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Abstract Recently, the Enhanced-Discretization Interface-
Capturing Technique (EDICT) was introduced for simu-
lation of unsteady ¯ow problems with interfaces such as
two-¯uid and free-surface ¯ows. The EDICT yields in-
creased accuracy in representing the interface. Here we
extend the EDICT to simulation of unsteady viscous
compressible ¯ows with boundary/shear layers and shock/
expansion waves. The purpose is to increase the accuracy
in selected regions of the computational domain. An error
indicator is used to identify these regions that need en-
hanced discretization. Stabilized ®nite-element formula-
tions are employed to solve the Navier-Stokes equations in
their conservation law form. The ®nite element functions
corresponding to enhanced discretization are designed to
have two components, with each component coming from
a different level of mesh re®nement over the same com-
putational domain. The primary component comes from a
base mesh. A subset of the elements in this base mesh are
identi®ed for enhanced discretization by utilizing the error
indicator. A secondary, more re®ned, mesh is constructed
by patching together the second-level meshes generated
over this subset of elements, and the second component of
the functions comes from this mesh. The subset of ele-
ments in the base mesh that form the secondary mesh may
change from one time level to other depending on the
distribution of the error in the computations.

Using a parallel implementation of this EDICT-based
method, we apply it to test problems with shocks and
boundary layers, and demonstrate that this method can be
used very effectively to increase the accuracy of the base
®nite element formulation.

1
Introduction
Recently, Tezduyar et al. [1] introduced the Enhanced-
Discretization Interface-Capturing Technique (EDICT) for
simulation of unsteady ¯ow problems with interfaces such
as two-¯uid and free-surface ¯ows. The starting point for
the EDICT is the volume of ¯uid (VOF) method [2]. In the
EDICT, the Navier-Stokes equations are solved over a non-
moving mesh and an interface function, with two distinct
values that serves as a marker identifying the two ¯uids, is
transported with a time-dependent advection equation. To
increase the accuracy in representing the interface, func-
tion spaces corresponding to enhanced discretization are
used at and near the interface.

In this article we extend the EDICT to unsteady com-
pressible ¯ows with shock/expansion waves, boundary/
shear layers, and their interactions. Our target is to in-
crease the accuracy in selected regions of the computa-
tional domain. These regions are identi®ed by an error
indicator. The Navier-Stokes equations of compressible
¯ows in their conservation law form are solved using a
stabilized ®nite element formulation based on conserva-
tion variables. The streamline-upwind/Petrov-Galerkin
(SUPG) stabilization technique is employed to stabilize the
computations against potential numerical oscillations in
advection dominated ¯ows [3, 4, 5]. A shock-capturing
term is added to the formulation to provide stability to the
computations in the presence of discontinuities and large
gradients in the ¯ow. The interaction between the shock-
capturing term and the viscous effects and SUPG term was
addressed earlier in [6]. With the error indicator employed
to provide an estimate of the error in the computations,
the regions identi®ed for enhanced discretization usually
coincide with those that are associated with large gradients
in the ¯ow variables. The ®nite element functions corre-
sponding to enhanced discretization are designed to have
two components. Each component comes from a different
level of mesh re®nement over the same computational
domain. The ®rst component comes from a base mesh.
A subset of the elements in this base mesh are identi®ed
based on the error estimated by the error indicator.
A second mesh is constructed by patching together the
second-level meshes generated over this subset of ele-
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ments, and the second component of the functions comes
from this mesh. The elements in this subset will change
from one time level to other, depending on the distribution
of the error in the computations. An element which is in
this subset at the current time step may be out of it some
time later, and come back in again some time after that.
For each element in this subset there will be a unique
second-level mesh. If an automatic mesh generator is used
to generate the second-level mesh, the mesh will be gen-
erated only once and stored, to be used later if that ele-
ment needs a second-level mesh again.

The second-level mesh will not be re-de®ned for every
time step but frequently enough to cover the zones iden-
ti®ed by an error larger than a predetermined value. Sev-
eral error indicators have been suggested in the literature
for time-dependent calculations (for example, see articles
by Lohner [7] and Oden et al. [8]). Our aim here is not to
compare the different error indicators reported in the lit-
erature, but to use one of them to demonstrate the im-
plementation of our methodology. The error indicator we
use in the present work is the one proposed by Lohner [7].

To reduce the memory requirements associated with
large-scale computations, a matrix-free iteration technique
is employed. This vector-based technique [9, 10] totally
eliminates the need to compute or store any coef®cient
matrices, even at the element level. This method has been
implemented on the shared-memory parallel computing
platforms of the SGI multi-processor systems, including a
20-processor ONYX and a 12-processor POWER CHAL-
LENGE.

In Section 2, we review the governing equations of
compressible ¯ows. The stabilized formulation is de-
scribed in Section 3. We provide a brief description of the
error indicator in Section 4 and more details on the con-
cept of enhanced discretization in Section 5. In Section 6
we present our numerical examples, and end with con-
cluding remarks in Section 7.

2
The governing equations
Let X � IRnsd and �0;T� be the spatial and temporal do-
mains respectively, where nsd is the number of space di-
mensions, and let C denote the boundary of X. The spatial
and temporal coordinates are denoted by x and t. The
Navier-Stokes equations of compressible ¯ows in conser-
vation law form are

oq
ot
�r � �qu� � 0 on X for �0;T� ; �1�

o�qu�
ot
�r � �quu� � rpÿr � T � 0

on X for �0;T� ; �2�
o�qe�

ot
�r � �qeu� � r � �pu� ÿ r � �Tu� � rq � 0

on X for �0;T� : �3�
Here q; u; p;T; e and q are the density, velocity, pressure,
viscous stress tensor, total energy per unit mass, and the
heat ¯ux vector, respectively. The viscous stress tensor is
de®ned as

T � l��ru� � �ruT�� � k�r � u�I ; �4�
where l and k are the viscosity coef®cients. It is assumed
that l and k are related by

k � ÿ 2

3
l : �5�

Pressure is related to the other variables via the equation
of state. For ideal gases, the equation of state assumes the
special form

p � �cÿ 1�qi ; �6�
where c is the ratio of speci®c heats and i is the internal
energy per unit mass. The internal energy is related to the
total energy and kinetic energy as

i � eÿ 1

2
kuk2 : �7�

The heat ¯ux vector is de®ned as

q � ÿjrh ; �8�
where j is the heat conductivity and h is the temperature.
The temperature is related to the internal energy with the
following expression:

h � cÿ 1

R
i ; �9�

where R is the ideal gas constant. Prandtl number (Pr),
assumed to be speci®ed, relates the heat conductivity to
the ¯uid viscosity according to

j � cRl
�cÿ 1�Pr

: �10�

Equations (1), (2), and (3) can be written in conservation
variables as

oU

ot
� oFi

oxi
ÿ oEi

oxi
� 0 on X for �0;T� ; �11�

where for 2D ¯ows U � �q; qu1; qu2; qe� is the vector of
conservation variables, and Fi and Ei are, respectively, the
Euler and viscous ¯ux vectors de®ned as

Fi �

uiq

uiqu1 � di1p

uiqu2 � di2p

ui�qe� p�

0BBBB@
1CCCCA �12�

Ei �

0

si1

si2

ÿqi � sikuk

0BBB@
1CCCA : �13�

Here ui; qi and sik are the components of the velocity, heat
¯ux, and viscous stress tensor, respectively. Equation (11)
can be re-written as

oU

ot
� Ai

oU

oxi
ÿ o

oxi
Kij

oU

oxj

� �
� 0 on X for �0;T� ;

�14�
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where

Ai � oFi

oU
�15�

is the Euler Jacobian matrix, and Kij is the diffusivity
matrix satisfying

Kij
oU

oxj
� Ei : �16�

Corresponding to Eq. (14), the boundary and initial con-
ditions are represented as

U � g on Cg for �0;T� ; �17�
n � E � h on Ch for �0;T� ; �18�
U�x; 0� � U0 on X0 : �19�

3
Finite element formulation
Consider a ®nite element discretization of X into subdo-
mains Xe, e � 1; 2; :::; nel, where nel is the number of ele-
ments. Based on this discretization, we de®ne the ®nite
element trial function space S

h
n and weighting function

space vh
n. The superscript h implies that these are ®nite-

dimensional function spaces, while the subscript n denotes
that corresponding to different time levels we may have
different spatial discretizations. We will give more precise
de®nition of these function spaces in Section 5. The
stabilized ®nite element formulation of Eq. (14) is
written as follows: given Uh

n, ®nd Uh
n�1 2 S

h
n�1 such that

8Wh
n�1 2 vh

n�1,

Z
X

Wh
n�1 �

oUh

ot
� Ah

i

oUh

oxi

� �
dX

�
Z

X

oWh
n�1

oxi

� �
� Kh

ij

oUh

oxj

� �
dX

�
Xnel

e�1

Z
Xe

s Ah
k

ÿ �T oWh
n�1

oxk

� �
�

oUh

ot
� Ah

i

oUh

oxi
ÿ o

oxi
Kh

ij

oUh

oxj

� �� �
dX

�
Xnel

e�1

Z
Xe

d
oWh

n�1

oxi

� �
� oUh

oxi

� �
dX

�
Z

Ch

Wh
n�1 � hh dC : �20�

In the variational formulation given by Eq. (20), the ®rst
two terms and the right-hand-side constitute the Galerkin
formulation of the problem. The ®rst series of element-
level integrals in Eq. (20) are the SUPG stabilization terms
added to the variational formulation to stabilize the
computations against node-to-node oscillations in the
advection-dominated range. The second series of element
level integrals in the formulation are the shock-capturing
terms that stabilize the computations in the presence of
sharp gradients. The stabilization coef®cients d and s are

the ones used by Mittal [5, 11] (which were based on those
introduced in Aliabadi and Tezduyar [6]):

s � max�0; sa ÿ sd� : �21�

sa � 2�c� kuk�
h

� �2

� 12m
h2

� �2
 !ÿ1

2

I ; �22�

sd � d

2�c� kuk�2 I ; �23�

d �





 oU
ot � Ai

oU
oxi






Aÿ1

0



J1i
oU
oxi






Aÿ1

0

�




J2i

oU
oxi






Aÿ1

0

26664
37775

1
2

; �24�

where c is the wave speed, h is the element length, Jjk are
the components of the Jacobian transformation matrix
from physical to the local coordinates, and Aÿ1

0 is the in-
verse of Reimannian metric tensor related to the trans-
formation between the conservation and entropy variables
[12]. As shown in Eq. (21), sd is subtracted from sa to
account for the shock-capturing.

Time discretization of the variational formulation given
by Eq. (20) is achieved with the generalized trapezoidal
rule. For unsteady computations, temporally we employ a
second-order accurate procedure.

4
Error indicator
An error indicator is employed to identify the elements in
the primary mesh that need enhanced discretization for
higher accuracy. The error indicator we use here is the one
proposed by Lohner [7]:

EI �

��������������������������������������������������������������������������������������������������������Pnsd

k�1

Pnsd

l�1

R
X NI

;kU;ldX
� �2

Pnsd

k�1

Pnsd

l�1

R
X jNI

;kj jU;lj � �
Pnen

J�1 jNJ
;ljjUJ j

� �� �
dX

h i2

vuuuut ;

�25�
where NI denotes shape-function associated with the node
I;U is the error indicator variable chosen from the set U,
and ner is the number of nodes in each element. In our
computations we set � � 0:05 and U represents the den-
sity. First the error is calculated for all the nodes in the
base mesh. Then, it is transferred to the element level by
taking the average of the nodal values for each element. If
the error for an element exceeds a certain value (0.1 in our
computations), that element is identi®ed as one that needs
enhanced discretization.

5
Construction of function spaces ± enhanced discretization
We begin with a base mesh which we call Mesh-1. The set
of elements and nodal points in Mesh-1 are �1 and g1,
respectively. At a time level n, a subset ��1�2n from this set
of elements is identi®ed, based on an error indicator, re-
quiring enhanced discretization for higher accuracy. A
more re®ned mesh, Mesh-2, is constructed over the set of
elements ��1�2n by subdividing each of these elements into
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smaller elements. The subscript n implies that this subset
might change from one time level to other. For each ele-
ment in �1, there is a unique second level mesh. Therefore,
if an automatic mesh generator is being used to generate
these meshes, the cost for that mesh generation will be a
one-time cost. The set of elements and nodal points for
Mesh-2 are denoted by �2

n and g2
n, respectively.

We will limit ourselves to linear elements in 2D and 3D,
as well as bilinear and trilinear elements, respectively, in
2D and 3D.

We decompose Uh
n as follows:

Uh
n � U1

h � U2
n : �26�

The function U1
n comes from a space of functions with the

basis set consisting of the shape functions associated with
all the nodes in g1, excluding those ``surrounded'' by the
elements in ��1�2n. The function U1

n also needs to satisfy the
Dirichlet-type boundary conditions, except at those nodes
that have been surrounded at the boundary of X.

The function U2
n comes from a space of functions with

the basis set consisting of the shape functions associated
with all the nodes in g2

n, excluding those at the boundaries
of the zones covered by the elements in �2

n. However, the
nodes at the boundary of X are included unless they co-
incide with the nodes in g1

n that have not been surrounded.
The weighting functions are decomposed in a similar

fashion:

Wh
n �W1

n �W2
n ; �27�

The components of each weighting function are de®ned in
the same way as was done for the trial functions, except
that the weighting functions need to satisfy the homoge-
neous form of the Dirichlet-type boundary conditions.

In our implementation we have the option to divide each
of the elements in the base mesh belonging to the set ��1�2n
into either four or sixteen smaller elements as shown in Fig.
1. For the computations reported in this article, each of the
elements in the primary mesh that need enhanced dis-
cretization are subdivided into sixteen elements.

6
Examples
Shock-re¯ection problem. The steady-state solution for
this 2D inviscid ¯ow problem involves three ¯ow regions
separated by an oblique shock and its re¯ection from a
wall as shown in Fig. 2.

The computational domain is a rectangular region of
dimensions 4:1 in the x1 direction and 1:0 in the x2 di-
rection. At the left boundary, ¯ow data corresponding to
Mach 2.9 is prescribed:

Region 1

M = 2.9
q = 1
u1 = 1
u2 = 0
h = 0

8>>><>>>: : �28�

At the top boundary, the ¯ow conditions that are speci®ed
correspond to Mach 2.3781 and an incident shock angle of
29�:

Region 2

M = 2.3781

q = 1.7

u1 = 0.9033

u2 = - 0.1746

h = 0.07685

8>>>><>>>>: : �29�

At the lower boundary, the component of velocity normal to
the wall is set to zero. The computations begin with a uni-
form Mach 2.9 ¯ow in the domain. The base mesh consists of
1281 nodes and 2400 triangular elements. Mesh-2 is ob-
tained by subdividing each element in ��1�2n into sixteen
elements, in a manner as shown in Figure 1. The time step in

the computation is 0.01 and ��1�2n is rede®ned at every 25
time steps. Figure 3 shows Mesh-1 together with Mesh-2 and
density at non-dimensional time t � 0:5; 1:0; 1:5; 2:0; 2:5;
3:0: It can be observed that the shocks are quite crisp and
that the regions identi®ed by the error indicator for en-
hanced discretization closely follow the shock. At t � 3:0 the
solution reaches steady-state.
Mach 3, Re 105 ¯ow past a circular cylinder. A circular
cylinder is placed in a Mach 3.0 ¯ow. The Reynolds
number based on the diameter of the cylinder and the free-
stream values of the velocity and kinematic viscosity is 105.
The cylinder wall is assumed to be adiabatic and the no-
slip condition is speci®ed for the velocity on the surface of
the cylinder. All the variables are speci®ed at the upstream
boundary. At the downstream boundary, we specify a
Neumann-type boundary condition for the momentum
and energy equations that correspond to zero viscous
stress and heat ¯ux vectors. The computations are initiated
with the free-stream conditions in the entire domain.

Figure 4 shows the base mesh, Mesh-1, which consists
of 2396 nodes and 4694 triangular elements. Mesh-2 is
obtained by subdividing each element in ��1�2n into sixteen
elements, in a manner as shown in Figure 1. The time step
in the computation is 0:02 and ��1�2n is rede®ned at every
20 time steps. Figure 5 shows Mesh-1 together with Mesh-2
and density at non-dimensional time t =1.6, 3.2, 4.8, 6.4,
8.0, 9.6. It can be observed that in this computation the
regions identi®ed for enhanced discretization are the ones
associated with the boundary layer and shock waves.

Fig. 1. A representative element from Mesh-1 (left) and Mesh-2
with each element in set ��1�2n divided into four (center) or sixteen
elements (right)

Fig. 2. Shock-re¯ection problem: problem description
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7
Concluding remarks
In this paper we have extended the EDICT to unsteady
viscous compressible ¯ows with boundary/shear layers

and shock/expansion waves. The Navier-Stokes equations
are solved using stabilized ®nite element formulations that
are known to possess good stability and accuracy prop-
erties. To further increase the accuracy of the computa-
tions an error indicator is employed to identify the regions
in the computational domain that need enhanced dis-
cretization. The ®nite element functions corresponding to
enhanced discretization are designed to have two com-
ponents, with each component coming from a different
level of mesh re®nement over the same computational
domain. The ®rst component of the functions for the ¯ow
variables comes from the base mesh. A subset of the ele-
ments in this mesh, for which the error indicator shows
the error larger than a certain threshold value, are iden-
ti®ed for enhanced discretization. A more re®ned mesh is
constructed by patching together the second-level meshes
generated over this subset of elements. This subset of el-
ement may change from one time level to other depending
on the error distribution in the computations. The second
component of the functions for the ¯ow variables comes
from this more re®ned mesh. However, the second-level
mesh is not rede®ned at every time level, but frequently
enough to keep the zones, with error larger than a pre-
determined threshold, covered with these higher level
meshes. The methodology has been implemented on a
shared-memory parallel computer and results from test
computations for ¯ows involving shock waves and boun-
dary layers demonstrate that the EDICT can be utilized to
increase accuracy of solutions that involve crisp shocks
and layers.

Fig. 3. Shock-re¯ection prob-
lem: Mesh-2 shown on top of
Mesh-1 and density at
t � 0:5; 1:0; 1:5; 2:0; 2:5; 3:0

Fig. 4. Mach 3, Re 105 ¯ow past a circular cylinder: Mesh-1 (2396
nodes and 4694 triangular elements)
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