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Quadrilateral velocity—pressure elements with constant and linear pressure interpolations are
examined in the context of time-accurate finite element computation of unsteady incompressible flows.
These elements involve streamline-upwind/Petrov—~Galerkin stabilization and are implemented in
conjunction with the one-step and multi-step temporal integration of the Navier~Stokes equations. The
two test cases chosen for the performance evaluation of the formulations are the standing vortex
problem and flow past a circular cylinder at Reynolds number 100.

1. Introduction

In this paper, we examine, in the context of time-accurate finite element computation of
unsteady incompressible flows, three of the quadrilateral velocity—pressure elements with
constant and linear pressure interpolations. The elements covered in this study are Q1P0
(bilinear velocity/constant pressure), Q2P1 (biquadratic velocity/linear pressure) and pQ2P1
(‘pseudo’ biquadratic velocity/linear pressure). These elements involve streamline-upwind/
Petrov-Galerkin (SUPG) stabilization [1, 2] to prevent the spurious oscillations that might
appear in the presence of dominant advective terms. We implemented these elements by
generalizing the one-step formulation presented in [1] for the Q1P0 element, and also by using
the multi-step formulation presented in [2].

In the one-step (T1) formulation, the equation system for the velocity and pressure can be
solved either implicitly or explicitly. In implicit computations the unknowns are reordered in
such a way that the unknown velocities in each element appear before the unknown pressures.
- The SUPG supplement to the weighting function is applied to all terms in the momentum
equation. Therefore, in explicit computations the coefficient matrix of the pressure equation is
generally not symmetric except for the Q1P0 element.

- The T6 formulation [2] is an extension of the T3 formulation [2]. The T3 formulation is a
three-step operator splitting scheme in which the pressure and the viscous terms are treated
implicitly in the first and third steps, while the advective terms are treated implicitly in the
second step. This type of splitting is a special case of the §-scheme presented in [3]. In the T6
formulation, each step of the T3 formulation is subdivided into two-steps to isolate the
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advective terms, and the SUPG supplement is applied only to the sub-steps involving the

advective terms.

We consider two numerical tests: the standing vortex problem [4], and flow past a circular _

cylinder at Re = 100. The standing vortex problem is used to determine the level of numerical
dissipation involved in a numerical solution technique. The cylinder problem has been studied
by several researchers in the past (see for example [5-7]) and has become a benchmark
problem [2]. Our investigations of the cylinder problem are based on the temporally periodic
-solutions; therefore for-each element type we try to reach the periodic solution as quickly and
~ efficiently as possible. For this purpose, we use the periodic solution obtained with the
Q2P1/T6 formulation as initial condition for the other formulations.

2. The governing'equations

Let 2 and (0, T) denote the spatial and temporal domains with x and ¢ représenting the

coordinates associated with (2 and (0, T), respectively. We consider the following velocity—
pressure formulation of the incompressible Navier-Stokes equations:

p(%f:-+u-Vu)—V-o'=0 on2x(0,T), 1)
V-u=0 on2x(0,7), 4 -2

where p and u are the density and velocity, and o is the stress tensor given as
o=-pl+2use(u) | (3)
with .
e(u) = §(Vu + (Vu)"). » - - , 4)

Here p and u represent the pressure and viscosity while I denotes the identity tensor. Both the
Dirichlet and Neumann type boundary conditions are taken into account as shown below:

u=g onTl,, | (%)
n-oc=h onl,, - (6)

, where'I; and I, are complementary subsets of the boundary I".

3. Spatial and temporal discretizations .~

Let € denote the set of elements resulting from the finite element discretization of the
computational domain {2 into subdomains 2%, e=1,2,..., n.,, where n, is the number of
elements. We associate to € the finite dimensional Sobolev spaces H'* and H®. The trial and
test function spaces are given as : :

1
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So={u"|u"€H") u"=g"on T}, ‘ (7)
Vi={w" | w*e H") w*=0onT}, | 8)
S;=Vo={q1q€H"}, ©)

where n, is the number of space dimensions. '
The Tl formulatxon employed in this work is essentially the same as the one used in [1]:

Find «" € S} and p” € 5%, such that

du IR '
Lw"-p(-———+u Vu)d{)+fns(w"):o"'d.0

d
L‘ﬁh [ (-—-—~+u Vu) V-o-"]d.()
+), d'Vutda=| whotdr w"ev’* Vgtevt . | (10)
L q . Vq'ev; |

Here 8" is the streamline—upwind/ Petrov—Galerkm (SUPG) supplement, at the element

interiors, to the weighting function w" [8].
The semi-discrete equations corresponding to (10) can be written as follows:

Ma+N(v).+ Kv-Gp=F, ) g (11)
G'v=E, ‘ (12)

where v is the vector of unknown nodal values of u a is the time derivative of v, and p is the
vector of nodal values of p”". The matrices M,N,K and G are derived, respectively, from the
time-dependent, advective, viscous and pressure terms. The vector F is due to the Dirichlet
and Neumann type boundary conditions (i.e., the g and A terms in (5) and (6)), whereas the
vector E is due to the Dirichlet type boundary condition. All arrays with a superposed tilde
can be decomposed into their Galerkin and SUPG parts:

M=M+M,, | ' (13)
N=N+N,, | (14)
E=K+K,, o (15)
G=G+G,, - (16)
F=F+F,, | | (17)

where the subscript § identifies the SUPG contribution.
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REMARK 1. The equation systems (11) and (12) can be solved implicitly by reordering the
unknowns in such a way that the unknown velocities appear before the unknown pressures in
each element; we define this as the consistent-reordered (CR) system. In such cases we .

perform 2 iterations per time step.

REMARK 2. The equation systems (11) and (12) can also be solved by treating the velocity
explicitly in the momentum equation. The way the Q1P0 element is used in [2] leads to a
symmetric coefficient matrix for pressure. All explicit T1 computations presented in this paper
are based on such a symmetric system and the results are obtained with 2 iterations. per time

step. .

~The T6 formulation is described as follows: A
1. Find a%,, € (S"),,, such that

~h h .

6 A .
Nel B izh _uh . \ \ h. -
. a8 “n . =
"’Z‘st [P( 9ar U V"n)]dﬂ 0 Vw'ev,. (18)

2. Find u},, € (5", ., and Prvs € S such that

h ~h
B, Bpig ~ U,y f hy. _h
fnw P—GAr dn + ns(w ):0,,,d02

+Lq"v-u:,,,cm=fr W'k, VW'EVL Vg'eVh. (19)
h

w .

. Find @%,,_, €(5"),,,_ such that

~h h
R, Unei-g " Ui f hy. _h
fnw p-—-—-————(l_ze)m do + n:(,w ):0,.,d02

=frh w'-n!.,dI vw'eVv". , (20)

S

. Find u*,,_, € (8"),,,., such that

~h

h
h . U, 1-9g " Upe1-9 A o
. J;') w P[ (1 ~26) At + uf:l_, Vun+l_,] dn

Nej h _ ~h v
+2 fn 8" [p(""a‘_’ 20’;"&“" +uli, -vuf:ﬂ_,)] =0 Vw'eV].
- o 1)

. Find &, €(S%),., such that

W
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pah ok
h Upey " U8nsvi-g
fnw 'P[ = BAtn + Uy Vun+l°0] N

~h _ _h .
t2 f,a" [ (—ﬁiﬁf—*—‘—uum_, Vu,,+,_,)]d.(2=0 vwevi. (22)

6. Find u},, € (S:),,+l and p,,“ € S}, such that

h ~
un+ n+
Lwh-p—-—%—&-——l'dﬂ+f g(wh): a,,+,d.(2+] q"'v-ul, d0

= L w'-hi,, VYW'ev, vg'ev,. = . (23)
h .
REMARK 3. The parameter @ is the one used in the 8-scheme [3]; we set it to }.

REMARK 4. Unlike the T6 algorithm described in [2], we add the SUPG supplement in all
stages involving the advection term, i.e., in (18), (21) and (22). .

REMARK 5. The matrix forms corresponding to (18), (20), (21) and (22) can be solved
implicitly or explicitly as described in [2]. The matrix form of the two ‘Stokes sub-steps’, i.e.
(19) and (23), are quite similar to the matrix form of the T1 formulation; they can be solved
implicitly or by treating the velocity explicitly. The results presented in this paper are based on
the explicit treatment of all sub-steps.

4. The velocity-pressure elements used

The velocity—pressure elements used in this paper are shown in Fig. 1. We now describe
each element briefly.

Q1P0. This element employs bilinear interpolation for velocity and constant interpolation for
pressure. It does not satisfy the Babuska—Brezzi condition and is known to suffer from
spurious pressure modes. Nevertheless it is a popular element.

Q2P1. This element employs blquadratlc interpolation for velocity and linear mterpolatlon
for pressure.

pQ2P1. This is the ‘pseudo’ version of the Q2P1 element in which the velocity is bilinear
over each sub-element. In Fig. 1 these sub-elements are denoted by dashed lines.

O¢

® Velocity node

@)
. OAO‘ 'O 'O QO Pressure node

[}
.
"-
.

Q1P0 QpPr pQ2P1
Fig. 1. The velocity—pressure elements used.
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5. Numerical tests and observations

All computations were performed on the Minnesota Supercomputer Institute Cray X-MP (4 _
CPUs, 16 Megawords of memory, 9.5ns clock, and UNICOS 5.0 operating system). The
codes are vectorized wherever possible. To have a better basis of comparison between the
solutions obtained by using different elements, we require that for each problem meshes
generated with different elements have the same distribution of the velocity nodes. The nodal
values of the pressure, stream function and vorticity are obtained by the least-squares

interpolation.

The standing vortex problem

This test problem was suggested to us by Gresho (see [4]) The purpose of the test is.to get
an indication of how much numerical dissipation a formulation introduces. The flow is inviscid
and is contained in a 1x 1 box. The initial condition consists of an axisymmetric velocity
profile with zero radial velocity, and with the circumferential velocity given as u, = {5r for
r<0.2, 2-5r for 0.2<r<0.4, 0 for r>0.4}. Since this initial condition is also the exact
steady-state solution, the numerical formulation should preserve this ‘standing’ vortex as
accurately as possible. The finite element mesh is uniform and contains 20 X 20 elements for
Q1P0. For Q2P1 and pQ2P1 we use 10 X 10 elements. The time step size is 0.05; based on
constant ‘element length’ of 0.05, this time step size results in a peak local Courant number of
1.0. The numbers of iteractions used in the sub-steps of the T6 formulation are 4 2-2-2-
4 —2 for Q1P0 and pQ2P1, and 2-2-2-2—2-2 for Q2P1.

Some of the solutions obtained at t=3 (i.e., after 60 time steps) are shown in Fxgs 2-7.
Table 1 shows, for all three elements, the percentage of the vortex kinetic energy retained

after 60 time steps.

REMARK 6. We repeated our tests, with a time step size of 1/10 of the original time step
size, for the Galerkin implicit implementation of Q2P1 and pQ2P1; these implementations

were still unstable.

REMARK 7. When we compare the results obtained with the T1 implicit and T1 explicit
implementations of the elements considered, we see very little difference.

REMARK 8. Clearly the T6 formulation is less dissipative than the T1 formulation. Although
with the T6 formulation all elements seem to yield comparable levels of dissipation, with the
T1 formulation the Q1P0 element shows 51gn1ﬁcantly higher dissipation. Moreover we observe
that for hlgher-order elements the difference in energy dissipation between the T1 and T6
formulations is not as large as it is for the Q1P0 element.

REMARK 9. We repeated our tests, with a time step size of 1/3 of the original time step size,
for the T1 explicit implementation of all three elements. In each case the change (compared to
computations with the original time step sxze) in the vortex kinetic energy retained was less

than 0.4%.
A related test problem, in which the initial condition consists of the superposition of a
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Table 1

Element Galerkin implicit T1 implicit T1 explicit Té6 explicit
Ql1PO 100.2* X 225 94.7
Q2P1 Unstable 83.7° 83.8° 94.0.
pQ2P1 Unstable 85.4 85.4 . 92.0

*Strictly speaking unstable, yet the solution looks quite reasonable, except for
slight oscillations that grow slowly as the computation is continued beyond
t=3. ) 4

®Slight oscillations that do not grow as the computation is continued beyond
t=3.

uniform flow field and the standing vortex, was considered in [4]. The boundary conditions are
assumed to be consistent with the uniform flow field. It can be shown that the solution for this
‘traveling vortex’ is the superposition of the uniform flow field and the standing vortex
translating with the velocity of the uniform flow. The proof follows.

The standing vortex flow field ug(%), ps(¥) satisfies the equations

us(8) - Tus(F) + - Tp(F) =0, | (24)

V-ug(¥)=0, . (25)
where £ is a generalized coordinate. The initial condition for the ‘traveling vortex’ is

u(x,0)=uy + ug(x), (26)

where u, represents a uniform flow field consistent with the boundary conditions. We need to
verify that the flow field : L

u(x, t) = uy + ug(x — uyt) , (27)

p(x,8)=po + ps(x — uyt) (28)
satisfies the inviscid flow equations

du 1

— . -Vp= 29

0t+u Vu+pr 0, (29)

Vou=0. o (30)

Substituting (27) and (28) into the left-hand-side (LHS) of (29) and (30), we obtain

d 1 -
LHS of (29) = 3 [uy + ug(x — uyt)] + ;)-.V[p0 + ps(x — uyt)]

+ [ug + ug(x — uyt)] - V{u, + i‘s(x." ut)], (31)
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LHS of (30) = V- [z, + ug(x — uyt)] . (32)

Recognizing x — u,t as x, and using the relations

:t ug(x — uyt) = —ﬁo Vug(x - uyt) : ' ' (33)
Vaug(x — uyt) =Vug(x — uyt), (34)
Ve ug(x = ugt) =¥ ug(x - uyt), | (35)

we arrive at
LHS of (29) = uy(x — u,t) - Vug(x — ugt) + ;15 Vps(x — uyt), (36)

LHS of (30) = V- ug(x — u,t) . (37)

By comparing (36) and (37) respectively with (24) and (25), we conclude that (27) and (28)
represent a legitimate solution of (29) and (30).

Flow past a circular cylinder

~ In this problem we have a uniform upstream flow; the Reynolds number based on the
cylinder diameter is 100. The dimensions of the computational domain, normalized by the
cylinder diameter, are 30.5 and 16.0 in the flow and cross-flow directions, respectively. The
mesh used for Q1P0 consists of 5240 elements, while the number of elements for Q2P1 and
pQ2P1 is 1310. All meshes contain 5350 velocity nodes. The numbers of iterations used in the
sub-steps of the T6 formulation are 4 -2 -2 —2 -4 -2 for Q1P0 and pQ2P1,and 2 -2 -2 —
2 -2 -2 for Q2P1. In each case, the CPU time (in seconds) per time step is 0.51 (Q1P0/T1),
- 1.10 (Q1P0/T6), 0.64 (Q2P1/T1), 0.83 (Q2P1/T6), 0.57 (pQ2P1/T1), 0.86 (pQ2P1/T6).
For each element, to expedite the convergence to the temporally periodic solution, as initial
condition we use the solution corresponding to the crest value of the lift coefficient obtained
with Q2P1/T6. The periodic solution for Q2P1/T6 is computed by introducing a short term
perturbation to the symmetric solution obtained with this formulation. We have observed, at
least for small perturbatxons that the periodic solution is independent of the mode of
perturbation.
The Strouhal number and the time history of the lift and drag coefficients are shown in Figs.
8 and 9. For all formulations except for Q1P0/T1, which results in a significantly lower value,
the variations in the Strouhal number is within 2% range. The lift coefficient shows no
significant difference among different formulations except Q1P0/T1. For the drag coefficient,
the values obtained with Q1P0/T6, Q2P1/T6, pQ2P1/T6 and Q2P1/T1 are very close, while
the value obtained with pQ2P1/T1 is lower, and the value obtained with Q1P0O/T1 is
significantly lower.
The periodic flow patterns corresponding to the crest value of the lift coefficient are shown
in Figs. 10-15. The patterns corresponding to the trough value of the lift coefficient are simply




Fig. 8. The Strouhal number and the time history of the lift coefficient obtained with various elements.
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the mirror images, with respect to the horizontal centerline of the patterns shown in Figs.
10-15. We observe that the solutions obtained with Q1P0/T6 and pQ2P1/T6 are very similar,
and the solutions obtained with Q2P1/T1 and Q2P1/T6 are very similar. It is clear from all
these flow patterns that the T6 formulation is less dissipative than the T1 formulation. This
observation. is the same as the one we made for the standing vortex problem. For Q2P1,
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. The time history of the drag coefficient obtained with various elements.
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Fig. 10. Periodic solution (corresponding to the crest value of the lift coefficient) obtained with Q1P0/T1.
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Fig. 11. Periodic solution (corresponding to the crest value of the lift coefficient) obtained with Q1PO/T6.
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Fig. 12. Periodic solution-(corresponding to the crest value of the lift coefficient) obtained with Q2P1/T1.
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however, the difference between the patterns obtamed with the T1 and T6 formulations is not
significant.

We repeated our computations, with a time step size of 1/3 the original time step size, for
the T1 implementation of all elements; there was no significant change in the solutxons

obtained.

6. Concluding remarks

We investigated, in the context of time-accurate finite element computation of unsteady
incompressible flows, the performance of the quadrilateral velocity—pressure elements with
constant and linear pressure interpolations. These elements were implemented using the
one-step (T1) and six-step (T6) formulations of the Navier-Stokes equations. We picked two
numerical examples: the standing vortex problem and flow past a circular cylinder. Results
from these two test problems show that the Té formulation is less dissipative than the T1
formulation. Although with the T6 formulation all elements seem to yield comparable levels
of dissipation and sxmxlar solutions, with the T1 formulation the QI1P0 element shows

signficantly higher dissipation.
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