand, symmetric vortex shedding
is observed. However, such a symmetric arrange-
ment of the vortices is unstable, and consequently
the vortices coalesce downstream.

We simulate the flow with symmetrical shed-
ding by forcing the cylinder to oscillate horizon-
tally with the following prescribed, displacement
(normalized by the cylinder radius):

X=1-cos(wst), ' (39)

where w;=2wf;. For this case, the value of f;
corresponds to a reduced frequency of 0.35. The
initial condition for this simulation is prescribed
as the unsteady solution for flow past a fixed
cylinder at Re = 100 (from the previous example).
Figure 8 shows the time histories of the drag, lift
and torque coefficients and the normalized hori-
zontal displacement and velocity (normalized by
the free-stream velocity) of the cylinder. We ob-
serve that the drag coefficient for the horizontally
oscillating cylinder is significantly larger than that
for a fixed cylinder. Furthermore, the drag coeffi-
cient oscillates with a reduced frequency of 0.35
whereas the lift and torque coefficients approach
zero. The fact that we start from an unsymmetric
solution and still obtain a symmetric mode of
shedding demonstrates that this mode is a stable
one. Figure 9 shows a sequence of frames for the
vorticity during one period of the cylinder mo-
tion. During each period two pairs of symmetric
vortices are shed from the cylinder. The first and
last frames correspond, respectively, to the left
and right extreme positions of the cylinder, while
the middle frame corresponds to the mean cylin-
der location.
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Fig. 8. Flow past a horizontally oscillating cylinder at Re = 100: time histories of the drag, lift and torque coefficients and the
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5.3.3. A cylinder with vortex-induced vertical oscil-
lations at Reynolds number 324

In the first numerical example we observed
that for sufficiently high Reynolds numbers (> 40)
flow past a fixed cylinder leads to unsymmetric
vortex shedding. This causes the cylinder to expe-
rience alternating lift force at a frequency corre-
sponding to the Strouhal number for that
Reynolds number. Now, if the cylinder if mounted
on a flexible support, then under certain condi-
tions it can undergo sustained oscillations with a
frequency close to, or coincident with, its natural
frequency. These oscillations can alter the vortex
shedding mechanism which in turn can change
the cylinder response and so on. This leads to a
complex non-linear fluid-structure interaction
phenomenon and has been addressed by several
researchers [29-32]. We simulate this phe-
nomenon for a cylinder which is allowed to move

Fig. 9. Flow past a horizontally oscillating cylinder at Re = 100:
vorticity at various instants during one period of the cylinder
motion.

only in the vertical direction. The motion of the
cylinder is governed by the following equation:

Y+2mF Y+ (wF,)’Y= % (40)
Here Y, Y and Y are, respectively, the normal-
ized vertical acceleration, velocity and displace-
ment of the cylinder. The displacement and ve-
locity of the cylinder are normalized by its radius
and the free-stream velocity, respectively. M is
the non-dimensional mass/unit length of the
cylinder, ¢ is the structural damping coefficient
associated with the system, and C, denotes the
lift coefficient for the cylinder. F,, the reduced
natural frequency of the spring-mass system, is
defined as

2f. a

(41)

where f, is the actual natural frequency of the
system. For our problem F,=0.204, M = 472.74
and {=3.3x10"%

At Reynolds number 324 the reduced natural
frequency of the spring mass system and the
Strouhal number for flow past a fixed cylinder
have very close values. Therefore, we decided to
carry out this simulation for Reynolds number
324. The periodic solution for flow past a fixed
cylinder at the same Reynolds number is used as
the initial condition. Figure 10 shows, for the
initial stages of the simulation, time histories of
the drag, lift and torque coefficients and the
normalized vertical displacement and velocity of
the cylinder. We observe that the cylinder oscil-
lates with an increasing amplitude. The drag and -
torque coefficients for the cylinder also increase
while the lift coefficient shows a decreasing am-
plitude. It is interesting to note that both the
mean and peak values of the drag coefficient
increase with time, but the trough value remains
almost constant. The quantities displayed in fig.
10 are shown in fig. 11 for a later stretch of time
when the cylinder reaches a steady-state oscilla-
tion amplitude of about one radius. The cylinder
oscillates with its natural frequency, and so does
the torque coefficient; the drag coefficient oscil-
lates with twice the natural frequency of the
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Fig. 12. Flow past a vertically oscillating cylinder at Re = 324:
vorticity at various instants during one period of the cylinder
motion.

cylinder. The dominant frequency for the Ilift
coefficient corresponds to the natural frequency
of the cylinder. In addition, there is a very small
component of the lift coefficient with thrice the
frequency of the dominant one. Figure 12 shows
a sequence of frames for the vorticity during one
period of the cylinder motion. The first and third
frames correspond, respectively, to the lower and
upper extreme positions of the cylinder, while the
middle frame corresponds to the mean cylinder
location.

6. Concluding remarks

The space-time finite element formulation
with the Galerkin /least-squares stabilization, for
incompressible flows, was reviewed. The CEBE
iteration method employed to solve the equation
systems resulting from these space-time finite

element discretizations were also reviewed. In the
space-time formulation the deformation of the
spatial domain is automatically taken into ac-
count. Therefore this formulation is very suitable
for flow problems involving moving boundaries
and interfaces, such as free-surface flows, liquid
drops, two-liquid flows, and flows with moving
objects. The Galerkin/least-squares stabilization
leads to a formulation which is consistent. That
is, the stabilization terms added to the Galerkin
formulation of the problem vanish when an exact
solution is substituted into the stabilized formula-
tion. Consequently, this stabilization method in-
troduces minimal numerical diffusion, and there-
fore results in solutions with minimal loss of
accuracy. By employing iteration techniques with
CEBE preconditioners we are able to substan-
tially reduce the computational cost associated
with solving the fully discretized equations of the
space-time formulation. These iteration tech-
niques are highly vectorizable and parallelizable.

As applications of the stabilized space-time
formulation and the iteration methods, computa-
tions were performed for unsteady incompress-
ible flow problems including those involving mov-
ing boundaries and interfaces, such as large-am-
plitude sloshing, liquid drops and flows past oscil-
lating cylinders. Some interesting physical phe-
nomena were observed as a result of the compu-
tations involving cylinders. While for flow past a
fixed cylinder, the usual, unsymmetric vortex
shedding was observed, when the cylinder was
subjected to horizontal oscillations with certain
prescribed frequency and amplitude, symmetrical
vortex shedding was observed instead. The case
of vortex-induced vertical oscillations was also
simulated. These oscillations result in an increase
in the drag and torque coefficients and a de-
crease in the lift coefficient.
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