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Abstract

Two implicit finite element formulations for incompressible flows have been implemented on
the Connection Machine supercomputers and successfully applied to a set of time-dependent
problems. The stabilized space-time formulation for moving boundaries and interfaces, and
a new stabilized velocity-pressure-stress formulation are both described, and significant aspects
of the implementation of these methods on massively parallel architectures are discussed. Several
numerical results for flow problems involving moving as well as fixed cylinders and airfoils are
reported. The parallel implementation, taking full advantage of the computational speed of the
new generation of supercomputers, is found to be a significant asset in fluid dynamics research.
Its current capability to solve large-scale problems, especially when coupled with the potential
for growth enjoyed by massively parallel computers, make the implementation a worthwhile
enterprise.

1. Introduction

In recent years, it has become apparent that the improvements in computation speed delivered
by single processing units are beginning to stagnate. Fundamental physical limitations begin to
constrain hardware designers, and the order-of-magnitude improvements we have come to expect
every few years have been replaced by more modest incremental gains. These dissatisfactions have
been compensated by the promise of highly scalable performance offered by massively parallel (MP)
computing. However to take advantage of these new capabilities, programming techniques and
algorithm design have to be extensively modified. Because of this, another unexpected challenge
has been added to the task of numerical analysts aiming to exploit the latest computer technology.

TThis research was sponsored by NASA-JSC under grant NAG 9-449, by NSF under grant MSM-8796352, and by
ALCOA foundation. Partial support for this work has also come from the Army Research Office contract number
DAAL03-89-C-0038 with the Army High Performance Computing Research Center at the University of Minnesota.
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The difficulty is especially acute in the case of finite element methods. The inherent flexibility
of such methods, which allows one to use unstructured meshes or mix various types of interpola-
tions in the same problem, becomes a drawback when parallelization is considered. Finite element
codes often have complex patterns of communications between variables, in stark contrast to the
regular communication which is preferred in MP architectures. Nevertheless the efforts to make
parallel machines an integral part of finite element universe have been intensifying. A replacement
of standard programming techniques with those more suitable for Single-Instruction-Multiple-Data
(SIMD) architectures has been proposed by Belytschko et al. [1]. The exchange explicit proce-
dure described in [1] bypasses the traditional formation of stiffness matrices and their assembly.
Substantial work in the application of explicit and domain-decomposition methods on parallel ma-
chines has been done by Farhat et al. — see [2] and references therein. In the context of implicit
finite element implementations, the pioneering work has been done by Johnsson and Mathur [3-6].
In their work, storage schemes optimal for the SIMD machines, along with a conjugate gradient
solver, were developed and applied to three-dimensional stress analysis. Another alternative to the
traditional construction of the stiffness matrix has been proposed by Johan et al. [7], and applied
to fluid dynamics problems. The mesh-to-processor mapping techniques discussed there, as well as
those developed by Farhat [8], are relevant to most parallel finite element implementations.

Here we describe our experiences in adapting implicit finite element formulations for use with
massively parallel computers, restricted so far to SIMD type machines. We concern ourselves with
two distinct formulations, but the implementation issues are common to both. By far the most
challenging part of the design is the method of solution of the large linear systems of equations
arising from the finite element discretization. For this purpose, we adapted an iterative solver based
on the Generalized Minimum Residual (GMRES) technique. To improve the convergence of the
method, a diagonal scaling is used. On the other hand, the formation of elemental stiffness matrices
and force vectors is naturally parallelizeable, due to local nature of all operations involved.

The two formulations used to illustrate the implementation techniques are novel and interesting
in their own right. The stabilized space-time formulation for moving boundaries and interfaces,
introduced in [9] and [10], allows for simulation of flows in deforming domains with unprecedented
ease, and has already been used to add to the physical knowledge base in the field of fluid-structure
interaction [11]. The stabilized velocity-pressure-stress formulation introduced in [12] uses the de-
viatoric stress tensor as an additional unknown, and allows for arbitrary combinations of interpola-
tions for all variables. It is also applicable to viscoelastic fluid flows with complex time-dependent
constitutive equations.

In Sections 2 and 3 we briefly outline the finite element formulations adapted for use on the
Connection Machine computers. A formal description of the discretization process is given in
Section 4, while in Section 5 we discuss in detail the parallel implementation issues, common to
both formulations. Selected results are presented in Sections 6 and 7, and main points of the study
are reiterated in Section 8.

It is our hope that the material covered here will smooth the transition path for other finite
element researchers who wish to take advantage of the massively parallel performance, but find
their current code design less than optimal for the task. The parallel implementation section in
particular contains a fair amount of detailed information and should be applicable to a wide range
of finite element formulations.

2. Space-Time Velocity-Pressure Formulation

We consider a viscous, incompressible fluid occupying at an instant ¢ € (0,7) a bounded region
Qy C R™d with boundary I';, where ngq is the number of space dimensions. The velocity and
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pressure, u(x,t) and p(x, t), are governed by the Navier-Stokes equations:

ou
(E—I-u Vu)—V'J =0 on Q Vte (0,7), (1)

Vu =0  ony Ve (0,7), (2)
where p is the fluid density, and o is the stress tensor. For a fluid with viscosity pu, this tensor can
be decomposed into the isotropic and deviatoric parts:

1
o=-pl+T, T=2ue(u), e(u)= 5 (Vu+ (Vu)'). (3)
Both the Dirichlet and Neumann-type boundary conditions are taken into account, represented as:
u =g on (I'y)g, (4)
n-oc =h  on ('), (5)

where (I't) g and (I'y), are complementary subsets of the boundary I';. The initial condition consists
of a divergence-free velocity field specified over the entire domain:

u(x,0) =ug on Q. (6)

In order to construct the finite element function spaces for the space-time method, we partition
the time interval (0,T") into subintervals I,, = (tn, tn+1), where t,, and t,11 belong to an ordered
series of time levels 0 = tg < t; < --- <ty =7T. Let Q, = Q, and I';, =T, . We shall define
the space-time slab @), as the domain enclosed by the surfaces 2, Q,+1, and P,, where P, is the
surface described by the boundary I'y as t traverses I,,. As it is the case with I';, surface P, can be
decomposed into (Py,)g and (P,)n with respect to the type of boundary condition (Dirichlet or Neu-
mann) being applied. For each space-time slab we define the following finite element interpolation
function spaces for the velocity and pressure:

(Sha = {u" Ju" e [H(@Qu)]| ™ u = g" o (P} (7)
Vi = {u"lu" e [H7Q)] " u" =0 on (R} (®)
(St = V= {p" 10" € B"(Qu)}. (9)

Here H 1h(Qn) represents the finite dimensional function space over the space-time slab Q,,. Over
the element domain, this space is formed by using first-order polynomials in space and, depending
on our choice, zeroth- or first-order polynomials in time. Globally, the interpolation functions are
continuous in space, but discontinuous in time.

The stabilized space-time formulation for deforming domains can be then written as follows:
given (u”);, find u” € (S"),, and p" € (S]}})n such that

h
wh.p (8_ +u” Vuh> dQ —I—/ s(wh) : U(ph, u)dQ — wh . mhdpP

Qn ot (Pa)n

+ /thpV'Uth—l_/n(Wh):;'p<(u}l):_ (uh);> 40
+ (”i/ [ <—+u Vw)—V-a(thwh)] [ <%+u Vu>_v.o-(ph’uh)]dQ

+ Z 5V-Wth-uth:0, ywh e (Vh),, V" e (VD). (10)
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This process is applied sequentially to all the space-time slabs @1, Qs, ... ,Qn_1. In the varia-
tional formulation given by (10), the following notation is being used:

(u)E = limu(t, +¢), (11)

/Qn )dQ = /I/m Q. (12)
/Pn )dpP = /1/ drdt. (13)

(u")§ = uo. (14)

The computations start with

Remarks

1. In the variational formulation given by (10), the first four terms constitute the standard
Galerkin formulation of the problem. The fifth term provides continuity, in a weak sense, of
the velocity field in time.

2. The sixth term in the formulation (10) is a least-squares form of the momentum equation,
which provides necessary stability for advection dominated flows in the presence of sharp
streamwise boundary layers. The same term stabilizes the method against spurious pressure
modes which arise from certain combinations of interpolations for velocity and pressure,
including the equal-order bilinear interpolation used in current computations. See [9] for
definition of the stabilization coefficient 7.

3. Stability at high Reynolds numbers is enhanced by the addition of the final term in the
formulation (10), which is a least-squares form of the continuity equation. The coefficient o
is defined in [11].

4. Both stabilization terms are of the weighted residual variety, and do not compromise the
consistency of the Galerkin formulation.

3. Velocity-Pressure-Stress Formulation

The physical problem under consideration remains the same as the one defined by equations (1)—(6),
i.e., Navier-Stokes equations for flows of incompressible Newtonian fluid. However, the ngq(nsq+1)/2
independent components of the deviatoric stress tensor T are treated as additional unknowns, and
equation (3) enters the variational formulation directly. The case of deforming domains is not
covered here, so the subscripts denoting domain time level are dropped. The interpolation function
spaces for the velocity, pressure and deviatoric stress tensor are given as:

Sh = {uh |u e [th(ﬂ)rm ,ul=g" on Fg} , (15)
v = {uh |u" e [th(ﬂ)rm ,u" =0 on Fg} , (16)
sy = vi={r" 10" @} a7

nsd(nsa+1)/2
Sh = v%_{Th\The[th(Q)} H }
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The velocity-pressure-stress formulation is an extension of Method II described in [12] to time-
dependent problems, and can be written as follows: find u* € SI, p" ¢ S;} and T € Sff‘ such
that

h
/ wh.p (ai +u”- Vuh> dQ— | v -wiphd + / e(wh): ThdQ — [ wh . hMdD
Q ot Q Q Ty
1
+ — [ st Tha / s" s(uh)dQ—l—/ "pV - udQ
2v Jo Q Q
el ow™ ou
+ Z/ T [p (— +u” th> + Vg — V-Sh] : [p (— +u. Vuh> +Vph — v-T"| dQ
~ Jor ot ot
el 1 1
—gh _ h —~ mh _ h
+ EZ/COQV [QVS e(w )] [QV e(u )] aQ
Tlel
+ > Qeav whpV - utdQ =0, wvw' eV v eVl vS"e Vi (19)
e=1
Remarks

5. Aside from stabilization terms described in Section 2, the formulation given by (19) includes
a least-squares form of the constitutive equation (3). Consequently, this formulation can be
applied in conjunction with arbitrary combinations of interpolation functions for all variables,
including presently employed equal-order bilinear combination.

6. Definitions of the coefficients 7, § and «, as well as stability proof and error analysis for the
steady-state case are given in [12].

7. In the computations that follow, formulation (19) has been time-discretized with the Crank-
Nicholson scheme. The use of discontinuous Galerkin discretization (space-time method) is
planned for future.

8. The time derivative of the velocity weighting function represents the variation of the time
derivative of velocity itself. For example, in the case of the space-time method, this term is
the true time derivative of the weighting function. On the other hand, in the case of Euler-
type time discretization with time step At, the term du”/dt is replaced by (ul,; —ult)/At,
with u” known, and thus the variation term becomes w"/At.

4. Discrete Finite Element Equations

In order to discuss the implementation aspects, we have to describe in more detail the process of
forming and solving the linear equation system from the abstract variational forms (10) and (19).
We will use as an example the first of the two formulations, i.e., the space-time formulation (10).
The description of the parallelization techniques is equally applicable to the velocity-pressure-stress
formulation (19) with only minor modifications.

To simplify the notation, we introduce a composite trial solution

h .
_ _ h= _ u 1<i<n
o = {u?} —ale;, al=4{ "1 = = (20)
1=1,nq0f
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where ngof = nsq + 1 is the number of degrees of freedom per node. In the presence of Dirichlet
boundary conditions, the composite solution is decomposed into its known and unknown parts

u' =vh+gh, vh=q0le;, g"=gle, (21)
with
17?—{'”’: 1 <i<ngy _h_{g? 1 <i<ng (22)
p" i=ng+1 7 0 i=mng-+1
Then the composite solution is represented in terms of basis (shape) functions:
o= Y Nadia, G'= Y Nagia, (23)

A€77—77g1- Aeﬂgi

where 7 and 7, represent the set of all nodes, and the set of Dirichlet nodes for the degree of
freedom %, respectively. Similar representation applies to the composite weighting function:

wh = ’U_)Zhéi, ’U_)Zh = Z Nyc;a. (24)

The variational formulation (10) may be written in abstract form
a(W",v" + ") = (w" B")p,, (25)

where h" is h" extended to the composite solution space in a manner analogous to (22),. Because

of nonlinearity of the functional a(-,-) in some of the components of the second vector argument,

we apply an iterative Newton-Raphson technique to obtain corrections to the current value v/*:

V=9 £ AV, (W, V4 gh) = a(wh, 9 4 ) + ar(wh AV, (26)

where ay(-,-) is bilinear. Note that for a linear problem (e.g., Stokes equation), as(-,-) = a(-,-).
From (26) follows a decomposition of the nodal unknown vector introduced in (23):

djp = djp + Ad;p, (27)
and at each nonlinear iteration step we have to solve the following equation:

Ndof

7 h
Z Z aI(NAei,NBej)Aij = (NAei,h )pn
Jj=1 B€77—77g1-

— a(Nae, v +g"), A€n—ng, 1 <i <ot (28)
Equation (28) may be written in a matrix form as follows:

KAd=F, K=[Kpg], Ad={Adg}, F={Fp},
Kpg = ar(Nae;, Ngej), Fp=(Nae;, h")p, —a(Nae;, ¥ +gh),
P:ID(’L',A), Q:ID(ij)v AaBG??—"?g“ 1 Siajgndofa (29)
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where ID is the mapping assigning equation numbers to the nodal degrees of freedom. In the
standard finite element implementation, the global matrix K and vector F are assembled, or can
be thought of as being assembled, from the element-level contributions:

ke = [kgeyq]v fe:{f;}v 1 <p,q < nee,
—h P
kgeaq - a[(Nan‘, Nbej)ev fp = (Naeia h )Pﬁ - a(Naez}Vh + gh)e,
p=ndot(a—1)+1i, ¢=nge(b—1)+7j, 1<a,b<nem, 1<i,j<ngof, (30)

where ng, is the number of nodes in a space-time element, nee = NdofMen is the number of element
equations (or degrees of freedom), while N, and N}, denote the restrictions of the shape functions
to the local elemental space-time domains. Similarly the superscript e denotes restriction of the
integral forms to the single element domain.

5. Parallel Implementation

Implementation of the finite element equations (29)—(30) on a distributed memory, massively par-
allel computer entails architecture-specific considerations which are not relevant in the context of
conventional shared-memory scalar or vector machines. The following discussion is intended to rely
only on abstract features of the hardware and software environment and should be applicable, in
principle, to a variety of distributed memory, massively parallel systems. The actual implementa-
tion of the numerical examples is performed on Connection Machine models CM-2, CM-200 and
CM-5.

Remark

9. The primary software features which this discussion relies upon are the existence of a data
parallel style language implemented with virtual processor constructs along with :SERIAL and
:NEWS layout directives for arrays (see Appendix A), such as Connection Machine Fortran
(CMF, see [13]). Equivalent data layout controls will be available in the High Performance
FORTRAN (HPF) standard, now under development. It should be noted that this same al-
gorithm may be reconstructed from other data parallel languages (such as C*, a data parallel
extension to ANSI C offered by the Thinking Machines Corporation) or from a message pass-
ing programming model (message passing requiring much more detailed low-level management
on behalf of the programmer).

Before a detailed discussion of the parallel implementation of the finite element matrix formula-
tion (29)—(30), it is useful to outline the organization of the global numerical algorithm as shown
in Box 1. Of the ingredients highlighted in Box 1, the discussion here is restricted primarily to
the formulation of the array elements in the linearized system (Step 5 in Box 1) and the solution
of the corresponding linear system of equations (Step 6 in Box 1). Preprocessing, postprocessing
and data mapping strategies (Steps 1, 9 and 2, respectively, in Box 1) are not considered here.
Discussions of parallel preprocessing, such as parallel mesh generation techniques, can be found
in [14] and [15]. Data mapping strategies for distributing data to processing nodes in distributed
memory, massively parallel computers is important from the perspective of optimizing performance.
Typically, the objective of this mapping problem is to determine the mapping which distributes
data to the processors in a way which minimizes the communication time associated with sending
data between processors. An optimum strategy would balance the objectives of maximizing locality
of the data and of minimizing data contention, both within the communication network channels
and at the interface of the processing node and the network. This optimal mapping problem is
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1. Preprocessing (data input, mesh generation, etc.)

2. Mapping of data onto processors

3. Time step loop

4. Nonlinear iteration loop

5. Formation of array elements in the linearized system (“FORM” )
6. Solution of the linear system (“SOLVE” )

7. End nonlinear iteration loop

8. End time loop

9. Postprocessing (data visualization, etc.)

Box 1: Structure of a Parallel Nonlinear Finite Element Program

considered to be NP complete (nondeterministic polynomial time, see [16], Chapter 36). That is,
obtaining a true minimum would be intractable. In fact, maximizing locality is itself NP complete.
Consequently, current mapping strategies are simply heuristic methods to reduce communication
costs. The mapping strategy used does not influence the quality of the solution, but rather the
speed at which the solution is obtained.

Remark

10. It should be noted that in some situations, the mathematical properties of the solution scheme,
such as the accuracy and stability associated with a given time increment, or the number of
nonlinear iteration taken per time step, may be slightly affected by mapping due to the
usual interaction between machine precision and the order in which algebraic operations are
performed in finite precision arithmetic. This effect however, should be insignificant in all
but extremely ill-conditioned problems.

Although the mapping problem is not addressed here, the data structure constructed is such that
a preprocessed map of the data onto processors may be included without difficulty. Discussions
concerning this mapping problem may be found in [17-20]. One should note that most of the
mapping algorithms previously proposed address only one of the above objectives. For example,
randomization (see [6]) addresses reducing data contention within network and at the network
interface. Spectral bisection (see [17,19,20]) addresses increasing data locality. Johan [20] combines
randomization and spectral bisection.

The dominant computational portions of most finite element formulations are the formation of
array elements in the linearized system (“FORM” phase) and the solution of the corresponding
linear system of equations (“SOLVE” phase). For implicit time integration methods, the solution
of the linear system of equations is typically the dominant computational portion, while for explicit
time integration methods the formation of array elements in linearized system constitutes the major
computational burden. Only implicit time integration is considered here.

A key step in implementing the finite element method (29)-(30) on a distributed memory,
massively parallel machine is to construct a data structure which will circumvent unneeded com-
munication of data between processing nodes. Since, for this class of machines, remote memory
access (accessing data on a remote processor) is approximately an order of magnitude slower than
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is local memory access (accessing data on the local processor), remote memory access should be
avoided when possible. A natural and convenient data structure which addresses this issue is one
in which two data sets are used, a “FORM” (element) and a “SOLVE” (node) data set. The
construction of these data sets along with parallel algorithms for the “FORM” and “SOLVE”
phases are discussed below.

“FORM” Phase

First, considering the “FORM” phase, we note that prior to the assembly of the element ob-
jects (30) into global objects (29), this phase can be viewed as a collection of computations which are
strictly local to each element. That is, to construct the element matrices (30), only data associated
with a given element is used to construct that element’s local or element matrices. Consequently,
a data structure which collects all the element information for element e into a single processor p
will enable the formation of the element matrices (30) for element e in processor p with no com-
munication between neighboring processors. Such a data structure may be constructed naturally
within data parallel constructs for :SERIAL and :NEWS array axis layouts (see Appendix for a
brief discussion of these layout constructs). In particular, consider arrays foi(:,:) and kel(:,:,:) in a
pseudocode language with the declaration attributes

REAL fel(nee_maxa nel)v
REAL kel(nee_maxa Nee_max; nel)v

where Nee_max 1S the maximum number of element degrees of freedom (number of nodes per element
times the number of degrees of freedom per node for the element type having the maximum such
product, nee = Ndof Men) and ne is the total number of elements. The REAL statement is to be
interpreted as the REAL attribute in FORTRAN. The declaration is completed with the layout
directive

CMF$ LAYOUT fo(:SERTAL,;:NEWS), ke (:SERIAL,:SERIAL,:NEWS).

By definition of the CMF$ LAYOUT constructs, for a fixed element 4., the element level vector
fe1(1 : Nee_max, Gel), Of Nee_max components, resides in the memory of processor p(iq). Furthermore,
the element level matrix kei(1 : Neemax, 1 @ Teemax, tel) Of nge_max components resides in the memory
of the same processor p(ie1). Consequently, since these comments are true for all ig, e € [1, 101,
the element data associated with ¢ in (29) may be stored in fei(1 : Nee_max, €), While the element
data associated with k¢ in (29) may be stored in ke1(1 : Nee_maxs 1 : Teemax; €), so that ¢ and ke

reside in the same (virtual) processor for each e, e € [1, ne.
Remarks

11. The physical processor identified by p(ie) is a function of the mapping strategy used in
mapping the data set to the machine. For our purposes, we will assume that this mapping is
provided to us either by the default mapping issued by the compiler in initializing an array
whose :NEWS dimension has extent ne|, or by a mapping strategy such as mentioned in Step 2
of Box 1.

12. Note that described data structure for the “FORM” phase has redundant storage of nodal
values corresponding to nodes which are shared by more than one element. This trade-
off between memory and performance is common in a wide variety of parallel algorithms
in computational physics. Fortunately, the total memory within contemporary distributed
memory, massively parallel systems is substantially larger than that in traditional vector
supercomputers so that this redundant use of memory does not become an unacceptable
burden.
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With this data structure, the “FORM” phase may be carried out in parallel, with no interprocessor
communication. To demonstrate this explicitly, consider the first term in the weak form (10),
namely

ouh
o w' Rarmllos (31)

The corresponding contribution to the Galerkin form (25) is

o <h —h
a(w",v" + g") = / pv‘vhluu%dcz, (32)
where
I 0
qu _ Ngd XMNsd Ngg X1 33
|: 01><nsd 0 ( )

is used to filter out the pressure degree of freedom. The contributions to a;(Nae;, Npe;) and
a(Nae;, v™* + g") in (28) become

ONp

ari(Nae;, Npej) = / PNy —= o

5l{udQe’ Av B e n—- ngiv
e ON )
wNaer ¥ 45" = [ oNATGEA i 4 gy, Acn oy, Ben, (39

where 1 < i,j < ngor and 63}" = I}, Hence, ar+(Nae;, Npej) = 0 when i = nqor or j = ndof,
consistent with (32). The contribution to k® then takes the form

ket = agi(Naei, Nyej)© . (35)
That is,
Fet et et
lf(ilt lfiQt e lfi?en
kS kS R o
e e (36)
t St ¢
kfbenl kfbenQ ctt k;ennen
where
Jou PN.Z5dQ° 0 0 0
A 0 . pN, 2 aqe 0 0
k(ez}f = an P @ ANy, 1ye , 1<a,b< ney. (37)
0 0 er Na ot dQ 0

0 0 0 0

In order to express this in pseudocode, numerical integration of a function x(x) over the element
domain @, is represented in the form

/ X(x)dQ* = ix (€)W, (38)

n
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REAL k%! (Nee_max, Meemax; Tel)s J & (Neemaxs Mel); shape(0 : 4, maz(Nen), Nel)
REAL d(ncemax; Mel), p(7e1); J (Me1), W (ne1)
CMF$ LAYOUT k%! (:SERIAL,:SERIAL,:NEWS)
CMF$ LAYOUT fe!(:SERIAL,:NEWS)
CMF$ LAYOUT shape(:SERIAL,:SERIAL,:NEWS),
CMF$ LAYOUT d(:SERIAL,;:NEWS), p(:NEWS)
CMF$ LAYOUT J(:NEWS), W(:NEWS)
for [ =1: niy
call shape {compute shape(:,:,:), J(:), W(:)}
call rho {compute p(:)}
for a,b=1:ne,
fori,7=1:ngy
P =ndof ¥ (a—1)+1i
q=ndot * (b—1) +j
k®'(p,q,:) = k%' (p,q,:) + shape(0,a,:)* shape(4,b,:)* p(:)* J(:) x W(:)
fet(p,:) = fe'(p,:) — shape(0,a,:)* shape(4,b,:)* p(:)*d(q,:) * J(:) x W(:)
end for
end for

end for

Box 2: Pseudocode for k& and f&!

where niy¢ is the number of quadrature points in @, J; is the determinant of the Jacobian of the
isoparametric mapping between the parent domain of the element (i.e., the unit cube with local
coordinate system &) and the physical domain QS (with coordinate system x), evaluated at the Ith
quadrature point §;, and W is the quadrature weight for that point. Hence, defining

shape(0,a,iq) = N, defined on Q!
ON, ,
shape(4, a, iq) 5t defined on Q¢! , (39)

the pseudocode for the “FORM” phase contribution of (31) to k® and f¢ takes the form shown in
Box 2.

In conceptual terms, the “FORM” phase is constructed in such a way, that all the physical
information required to form the element arrays within a single element is stored in :SERIAL
dimensions for each element, with a :NEWS dimension along the number of elements. The actual
format in which this information is stored along :SERIAL dimensions may be arranged according
to individual preferences. Note that a serial computer or a shared-memory multiprocessor would
interpret these layout constructs simply as comments (they begin with “c”) and they would not
affect the results of the computation.

“SOLVE” Phase
In the “SOLVE” phase, a parallel implementation of the GMRES(m) method proposed by
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Saad and Schultz in [21] is considered. The parallel implementation GMRES(m) is discussed
only briefly here. A comprehensive discussion of the implementation of the classical GMRES(m)
method within an unstructured finite element framework is provided in [22]. It should be noted
that an alternative, matrix-free version of the GMRES(m) method has been implemented on the
Connection Machine [7]. For simplicity, the numerical examples in Sections 6 and 7 report results
only for diagonal preconditioning, but block diagonal and element-by-element preconditioners have
been implemented, and work on a cluster-element-by-element preconditioner is in progress.

Note that the “FORM” data structure is not well suited for the “SOLVE” phase due to the
redundancy in the storage of nodal values. As a result, an additional “SOLVE” data structure
is introduced which is identical to the traditional assembled data structure in the finite element
literature (see, e.g., [23]). A key feature of the GMRES implementation is that, for the system
KAd = F in (29), the stiffness matrix K is stored only on the element level (i.e., in the “FORM”
data structure). Only the vectors d, F, and other intermediate vectors of the same dimension,
introduced by the GMRES(m) algorithm, are assembled into the “SOLVE” data structure. The
dimension and layout of vectors involved in the “SOLVE” phase become

REAL v(ndof global)
CMF$ LAYOUT v(:NEWS)

where 14t _giobar is the total number of global degrees of freedom in the problem. Hence, such
vectors get distributed across all the processors in the machine (using either the compiler’s default
mapping or a mapping specified otherwise). The only communication encountered between the
“FORM” and “SOLVE” data structures in the GMRES algorithm occurs when K is referenced;
i.e., in constructing the preconditioner and in the matriz-vector product. In particular, a matrix-
vector product of the form Kv, where dim(v) = dim(Ad), is implemented as (1) a gather of v
from the “SOLVE” data structure to the “FORM” data structure in the form of element level
vectors v°(:, :) of the same dimension and layout as f¢(:,:) above, (2) an element level, in-processor
matrix-vector multiplication of k°(:, :,:) with v°(:,:) and (3) a scatter of v°(:,:) from the “FORM”
data structure to v in the “SOLVE” data structure. Note that the in-processor matrix-vector
multiplication occurs with no communication between processors, and that the scatter operation
involves discarding elemental matrix-vector product results corresponding to Dirichlet nodes.

A noteworthy feature of the current GMRES(m) implementation is that the solution of the
Hessenberg system is conducted in a serial fashion on a single processor. Alternative schemes
may also be constructed. The required dimension of the Krylov space is related to the quality of
the preconditioner and the matrix properties. For well-behaved compressible problems, a Krylov
space of dimension 5 to 10 is typically adequate. For incompressible problems, a Krylov space of
dimension 20 or more may be needed due to the large condition number of the matrix operator
associated with the incompressibility constraint. It is interesting to note that, as observed on the
Connection Machine model CM-5, for a problem with 130,000 degrees of freedom, for a Krylov
space of dimension 20, the amount of CPU time spent idle by the system in waiting for solution
of the Hessenberg system is below 3% of the entire GMRES elapsed time. That is, even with a
serial solution of the Hessenberg system, the Connection Machine is still utilized 97% efficiently
in the GMRES solver. This number is only slightly larger for other sizes of Krylov space (up to
60). Krylov spaces dramatically larger than this will likely require more sophisticated methods of
solution of the Hessenberg system, which would take advantage of the parallelization.

Gather and Scatter

The gather and scatter communication steps in the matrix-vector product are the dominant
contributors to computation time in the “SOLVE” phase. These communication steps use a mesh
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specific connectivity array iconn(1:neemax,1:7e1) derived from ID used in Section 4. For each elemen-
tal degree of freedom, this matrix returns either a global equation number, or zero if the particular
elemental degree of freedom is prescribed by the boundary conditions. A gather operation can be
expressed using the FORALL statement in the form:

FORALL (ice=1:Ncemax, Gte1=1:ncl, iconn(ice,icl).NE.O)
V(lee, Tel) = V(iconn(iee, iel))
and a scatter in the form:

FORALL (igof global=1:dof _global)
'U(idof_global) = ’U(idof_global) + SUM(’Ue, MASK = iCOnn.EQ-idof_global)'

The FORALL statement, present in Connection Machine Fortran and High Performance For-
tran, is a parallel counterpart of a serial loop. Although the above expressions provide the
desired functionality, the computational expense associated with these communication steps de-
mands the use of high performance gather and scatter functions. On the Connection Machine, the
sparse_util_scatter and sparse_util_gather functions from the Connection Machine Scientific
Software Library (CMSSL) [24] are used. Randomization of the global equation numbers, i.e., the
iconn array, is used to reduce path contention.

6. Numerical Examples for the Space-Time Velocity-Pressure Formulation

Flow past an oscillating airfoil

The stabilized space-time velocity-pressure implementation was used to simulate flow past a
pitching NACA 0012 airfoil, at Reynolds number 1,000 based on the unit free-stream velocity and
a unit chord length. In this simulation, a sinusoidal oscillation between the angles of attack of 10
and 30 degrees is prescribed for the airfoil, with a non-dimensional frequency of 1.0. The time
step size is 0.02. The space-time formulation allows for the deformation of the mesh according
to the airfoil inclination. Therefore the deformation is periodic and bounded, and the desired
deformation could be achieved without remeshing. The mesh generator in this case provides a
flexible zone surrounding the rigid mesh core near the airfoil, and is capable of generating meshes
at wide ranges of angle of attack, with no significant element distortion. The mesh used in this
problem consists of 6,460 spatial elements, and lead to approximately 39,000 unknowns in a single
space-time slab. The resulting equation system is solved iteratively, with a Krylov subspace size
of 60, with 7 GMRES iterations and an average of 3 nonlinear iterations per time step. In Figure 1
the vorticity field is shown at several different instants in the simulation. The same figure shows
also two typical mesh deformations. There is a good qualitative agreement between the results
obtained here and those reported for a similar airfoil motion in [25] and [26].

Vortez-induced vibrations of a cylinder in cross-flow direction

This problem represents a simple model of fluid-structure interaction. A cylinder mounted on
lightly damped springs is allowed to move in the vertical direction in response to the fluid forces
acting on it. The motion of the cylinder alters the vortex shedding mechanism of the cylinder
significantly and leads to several interesting physical phenomena. A detailed numerical investigation
of such an oscillator can be found in [11]. The motion of the cylinder is governed by the following
equation:

%Y oY

Z- ot 2y _ ~L
92 +21F,( 5 + (7 F,)%Y ) (40)
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Figure 1. Flow past an oscillating airfoil at Reynolds number 1,000: vorticity fields and typical
mesh deformations.

Here Y represents the normalized vertical displacement of the cylinder. The displacement and
the velocity of the cylinder are normalized by its radius and the free-stream velocity respectively.
M is the non-dimensional mass/unit length of the cylinder, ¢ is the structural damping coefficient
associated with the system, and C, denotes the lift coefficient for the cylinder. F,, is the reduced
natural frequency of the spring-mass system and is defined as:

where a is the radius of the cylinder, U is the free stream velocity and f, is the actual natural
frequency of the system.

For our problem, F,, = 0.22, M = 472.74 and ¢ = 3.3 x 10~%. The Reynolds number for the
simulation (based on the free-stream velocity and the cylinder diameter) is 300. For this value
of the Reynolds number the reduced natural frequency of the spring-mass system is larger than
the Strouhal number for flow past a fixed cylinder. Unsteady flow past a fixed cylinder at the
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same Reynolds number is used as the initial condition for this simulation. The time step for the
computations is 1.0. The finite element mesh consists of 4209 nodes and 4060 elements. At each
time step approximately 25,000 equations are solved using GMRES in conjunction with a diagonal
preconditioner. The dimension of the Krylov space used is 30.

g 3 HW 3
% 2.2 | 2.2
: |
© 1.8 1.8
gL, m\ \H\ \M »HH -
© ) .

1 1

0 4000 8000 12000 16000 20000 19600 20000
tine step tine step

Figure 2. Vertically oscillating cylinder at Reynolds number 300: time history of the drag coefficient.
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Figure 3. Vertically oscillating cylinder at Reynolds number 300: time history of the lift coefficient.
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Figure 4. Vertically oscillating cylinder at Reynolds number 300: time history of the normalized
vertical displacement.

Figures 2-4 show, respectively, the global and terminal time histories of the drag and lift
coefficients and the normalized vertical displacement of the cylinder. It can be observed that,
initially the oscillator exhibits the phenomenon of beats. At a later time, the vortex shedding
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frequency of the cylinder locks on to the natural frequency of the spring-mass system. Finally
the cylinder reaches a periodic oscillation amplitude of approximately one radius. As a result of
these oscillations, the drag and torque acting on the cylinder increase substantially, while there is
a decrease in the amplitude of the lift acting on the cylinder. Figure 5 shows a sequence of frames

=

»*

&=

Figure 5. Vertically oscillating cylinder at Reynolds number 300: vorticity field at the lowest, mean
and highest positions of the cylinder.

displaying the vorticity field during one period of the cylinder motion. The first and last frames
correspond, respectively, to the lowest and highest positions of the cylinder while the middle frame
corresponds to the mean location of the cylinder.
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7. Numerical Examples for the Velocity-Pressure-Stress Formulation

The velocity-pressure-stress implementation is used to compute two-dimensional flow past a fixed
cylinder, at Reynolds number 1000. The upper and lower boundaries are flow symmetry lines,
and the downstream boundary is traction-free. The mesh consists of 21,408 quadrilateral elements,
with continuous bilinear interpolation functions for all variables. The element size near the cylinder
surface is of the order 0.01. A time step size of 0.05 was selected to provide sufficient resolution of
the vortex shedding periods. A diagonal scaling with no preconditioning was applied to the system.

The Krylov subspace size is 20, with 5 outer GMRES iterations, and at most 4 nonlinear iterations
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Figure 6. Flow past a cylinder at Reynolds number 1000: time history of the drag coefficient.

per time step. The simulation was continued for 4580 time steps after restart from a steady-state
solution at Reynolds number 100, and reached a periodic state with Strouhal number 0.241, as seen
in the lift and drag coefficient plots in Figures 6 and 7. Three different vorticity fields are shown
in Figure 8. The three frames represent the fully developed periodic flow field, at an instant when
the lift coefficient attains the maximum, zero and minimum values, respectively.

Benchmark measurements performed for this problem, revealed the total computation speed
of 561 MFLOPS on CM-200 computer with 32,768 processors, using a 4-CPU Sun 4/690 front
end. This figure includes parallel output of data to the DataVault mass storage system. In the
“SOLVE” phase, the speed of communication-bound GMRES solver routine applied to the system
with 129,610 degrees of freedom was 518 MFLOPS. On the other hand, the highly parallel “FORM”
phase achieved 1607 MFLOPS on the same machine. All computations were performed in double
(64-bit) precision. The time needed to compute one nonlinear iteration for this problem was 6.5
seconds, compared to 150.6 seconds consumed for the same purpose on a Cray Y-MP M-92 CPU.
The Cray implementation, although vectorized, likely was not optimal with respect to memory
access in the gather and scatter stages of the GMRES algorithm.
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Figure 7. Flow past a cylinder at Reynolds number 1000: time history of the lift coefficient.

8. Summary and Concluding Remarks

We have briefly described two finite element formulations for incompressible flows, and given de-
tailed account of the issues involved in adapting them for use on massively parallel computers. The
stabilized space-time method which is applicable to problems involving moving boundaries and
interfaces was used to simulate incompressible flows past oscillating bodies such as cylinders and
airfoils. The velocity-pressure-stress formulation was applied to a fixed cylinder problem. The two
implementations share a parallel design, which is a major focus of this work.

The parallel program design proposed here uses traditional notions of element level matrices
common to implicit finite element implementations. Consequently, it provides a straightforward
extension to traditional implicit implementations. A useful alternative to using element level matri-
ces is the matriz-free GMRES implementation suggested by Johan [20]. The key advantage of the
matrix-free GMRES lies in the reduced memory consumption, as the element matrices need not be
stored. A disadvantage of the matrix-free GMRES is the need to frequently recompute the residual
of the problem in the inner iteration loop of the GMRES algorithm. Such residual formations
are used in place of the matrix-vector product in the matrix-based GMRES solver. For classical
continuum models, such as the Navier-Stokes equations considered here, 1-point spatial quadrature
typically leads to residual formation cost lower than that of the matrix-vector product. On the
other hand, higher order integration, e.g., 2 x 2 x 2 or 3 x 3 x 3 quadrature for three-dimensional
brick elements, leads to high residual formation costs, which exceed the expense associated with the
matrix-vector product. For more elaborate material models such as those entailing micromechanical
models for inelasticity in solids (discrete defect models, polycrystalline models, etc.), the residual
formation rapidly becomes more expensive than the matrix-vector product, even for 1-point quadra-
ture. Another advantage of implementations employing classical element-level matrices is the fact
that the information contained in these matrices can be put to other uses, such as construction of
certain preconditioners.
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Figure 8. Flow past a cylinder at Reynolds number 1000: vorticity field at time steps 4472, 4518
and 4554

A key ingredient in the proposed parallel implementation is the interprocessor communication
associated with the gather and scatter steps of the “SOLVE” phase. The unstructured nature of
finite element meshes leads to general communication patterns across the parallel network. Despite
the careful choice of data structures which exploit locality through compiler layout directives, the
gather and scatter steps consume the dominant portion of the computation time for the implicit
simulations, exceeding the time spent in on-processor computation. The dominance of the com-
munication expenses creates an added dimension to algorithmic design considerations for parallel
architectures. Although the FORALL construct (in both Connection Machine Fortran and High
Performance Fortran) provides functionality for the gather and scatter operations, it is essential to
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take advantage of high performance gather and scatter communication routines such as the Con-
nection Machine Scientific Software Library functions discussed in Section 5. Further improvements
to reducing communication expenses can be achieved through effective partitioning algorithms for
mapping the data to the processors (Step 2 of Box 1). Spectral partitioning algorithms [17,20]
have shown particularly promising results, particularly when combined with communication func-
tions which provide efficient treatment of both on-processor and off-processor components of the
gathered and scattered data. A key observation relative to such partitioning algorithms is that the
partitions chosen can be imposed upon the data structures here by a simple permutation of the
:NEWS axes of the connectivity array

FORALL (iee:1 Mee_max;lel=1 777'61)

iconn(iee, iperm(ie)) = iconn(iee, iel),

where iperm is a permutation array describing element numbers associated with particular proces-
sors (see [20]).

By making efficient use of emerging high-performance distributed-memory computers, we are
able to routinely solve problems of larger scale, spatial as well as temporal, than the ones we
could afford with the state-of-the-art classical architectures. Such increased capabilities more than
compensate for the initial investment involved in the transformation of existing serial algorithms.
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Appendix A. Data Parallel :SERIAL and :NEWS Layout Constructs

The notion of data layout constructs for :SERIAL and :NEWS array dimensions is one of the fea-
tures of the Connection Machine Fortran. This notion is designed to allow the programmer flexibil-
ity in distributing data to processors on massively parallel architectures. In CMF, the declaration of
such dimensions appear as compiler directives of the form “CMF$ LAYOUT A(:SERIAL,:NEWS)”
which typically are included following the array declaration statements in FORTRAN. Similar com-
piler directives will appear in High Performance Fortran. The directives are constructed in such a
way that they will not alter the results of any computations and they will not have any effect on
serial machines since they will appear simply as comment lines to FORTRAN compilers which do
not recognize them. The layout directives should be interpreted simply as additional constructs
which aid performance on distributed memory, massively parallel platforms.

To demonstrate the effect of these layout directives on the location in memory of data rep-
resented by arrays, it is useful to consider the arrays A, B and C defined as follows, assuming
a 3 processor machine.

INTEGER A(9), B(9), C(3,3)
CMF$ LAYOUT A(:NEWS), B(:SERIAL), C(:SERIAL,:NEWS)

with

A(1:9) = (1,2,3,4,5,6,7,8,9)
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B(1:9) = (1,2,3,4,5,6,7,8,9)
C(1,1:3) = (1,2,3)
C(2,1:3) = (4,5,6)
C(3,1:3) = (7,8,9)

The manner in which A, B and C are distributed to the processors in the 3 processor machine is
depicted in Table 1.

It should be noted that the notion of virtual processors is assumed throughout this discussion.
A virtual processor facility allows each physical processor to simulate some number of virtual pro-
cessors, thus allowing application programs to be relatively independent of the number of physical
processors in the machine in which it is executing. Arrays are then allocated in such a way that
each :NEWS index is associated with a single virtual processor. Operations on such arrays can be
performed on all elements in parallel. For example, the operation A(:) = 3*A(:) + 4*A(:) denotes
multiplying all elements of A by 3 (simultaneously, in parallel), then by 4 (in parallel) and summing
the result (in parallel). The repeated execution of a physical processor over the virtual processors
it represents is called virtual processor, or subgrid, looping. For example, for array A, the virtual
processor ratio, or subgrid, i.e., the ratio of virtual processors to physical processors, is 3 so that
the above addition operation requires about 3 times longer to execute than it would if there were
9 physical processors available. Furthermore, in storing A in memory, each virtual processor has
a fraction (1/3) of the memory available to a physical processor. If the processors are pipelined, the
time required to perform an operation may increase with the virtual processor ratio, so application
programs may achieve better performance at higher rather than lower virtual processor ratios.
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