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Abstract

The influence of the location of the lateral boundaries on 2D computation of unsteady
incompressible flow past a circular cylinder is investigated. The case of Reynolds number 100
is used as a benchmark, and several quantities characterizing the unsteady flow are obtained
for a range of lateral boundary locations. The computations are performed with two distinct
finite element formulations — space-time velocity-pressure formulation and velocity-pressure-
stress formulation. We conclude that the distance between the cylinder and the lateral
boundaries can have a significant effect on the Strouhal number and other flow quantities.
The minimum distance at which this influence vanishes has been found to be larger than
what is commonly assumed.

1. Introduction

One of the standard aspects of numerical simulation is the selection of the computational
domain, which is often only an approximation of the actual domain of the physical problem.
Many of the types of boundary conditions used in practical applications are applicable only
if they are sufficiently removed from the region where accuracy of the solution is important.
The desire to limit computational cost, on the other hand, provides motivation to reduce the
domain size. As usual, the best results can be expected when these contradictory tendencies
are optimally balanced.

The issue of proper placement of the boundaries arose several times in our past compu-
tations, receiving the fullest attention in the benchmark 2D studies involving incompressible
flow past a circular cylinder at Reynolds number 100. This transient problem is frequently
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used to assess the accuracy of finite element formulations, as it is characterized by a handful
of well known quantities, such as the mean drag coefficient, or a nondimensional frequency of
the vortex shedding known as the Strouhal number. At this low Reynolds number, such char-
acteristic quantities obtained with the 2D numerical approach should approximate closely
the values obtained experimentally, e.g., by Roshko [1].

It was one of our early observations regarding this problem that the shedding charac-
teristics, and the Strouhal number in particular, is significantly affected by the dissipation
introduced by the time-integration scheme. In reference [2], a dissipative T1 time-stepping
scheme was compared against a T6 scheme, as well as a vorticity-stream function solution.
The T6 scheme gains accuracy over the T1 scheme by a more selective application of the
stabilization terms. Reasonably good values of the Strouhal number were obtained with the
T6 scheme and the vorticity-stream function formulation. The T1 scheme however, produced
noticeably low shedding frequency, and thus, a low Strouhal number. Also seen were lower
than normal values of the average drag coefficient, as well as lower amplitude of the lift co-
efficient. These effects were observed for the Q1P0 (bilinear velocity, constant discontinuous
pressure) element. Interestingly, the Q1Q1 (equal-order bilinear interpolation for both fields)
element used in [3], again in the context of a T1 and a T6 scheme, did not exhibit such sen-
sitivity. The conclusion that choice of the transient algorithm can significantly influence the
quantities characterizing an unsteady flow field did not rule out the possibility that similar
shifts in Strouhal number can be caused by other aspects of the numerical method, such as
the aforementioned choice of the size of the computational domain.

In conjunction with the two international symposia devoted to this subject (University of
Wales, Swansea, Wales, July 1989; Stanford University, Stanford, California, July 1991), we
have examined the effect of the location and type of the outflow, or downstream, boundary.
These studies were first performed with the velocity-pressure formulation [4], and then with
the vorticity-stream function formulation [5]. It was found that with the commonly used
traction-free boundary condition applied at the outflow boundary, the Strouhal number and
other quantities are quite insensitive to the distance of that boundary from the cylinder.
They were observed to deviate from the expected values only as the said distance is reduced
below 6 cylinder diameters. Below that value, the change in the flow behavior is rather
dramatic with the solution losing its periodicity and tending to a steady-state. Because
of a need for accurate representation of a wake behind bluff bodies, in most computations
reported in the literature, the downstream boundary is placed much farther downstream than
the critical distance found in [4,5]. The situation is not as clear regarding the positioning of
the other boundaries of the computational domain.

A small set of experiments described in the present article shows that the shedding solu-
tion is far more sensitive to the location of the lateral boundaries. We obtain a series of flow
fields around the cylinder, with two independent formulations of Navier-Stokes equations,
and with a set of five domains, with varying distance separating the lateral boundaries from
the cylinder. When constructing the meshes for the different domains, the same inner mesh
is used, with an appropriate number of extension elements added at the lateral boundaries.
This is the same approach as the one used in [4,5]. The data presented here suggests that
the lateral boundaries should be distanced from the cylinder by at least 8 cylinder diameters
in order to remove the influence of those boundaries on the shedding phenomena. In particu-
lar, Strouhal number can become artificially high when the lateral boundaries are placed too
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close to the cylinder. The difference in the boundary location may have caused the discrep-
ancy between the Strouhal number obtained for the cylinder problem in [6] with a one-step
time-integration, and the T1 result reported in [2]. In fact, it has not been unusual for the
past computations of this benchmark problem, including a recent comparison of transient
algorithms [7], to be performed with the lateral boundaries placed as close as 4.5 cylinder
diameters away. Such low values might have influenced the measured Strouhal number and
other flow quantities. It is our belief that lateral boundaries should be positioned farther
apart, especially when the nature of a time-integration scheme is under investigation. In
cases where the zone of influence of the lateral boundaries is difficult to predict, and when
the shedding quantities are used as an accuracy indicator, a check on the influence of the
boundary placement is as important as the traditional mesh refinement comparison. It is
possible to envision situations where the dissipative effect of the transient algorithm (lower-
ing the Strouhal number) combines with the constraining effect of the closely spaced lateral
boundaries (increasing the Strouhal number), to produce shedding characteristics which are
close to target experimental observations, yet are not indicative of overall accuracy of the
solution method.

In Section 2 we state briefly the physical problem under consideration. In Section 3 we
recall the velocity-pressure and velocity-pressure-stress formulations. We present the results
of the numerical tests in Section 4, and reiterate main points of this study in Section 5.

2. Governing Equations

In this section, we state the problem in the form of Navier-Stokes equations of incompressible
flows. In the following, €2, C R™d will denote a bounded region at time ¢ € (0,7), with
boundary I';, where ngq is the number of space dimensions. The time index indicates that
the domain may be deforming. The symbols u(x,t) and p(x,t) will represent the velocity
and pressure fields, respectively. The external forces, such as the gravity, will be represented
by f(x,t). The Navier-Stokes equations for incompressible flows are

0
P(a_lzfl+u.Vu—f)_V~0' =0 on® Vte(0,7T), (1)

V-u =0 ony Vte(0,T), (2)

where p is the density assumed to be constant. For the Newtonian flows under consideration
here, the stress tensor for a fluid with dynamic viscosity p is defined as follows:

o=-pl+T, T=2ue(u). (3)

This equation set is completed by suitable boundary conditions and an initial condition
consisting of a divergence-free velocity field specified over the entire domain:

u(x,0) =ug, V-uy=0 on . (4)

The boundary conditions consist of a uniform velocity profile specified at the inflow boundary;,
no-slip condition at the cylinder surface, flow symmetry conditions at the lateral boundaries,
and traction-free condition at the outflow boundary.
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3. Finite Element Formulations

In this section we outline the two finite element formulations used to conduct the numerical
tests described in Section 4. It should be noted that both formulations were designed to deal
with problems more complex than the one under consideration in this paper. The space-time
formulation is suitable for problems involving moving boundaries and interfaces, while the
velocity-pressure-stress formulation is typically used to solve flow problems which involve
non-Newtonian constitutive relations.

3.1. Space-Time Velocity-Pressure Formulation

In a space-time formulation, the space-time domain is first divided into a sequence of space-
time slabs (),,, and each slab is decomposed into space-time elements )f. A slab @, is
located between the time levels ¢,, and t,.1. The integration of a functional over a slab will
include integration over both the spatial domain €2; and the temporal one [t,, t,41]. Since
many of the functions to be introduced here will be discontinuous across slab interfaces, we
will employ the notation (-) and (-)} to indicate the values at ¢, as it is approached from
below and above, respectively. The number of elements in slab n is written as (nq),. The
finite element formulation begins with choosing appropriate trial solution ((S%), and (S!),)
and weighting function ((V3), and (V)), = (S))n) spaces for the velocity and pressure. In
our computations we employ piecewise linear functions for all fields.

The stabilized space-time formulation for deforming domains can be written as follows:

given (u"),, find u" € (S}), and p" € (S), such that Vw" € (V}!), and V¢" € (V!),,
/ w' - p (— +u" - vu" ) dQ —|—/ e(w") : o(p",u")dQ

+ / nth~uth+ / n(wh);. p (W — (u"):) d2
+ <z/ o [ (5wt ww) = 9 o

[ (%H —_ f)_va(ph,uh)]dcz

(neD)n

+ Z / Teont V * Wh pV : uth = Wh . hhdp. (5)

(Pn)h

Here h" represents the Neumann boundary condition imposed, (Py)n is the part of the slab
boundary with such conditions, and 7oy and Tconr are the stabilization parameters. The
solution to (5) is obtained sequentially for all space-time slabs Q1,Qa, ... ,Qn-1, and the
computations start with

(u")y = uh. (6)

In the formulation given by equation (5), the first four integrals, together with the right-hand-
side, represent the time-discontinuous Galerkin formulation of (1)-(2). The fourth integral
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enforces, weakly, the continuity of the velocity field in time. The two series of element-level
integrals in the formulation are the least-squares stabilization terms. The reader can refer
to [8-10] for further details regarding the space-time formulation for incompressible flows,
including definitions of the stabilization parameters.

3.2. Velocity-Pressure-Stress Formulation

The velocity-pressure-stress formulation presented here is a restriction of the general formu-
lation presented in [11], which was applicable to Oldroyd-B and Maxwell-B fluids, to the
case of Newtonian fluids. In contrast to the space-time formulation presented in the pre-
ceding subsection, the 3 (or 6 in three dimensions) independent components of the extra
stress tensor T are treated as additional unknowns, and the constitutive equation enters the
variational formulation directly. The case of deforming domains is not covered here, so the
subscripts denoting domain time level are dropped. Following the selection of suitable trial
solution (S}, ! and Sf) and weighting function (V};, V) = S} and Vi = S}) spaces for
the velocity, pressure and the extra stress, the formulation can be written as follows: find
u e S ph e S;‘ and T" € S& such that:

h
/Wh.p al_i_uh.vuh_f dQ—/V‘Whpth—i—/e(Wh):Tth
Q ot N o

/ w’ - hMdTdQ + / "V - udQ
Fh Q

1
+ = Sh:Tth—/Sh:e(uh)dQ
21 Jg Q

+ E%Ij S A B
eMOMp P ot q
e=1

ou” h h h h
| p W—l—u ~Vu —f +Vp —VT dQ

MNel

- ;/GTCONSQM lish —E(Wh)} : liThE(uh)} dQ2

Mel

+ Z/ Teont V-W'pV-u"d =0, vw'e V! V¢eV!, vs'eVi (7
e=1 ©

In the computations that follow, formulation (7) has been time-discretized with the
Crank-Nicholson scheme. Piecewise bilinear interpolations are used for all fields in the com-
putations reported here. Further details of this formulation, including the design of the
parameters Tceons, Twom and Teonr can be found in [11,12].

4. Tests

In this section, we describe our numerical tests which involve the standard benchmark prob-
lem of unsteady 2D flow past a cylinder at Reynolds number 100. The problem domain is
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Mesh Distance A (see Figure 1) Number of nodes Number of elements

MO090 9.0 3681 3540
M125 12.5 4605 4450
M160 16.0 5529 5360
M240 24.0 7641 7440
M320 32.0 9753 9520

Table 1. The mesh parameters.

shown in Figure 1.

O_12

16 45

Figure 1. The computational domain.

The inflow velocity is specified as 1.0 at the inflow (leftmost) boundary. A no-slip con-
dition is specified at the cylinder surface, zero normal velocity and zero tangential stress is
assumed at the lateral boundaries, and a traction-free condition is prescribed at the outflow
boundary. The distance of the upstream and downstream boundaries from the cylinder is
fixed at the values shown in Figure 1 and deemed sufficient on the basis of the results pre-
sented in [4,5]. The distance A is the subject of the current investigation. For this purpose,
we employ a series of 5 meshes with A ranging from 9 to 32. These meshes will be referred
to by symbols given in Table 1. To remove any dependence on near-field refinement, the
meshes are nested, i.e., each smaller mesh can be viewed as a truncation of the next larger
mesh.

Both formulations given in Section 3 are used to obtain periodic solutions on these five
different meshes. A time step of 0.125, providing a resolution of approximately 100 time
steps per vortex shedding period, is selected. Our previous experience [2]| indicates that the
refinement of the mesh is sufficient to obtain reliable measurements of the flow quantities. In
all five cases, in order to shorten the computation time, a closest available periodic solution
is either adapted or interpolated, and used as an initial condition. After the fully periodic
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solution is reached, we measure and report the amplitude of the lift coefficient, average value
of the drag coefficient and the Strouhal number. The amplitude of the lift coefficient is given
in Table 2 and plotted in Figure 2. The mean drag coefficient is given in Table 3 and plotted
in Figure 3. Finally, the Strouhal number is reported in Table 4 and plotted in Figure 4.

It can be clearly observed that both formulations, which are very different, show the same
kind of dependence of the reported flow quantities on the position of the lateral boundaries.
When the distance A is as small as 9.0, we see a 6% increase in the amplitude of the lift
coefficient and the mean drag coefficient. The increase in the Strouhal number reaches 5%.
It is apparent from the plots in Figures 2, 3 and 4, that these quantities stabilize within 1%
of the final values only as the distance A exceeds 16.0. While there is a visible difference
between the results from the two different formulations, both of them exhibit the same
trend as the distance of the lateral boundary is varied. In particular, the variation in the
Strouhal number due to the distance A being changed from 9.0 to 32.0, is at least twice of
the difference in Strouhal number for the two formulations obtained at a fixed value of A.

5. Concluding Remarks

We have recalled the role of vortex shedding from a cylinder as a benchmark frequently
employed to study the accuracy of a numerical scheme. The most notable quantities which
characterize the vortex shedding are the amplitude of the lift coefficient, mean drag coefficient
and the Strouhal number. These quantities played important role in our past computations
which sought to determine the correct placement of the downstream boundary. They are
also frequently employed to assess the accuracy of time-integration algorithms. In this study,
we concentrated on the dependence of the vortex shedding phenomena on the placement of
the lateral boundaries. The results we obtained indicate that the distance between the lat-
eral boundaries and the cylinder beyond which the presence of these artificial boundaries
ceases to influence the Strouhal number and other quantities, is greater than what is com-
monly assumed. Cautious placement of the lateral boundaries is advocated, especially when
the Strouhal number and its deviation from experimentally obtained value is used to draw
conclusions about other aspects of the numerical algorithm. In particular, we find that the
lateral boundaries should be removed from the cylinder by a distance of 8 cylinder diameters.
If this is not the case, the computed Strouhal number will have an artificially high value.
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Mesh Amplitude of the Lift Coefficient
Space-Time Velocity-Pressure Velocity-Pressure-Stress

MO090 0.3946 0.3880

M125 0.3794 0.3739

M160 0.3743 0.3692

M240 0.3709 0.3666

M320 0.3706 0.3659

Table 2. Variation of the amplitude of the lift coefficient.

Mesh Mean Drag Coefficient
Space-Time Velocity-Pressure Velocity-Pressure-Stress
MO090 1.4552 1.4732
M125 1.4023 1.4214
M160 1.3836 1.4030
M240 1.3721 1.3917
M320 1.3698 1.3894

Table 3. Variation of the mean drag coefficient.

Mesh Strouhal Number
Space-Time Velocity-Pressure Velocity-Pressure-Stress
MO090 0.1711 0.1739
M125 0.1658 0.1690
M160 0.1641 0.1672
M240 0.1624 0.1661
M320 0.1624 0.1661

Table 4. Variation of the Strouhal number.
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Figure 2. Variation of the amplitude of the lift coefficient with distance A.
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Figure 3. Variation of the mean drag coefficient with distance A.
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Figure 4. Variation of the Strouhal number with distance A.
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