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SUMMARY 

Massively parallel finite element computations of 3D, unsteady incompressible flows, including those involving 
fluid-structure interactions, are presented. The computations with time-varying spatial domains are based on the 
deforming spatial domaidstabilized spacetime (DSD/SST) finite element formulation. The capability to solve 3D 
problems involving fluid-structure interactions is demonstrated by investigating the dynamics of a flexible 
cantilevered pipe conveying fluid. Computations of flow past a stationary rectangular wing at Reynolds number 
1000, 2500 and lo7 reveal interesting flow patterns. In these computations, at each time step approximately 
3 x lo6 non-linear equations are solved to update the flow field. Also, preliminary results are presented for flow 
past a wing in flapping motion. In this case a specially designed mesh moving scheme is employed to eliminate the 
need for remeshing. All these computations are canied out on the A m y  High Performance Computing Research 
Center supercomputers CM-200 and CM-5, with major speed-ups compared with traditional supercomputers. The 
coupled equation systems arising from the finite element discretizations of these large-scale problems are solved 
iteratively with diagonal preconditioners. In some cases, to reduce the memory requirements even further, these 
iterations are carried out with a matrix-fiee strategy. The finite element formulations and their parallel 
implementations assume unstructured meshes. 
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1. INTRODUCTION 

In the past years the availability of massively parallel computers has provided us with the opportunity 
to carry out large-scale, unsteady, 3D finite element simulations. We present our numerical results, 
computed on the Army High Performance Computing Research Center (AHPCRC) supercomputers 
CM-200 and CM-5, for 3D, unsteady flows, including those involving fluid-structure interactions. For 
problems involving deforming domains, the fluid dynamics equations are solved with a stabilized 
space-time finite element method. In the space-time formulation the finite element interpolation 
functions vary both spatially and temporally. It was first shown by Tezduyar et al. 1,2 that this stabilized 
space-time finite element formulation can be effectively applied to fluid dynamics computations 
involving moving boundaries and interfaces. They successfully applied the DSD/SST (deforming 
spatial domaidstabilized space-time) procedure they introduced to unsteady incompressible flow 
problems involving free surfaces, liquid drops, two-liquid interfaces and drifting cylinders. Later Mittal 
and Te~duya&~ applied this method to simulate flows past moving cylinders and aerofoils. Parallel 
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implementation of the stabilized space-time method is described in the paper by Behr et al.' along 
with several example problems. For flow problems involving fixed domains, to save on the CPU time 
and memory, we use a one-step semidiscrete formulation. To reduce the cost associated with these 
large-scale computations, iterative solution strategies are employed to solve the coupled equation 
systems arising from the finite element discretizations of the problems. In these iterations we use a 
diagonal preconditioner with the GMRES6 update technique. In some cases, to reduce the memory 
requirements even further, matrix-free implementation7 of these iterations is used. The finite element 
formulations and their parallel implementations employed in this work assume unstructured meshes. 

The first problem considered in this paper is the computation of 3D flow in a flexible cantilevered 
pipe and the response of the pipe to this flow. One of the early works in this area was motivated by the 
vibration of the Trans-Arabian pipeline. In 1952 Housner' investigated this phenomenon based on a 
simple beam theory for pipes with simply supported ends. He found that for sufficiently high velocities 
the pipe may buckle, essentially like a column subjected to axial loading. In 1966 Gregory and 
Pa idouss i~~* '~  showed, theoretically and experimentally, that cantilevered pipes exhibit a contrasting 
behaviour compared with pipes with simply supported ends. At sufficiently high flow velocities the 
cantilevered pipes exhibit oscillatory instabilities rather than buckling. This observation was consistent 
with that of Benjamin,",'* who investigated the dynamics of articulated pipes conveying fluid as a 
discrete representation of a continuously flexible system. The interested reader is referred to the paper 
by Paidoussis and IssidI3 for a detailed discussion. In the present work the deformation of the pipe is 
based on the Bernoulli-Euler beam theory. The governing equations for the fluid flow are solved using 
the stabilized space-time method, while a Galerkin formulation, in conjunction with the 'a-method' for 
time integrati~n,'~ is employed for solving the equation of motion for the pipe. 

Next, results are presented for flow past a stationary rectangular wing, with NACA 0012 section, at 
12.5" angle of attack and at Reynolds number 1000, 2500 and lo7. Our computations converge to a 
steady state solution at Reynolds number 1000. As expected, a pair of wing tip vortices is observed in 
the solution. At Reynolds number 2500 we obtain a temporally periodic solution. At Reynolds number 
lo7 we use the Prandtl mixing length model to account for the Reynolds stresses in the turbulent flow. 
A semidiscrete formulation is employed to carry out these computations. Approximately 3 x 1 O6 non- 
linear equations are solved at each time step with matrix-free iterations. On a 512-node CM-5 these 
computations achieve a sustained speed of 10 GFLOPS. 

Finally we present results from preliminary computations for flow past a wing in flapping motion. 
The motion is based on a description given by Lighthill" of the flight of birds. From our computations 
we observe that during one time period (the upstroke and downstroke) this motion of the wing 
generates a net thrust and lift. A specially designed mesh-moving scheme' is employed to handle the 
motion of the wing without any remeshing. Therefore our solutions are free from projection errors 
associated with remeshing. Avoiding remeshing also aids us in utilizing the massively parallel 
machines efficiently. 

2. THE GOVERNING EQUATIONS 

2. I .  The Navier-Stoks equations 

Let R, in R"" be the spatial domain at time t E (0, T ) ,  where n d  is the number of space dimensions. 
Let Tr denote the boundary of Rp We consider the following velocity-pressure formulation of the 
Navier-Stokes equations governing unsteady incompressible flows: 

- V . a = O  onQ, V t e ( O , T ) ,  (1) 

(2) V - u  = 0 on Q, Vt E (0, T ) ,  
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where p and u are the density and velocity respectively and u is the stress tensor given as 

a@, u) = -PI + 2 P . m  (3) 

(4) 

with 

&(U) = grvu + (VU)T]. 

Herep and p are the pressure and dynamic viscosity respectively and I is the identity tensor. The part 
of the boundary at which the velocity is assumed to be specified is denoted by (r&: 

u = g on (rJg Vt E (0, T). ( 5 )  

The ‘natural’ boundary conditions associated with (1) are the conditions on the stress components, and 
these are the conditions assumed to be imposed on the remaining part of the boundary: 

n - o = h on (rt),, Vt E (0, T). (6)  

The homogeneous version of (6), which corresponds to the ‘traction-free’ (i.e. zero normal and shear 
stress) conditions, is often imposed at the outflow boundaries. As initial condition, a divergence-free 
velocity field uo(x) is specified over the domain Q, at t =  0: 

u(x, 0) = UO(X) on no. (7) 

2.2. Equations of motion for ajexible cantilevered pipe 

Shown in Figure l(a) is a schematic diagram of the pipe system under consideration. It consists of a 
uniform, tubular cantilever of length L, with flexural rigidity EI and mass m per unit length, conveying 
a stream of incompressible fluid of mass mf per unit length. The z-axis coincides with the centreline of 
the undeformed tube, whose transverse deflection x is measured normal to the z-axis. The motion of 
the pipe is restricted to the x-z plane. Figure 1 (b) shows the free-body diagram of a pipe element. Force 
balance in the z- and x-directions yields the following equations for the pipe: 

aT 
F , + - = O ,  

az 

Here F, and F, are the fluid forces acting on the pipe per unit length, T is the longitudinal tension in the 
pipe and Q is the transverse force. The shear force Q is related to the bending moment M acting on the 
Pipe by 

aM 
Q = - - .  az 

For small deflections the bending moment M is related to the lateral deflection by 

a2X M = E I -  
az2 

The longitudinal tension in the pipe is determined by integrating equation (8) along the pipe: 
L 

T(z) = T(L) + 1 F, dz, (12) 
2 

where T(L) is the tension at the free end of the pipe. 
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Figure l(a). Flow in a flexible cantilevered pipe: schematic lay-out 

r n x b  

6z 
Figure l(b). Flow in a flexible cantilevered pipe: fiee-body diagram of a pipe element 

Substituting equations (10) and ( 1  1) into equation (9), we obtain the equation of motion for the pipe 
as 

a4x ax a 2 X  

a# az az2 
-EI - - F, - + Fx + T - - mjt = 0. 

The boundary conditions for this cantilevered beam correspond to zero deflection and slope at the 
fixed end and zero bending moment and shear force at the free end: 

ax 
-(O, t )  = 0,  az x(0, t )  = 0,  

a 2 X  a3x 
-(L, t )  = 0,  
$2 a3z 

-(L, t )  = 0. 

As initial condition, displacement and velocity fields are specified along the pipe: 

To cast equation (1 3) in a non-dimensional form, we define the following dimensionless variables: 

where U is the mean flow velocity in the pipe. The non-dimensional form of equation (13) is 
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The dimensionless parameters associated with the pipe-fluid system, B and U, are defined as 

3. FINITE ELEMENT FORMULATIONS 

3.1.  The space-time formulation with the GalerkinAeast squares stabilization 

Our main motiviation for using the space-time formulation is to be able to solve problems that 
involve moving boundaries and interfaces. In this formulation the finite element interpolation functions 
vary both spatially and temporally. On the other hand, in semidiscrete finite element formulations the 
interpolation functions vary only spatially and a finite difference discretization in time is employed for 
unsteady problems. 

In the space-time finite element formulation the time interval (0, T )  is partitioned into subintervals 
Z, = (t,, tn+l),  where t,, and f ,+ l  belong to an ordered series of time levels 0 = to < tl < . . . < tN = T In 
this formulation the spatial domains at various time levels are allowed to vary. We let IR, = R, and 
r, = rrn and define the space-time slab Q, as the space-time domain endlosed by the surfaces R,, 
Rnfl  and P,. Here P,,, the lateral surface of Q,, is the surface described by the boundary as t 
traverses Z,. Similarly to the way it was represented by equations (5) and (6), P, is decomposed into 
(PJg and (PJh with respect to the type of boundary condition being imposed. 

Finite element discretization of a space-time slab Q, is achieved by dividing it into elements a, 
e = 1, 2, . . . , (n& where (n,l), is the number of elements in the space-time slab Q,. Associated with 
this discretization, for each space-time slab we define the following finite element interpolation 
function spaces for the velocity and pressure: 

(V'),, = {qhlqh E H'h(Qfl)I. (23) 

Here Hlh(Qn) represents the finite-dimensional function space over the spacetime slab Q,,. This space 
is formed by using, over the parent (element) domains, first-order polynomials in space and time. 
Similarly to the way one chooses the order of polynomials in space to obtain desired accuracy and 
convergence, in a space-time formulation one can choose the order of polynomials in time. Whatever 
the order of the polynomials is, globally the interpolation functions are continuous in space but 
discontinuous in time. 

The space-time formulation of (1)-(7) can be written as follows: start with 
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sequentially for QI, Q2, . . . , QN-I, given (u');, find u ~ E ( ~ ) ~  and p h  E (S,"), such that 
V d E (V;),, and Vqh E ( V j ) n  

IQn wh * p ( g +  uh *Vuh dQ+ ~ ( w h )  : a(ph, uh) dQ ) IQm 

+ 1 [p(% + uh V d  - V - o(qh, d)] - [ p ( g  + uh * Vuh) - V. o(ph, uh)] dQ 
e=l P. P 

+ ~5V.whpV.u~ dQ = 0. 
e= I 

In the variational formulation given by (25), the following notation is used: 

= lim Uh(t, f S), 
6+0 

(.. .)@=I (...)dI'dt. 
IP" I. r 

The first four integrals in equation (25) correspond to the Galerkin formulation of (1H7)  in a 
semidiscrete finite element formulation. The choice of interpolation functions that are discontinuous in 
time makes it possible in the space-time formulation to solve for the hlly discrete equations one 
space-time slab at a time. The fifth integral in equation (25) enforces, weakly, the continuity of the 
velocity in time. 

To assure the numerical stability of the computations, a series of integrals involving the coefficients 
z and S are added to the Galerkin variational formulation in equation (25). These integrals are obtained 
by invoking the Galerkideast squares (GLS) procedure. This procedure is a generalization of the 
stabilization based on the streamline upwindPetrov-Galerkin (SUPG) and pressure-stabilizinfletrov- 
Galerkin (PSPG) procedures16 employed for incompressible flows. Such stabilization procedures allow 
one to use elements which have equal-order interpolation functions for velocity and pressure and 
which are otherwise unstable. For definitions of the coefficients z and 6 the interested reader is referred 
to References 3 and 4. A semidiscrete version of this formulation can be used to solve flow problems 
on fixed domains. In that case the finite element interpolation fhctions do not depend on time. A finite 
difference discretization, e.g. the Crank-Nicolson scheme, is utilized along the temporal axis. 
Furthermore, the fifth integral in equation (25) is dropped from the formulation. It is important to 
realize that the stabilizing terms added involve the momentum and continuity equations as factors. 
Therefore, despite these additional terms, an exact solution is still admissible to the variational 
formulation given by equation (25). Thus in this respect our formulations are consistent. 



Plate 1. Flow past a stationary rectangular wing at Re1000: magnitudes of helicity (left) and 
vorticity (right) 

Plate 2. Flow past a stationary rectangular wing at Re=1000: pressure in a plane passing through the 
centre of wing 



Plate 3. Flow past a stationary rectangular wing at  Re=2500: magnitudes of helicity (left) and 
vorticity (right) at three instants during half a period of vortex shedding 



Plate 4. Flow past a stationary rectangular wing at  Re=107: magnitudes of helicity (top left) and 
vorticity (top right), and pressure on the surface of wing along with two sets of stream ribbons colour 

coded with pressure (bottom) 



Plate 5. Flow past a flapping wing at Re1000: Pressure on surface of wing during one period of 
motion. The left column shows the top view, while the right column shows the bottom view 
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3.2. The semidiscrete formulation for the pipe motion 

pipe. We begin by defining the following finite element function spaces: 
We now describe the finite element formulation for the equation of motion for a flexible cantilevered 

Here H2(R) represents the finite-dimensional h c t i o n  space over the domain R formed by using, over 
the parent (element) domains, piecewise cubic Hermite shape functions. 

The Galerkin formulations of (17) can be written as follows: start with 

given C,, C,, CT, ii and /3, find xh E sh such that Vwh E V h  

The matrix form of the problem can be written as 

Ma + Cv + Kd = F, (33) 

with the initial conditions 

d(0) = do, v(0) = vo, (34) 

where M, C and K are the mass, damping and stiffness matrices respectively, and F is the force vector. 
The vectors a, v and d correspond to the set of unknowns for the acceleration, velocity and 
displacement. 

Time integration of the above set of equations is carried out by using the a-method proposed by 
Hilber et al. : l4  

Ma,+l + ( 1  + a)Cv,+l - aCv, + (1 + a)Kd,+l - aKd, = (1 + a)F,+1 - aFn, (35) 

V,+I = vn + At[(l - y)an + yan+lI, (37) 

where the subscripts n and n + 1 refer to evaluations at times t, and tn+l respectively. The values of the 
various parameters used in this scheme are 

- 3 < a < O ,  q = ( I  - a)2/4, y = (1 - 2a)/2. (38) 

For a = 0 this scheme reduces to the trapezoidal scheme. It is well known that the trapezoidal scheme 
does not damp out the spurious high-frequency components. The a-method possesses improved 
algorithmic properties that can damp out any spurious participation of the higher modes. For our 
computations we set a = - 0.3. 
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4. NUMERICAL EXAMPLES 

4.1.  3 0  Jlow in a flexible cantilevered pipe 

In this fluid-structure interaction problem we simulate the 3D flow in a flexible cantilevered pipe 
and the response of the pipe to this flow. The deformation of the pipe is governed by the Bernoulli- 
Euler beam theory and this limits the reliability of our results to small deformations of the pipe. One of 
the quantities that characterizes the behaviour of the pipe-fluid system is the non-dimensional 
parameter f i  defined by equation (1 8). It relates the mass per unit length of the pipe to the mass per unit 
length of the fluid it is conveying. For a given value of f i  the pipe exhibits flow-induced oscillations if 
the flow velocity exceeds a certain critical velocity. At flow velocities less than the critical velocity all 
modes of the pipe oscillations are damped out. The dimensionless quantity used to parametrize the 
flow velocity is U and is defined by equation (1 9). We carried out computations for several values of ii 
and p. In our computations the pipe has a unit diameter and the length-to-diameter ratio is 20. At the 
pipe inflow a paraboloid velocity field is specified. The Reynolds number based on the inflow velocity 
at the centreline and the pipe diameter is 1000. At the pipe exit we specify the fluid stress vector, with 
values corresponding to the inflow velocity profile. The initial condition for the simulation is the 
steady state flow in the pipe with the centreline deflection given by 

where D is the diameter of the pipe. 

0 3 ,  I 

-3 ' Oh I.adtO3 2 ?;to3 $a:%-' 4 . 6 4 3  
u m c  

Figure 2. Flow in a flexible cantilevered pipe at Re = 1000, p= 0.05 and ii = 3.5: time histories of displacement, velocity and 
acceleration of free end of pipe 
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-2 ' 

The initial velocity of the pipe is set to zero. The finite element mesh for the fluid flow computations 
consists of 20,449 nodes and 18,720 elements. At every time step 145,298 non-linear equations are 
solved to update the flow field. The computation of the deformation of the pipe involves the solution of 
240 equations at every time step. The computations were carried out on the AHPCRC's CM-200. 

p = 0.05. The first set of computations was performed for ii = 3.5. For this case, according to the 
experimental results reported by Gregory and P a i d o ~ s s i s , ~ ~ ' ~  all modes of the pipe oscillations should 
damp out and the pipe should eventually assume its undeformed shape. Figure 2 shows the time 
histories of the displacement, velocity and acceleration of the free end of the cantilevered pipe. We 
observe that, as expected, the amplitude of the pipe oscillations decays with time and eventually the 
pipe reaches its undefonned state. 

Next we computed the response of the pipe for U = 4.1. Figure 3 shows the time histories of the 
displacement, velocity and acceleration of the free end of the cantilevered pipe. We observe that in this 
case the amplitude of the pipe oscillations increases with time, and eventually, the pipe exhibits 
temporally periodic oscillations. Figure 4 shows the pressure and lateral velocity in a cross-section of 
the pipe in its plane of motion during one period of the oscillations. Shown in Figure 5 are the 
displacement, velocity and acceleration along the pipe at three instants during half a period of the pipe 
oscillations. From these pictures we observe that the pipe exhibits the second mode of cantilevered 
beam oscillations. 

p = 0.4. For this value of p we again carry out computations for two different values of ii: 5.5 and 
7.0. For the first case Figure 6 shows the time histories of the displacement, velocity and acceleration 

03 
Ume 

Figure 3. Flow in a flexible cantilevered pipe at Re = 1000, B = 0.05 and ii = 4.1: time histories of displacement, velocity and 
acceleration of free end of pipe 
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Figure 4. Flow in a flexible cantilevered pipe at Re = 1000, B = 0.05 and ii = 4.1: pressure (left) and lateral velocity (right) in 
cross-section of pipe in its plane of motion during one period of oscillations 

of the free end of the cantilevered pipe. We observe that the amplitude of the pipe oscillations decays 
with time. Figure 7 shows the time histories of the displacement, velocity and acceleration of the free 
end of the cantilevered pipe for U=7.0. We observe that the amplitude of the pipe oscillations 
increases with time and eventually the pipe exhibits a temporally periodic motion. Figure 8 shows the 
pressure and lateral velocity in a cross-section of the pipe in its plane of motion during one period of 
the oscillations. Shown in Figure 9 are the displacement, velocity and acceleration along the pipe at 
three instants during half a period of the pipe oscillations. From these pictures be observe that the pipe 
exhibits the second mode of cantilevered beam oscillations. 

4.2. 3DJlow past a rectangular wing at Reynolds number 1000, 2500 and lo7 

Here we compute the 3D flow past a fixed rectangular wing at 12.5" angle of attack. The wing has 
an aspect ratio of three and its cross-section is an NACA 0012 aerofoil with unit chord length. Since 
this problem does not involve any deforming domains, the computations are carried out by employing 
a semidiscrete version of the formulation described earlier in the paper. The centre of the rectangular 
wing is located at the origin of the computational domain. The upstream and downstream boundaries 
are located two and six chord lengths from the origin. The upper and lower boundaries are located at 
two chord lengths from the origin, while the side boundaries lie at three chord lengths from the on&. 
All three components of the velocity are specified at the upstream boundary. At the upper, lower and 
side boundaries the component of the velocity normal to these boundaries is specified to be zero, while 
the complementary components of the stress vector are set to zero. At the downstream boundary the 
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-0.6 ' 
4 b 12 16 do 
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4 b i2 I& 20 I -1.0 + 
I 

2.0 
I 

4 
E 0.0 

4 

D x 
-2.0 

Figure 5. Flow in a flexible cantilevered pipe at Re = 1000, /?= 0.05 and ii =4.1: displacement, velocity and acceleration along 
pipe at three instants during half a period of pipe oscillations 

stress vector is set to zero. The finite element mesh consists of 753,168 nodes and 727,552 hexahedral 
elements. At every time step 2,942,735 non-linear equations are solve to update the flow field. These 
equations are solved with matrix-free iterations. The computations were carried out on the AHPCRC's 
CM-5. On a 512-node CM-5 these computations achieved a sustained overall speed of 10 GFLOPS. 
The computation of the element-level residuals recorded a sustained speed of 16.8 GFLOPS. All 
computations are performed in double (64 bit) precision. 

Laminarflow at Reynolds number 1000. At Reynolds number 1000 our computations converge to a 
steady state solution. This is in contrast with what one sees for a 2D simulation. For example, Mittal 
and Tezduyar4 reported an unsteady 2D flow past an NACA 0012 aerofoil at 10" angle of attack at 
Reynolds number 1000. Plate 1 shows the volume rendering of the magnitudes of the helicity and 
vorticity around the wing. The presence of wing tip vortices can be easily observed from these images. 
These vortices are generated by the spillage of flow from the lower to the upper surface of the wing at 
the tips. It is our belief that it is because of these wing tip vortices that the vortex shedding is 
suppressed in flow past a wing. Perhaps one would be able to observe vortex shedding towards the 
centre of a wing with a larger aspect ratio. Plate 2 shows the pressure field in a plane passing through 
the centre of the wing. Shown in Figure 10 is an iso-surface of the streamwise component of velocity 
corresponding to 97.5% of the freestream value. Figure 11 shows the streamwise component of the 
velocity at two sections downstream of the wing. These pictures show details of the vortex roll-up in 
the wake of the wing. The aerodynamic coefficients we report are non-dimensionalized by the 
freestream dynamic pressure and the product of the wing span and chord length. The steady state drag 
and lift coefficients are 0.182 and 0.233 respectively. 
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Figure 6 .  Flow in a flexible cantilevered pipe at Re = 1000, = 0.4 and ii = 5 . 5 :  time histories of displacement, velocity and 
acceleration of free end of pipe 

-0.4 ' I 
I e h 3  2 e t 0 3  36403 4 c t 0 3  6ct03 

ume 

2ct03 3etO3 l e t 0 3  
Ume 

Figure 7. Flow in a flexible cantilevered pipe at Re = 1000, = 0.4 and ii = 7.0: time histories of displacement, velocity and 
acceleration of free end of pipe 
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Figure 8. Flow in a flexible cantilevered pipe at Re = 1000, /I = 0.4 and U = 7.0: pressure (left) and lateral velocity (right) in 
cross-section of pipe in its plane of motion during one period of oscillations 

0.4 , 

Figure 9. Flow in a flexible cantilevered pipe at Re = 1000, /I = 0.4 and ii = 7.0: displacement, velocity and acceleration along 
pipe at three instants during half a period of pipe oscillations 
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Figure 10. Flow past a stationary rectangular wing at RE= 1000: iso-surface of streamwise component of velocity corresponding 
to 97.5% of freestream value 

LaminarJIow at Reynolds number 2500. The initial condition for this computation is the steady state 
flow past the wing at Re = 2500. Figure 12 shows the time histories of the aerodynamic coefficients for 
this simulation. We observe that the amplitude of the time-dependent components of these coefficients 
is much smaller than what one sees in 2D versions of similar flow problems. Figures 13 and 14 show 
the time histories of the three components of the velocity at two locations downstream of the wing. The 
point corresponding to Figure 13 is located towards the tip of the wing, whereas the one considered in 
Figure 14 lies more towards the mid-span. From these pictures we observe that the flow around the 
mid-span of the wing is more unsteady compared with the flow near the wing tip. The Strouhal number 
for the vortex shedding is 0.417. Plate 3 shows the volume rendering of the magnitudes of the helicity 
and vorticity at three different instants during half a period of the shedding. Again we observe the 
presence of wing tip vortices. Shown in Figure 15 is an isosurface of the streamwise component of 
velocity corresponding to 97.5% of the freestream value. It can be seen from this picture that the vortex 
shedding in this flow is confined to a region around the centre of the wing. Figure 16 shows the 

Figure 1 1.  Flow past a stationary rectangular wing at Re = 1000: streamwise component of velocity at two sections downstream 
of wing. The image on the left is at the section one chord length downstream of the trailing edge, while the image on the right 

corresponds to a section close to the outaow boundary 
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Figure 12. Flow past a stationary rectangular wing at Re = 2500: time histories of aerodynamic coefficients 

I I 

0 '  is W If6 I 
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Figure 13. Flow past a stationary rectangular wing at Re = 2500: time histories of three components of velocity at a point near 
wing tip, downstream of wing. The location of the point relative to the centre of the wing is (0.62, - 0.14, - 1.47) chord 

lengths in the streamwise, crossflow and spanwise directions respectively 
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Figure 14. Flow past a stationary rectangular wing at Re = 2500: time histories of three components of velocity at a point near 
midspan, downstream of wing. The location of the point relative to the centre of the wing is (0.62, - 0.14, - 0.27) chord 

lengths in the streamwise, crossflow and spanwise directions respectively 

Figure 15. Flow past a stationary rectangular wing at Re = 2500: iso-surface of streamwise component of velocity corresponding 
to 97.5% of freestream value 
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Figure 16. Flow past a stationary rectangular wing at Re = 2500: streamwise component of velocity at two sections downstream 
of wing. The image on the let? is at the section one chord length downstream of the trailing edge, while the image on the right 

corresponds to a section close to the outflow boundary 

Figure 17. Flow past a stationary rectangular wing at Re= 2500: pressure (left) and crossflow velocity (right) at two sections 
along wing. The upper row shows the section at the centre of the wing, while the lower row shows a section near the wing tip 
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Figure 18. Flow past a stationary rectangular wing at RE = 10': iso-surface of streamwise component of velocity corresponding 
to 97.5% of freestream value 

streamwise component of the velocity at two sections downstream of the wing. When we compare 
these pictures with the ones for Reynolds number 1000, we observe that the wing tip vortices are 
stronger at Reynolds number 2500. Figure 17 shows the pressure and crossflow velocity component at 
two sections along the wing. The upper row shows the section at the centre of the wing, while the lower 
row shows a section near the wing tip. We observe that the flow near the wing tips is steady, while 
vortex shedding takes place towards the mid-span. 

Turbulentflow at Reynolds number lo7. A simple algebraic turbulence model is used to compute the 
flow past the wing at Reynolds number 1 07. The Reynolds stress is modelled using a generalization of 
the Prandtl mixing length hypothesi~.'~ In this model the kinematic viscosity v is augmented by an 
eddy viscosity 

VT = (~1)*,/[2e(u) : e(u>l, (40) 

where K (= 0.41) is the Von K m a n  constant and I is the shortest distance between the point of 
interest in the fluid and the solid wall. 

Figure 19. Flow past a stationary rectangular wing at RE = 10': pressure (left) and crossflow velocity (right) at a section passing 
through centre of wing 
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Plate 4 shows the volume rendering of the magnitudes of the helicity and vorticity, and the pressure 
on the surface of the wing along with two sets of stream ribbons colour coded with the pressure. We 
observe that the wing tip vortices are not as strong as they are in the case of laminar flow. It should be 
noted that the Prandtl mixing length hypothesis assumes that there are no regions of recirculation in the 
flow, so one should not expect accurate results in the wake and in the region of wing tip vortices. 
Shown in Figure 18 is an iso-surface of the streamwise component of velocity corresponding to 97,5% 
of the freestream value. Figure 19 shows the pressure and crossflow velocity at a section passing 
through the centre of the wing. The steady state drag and lift coefficients are 0.144 and 0-683 
respectively, resulting in a lift-to-drag ratio of 4.7. 

4.3. Flow past a Japping wing 

In this problem we compute the flow past a wing in flapping motion. The length of the wing in the 
spanwise direction is 3.0. At the mid-span the chord length of the wing is unity and it tapers off 
quadratically to 0.5 at the tips. The cross-section of the wing is an NACA 0012 aerofoil. The centre of 

Figure 20. Flow past a flapping wing at Re = 1000: magnitude of helicity (left) and vorticity (right) at section midway between 
wing tip and centre of wing 
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the wing is located at the origin of a box whose downstream and upstream boundaries lie at eight and 
16 units from the origin respectively. The upper and lower boundaries are located at eight units from 
the origin, while the side boundaries lie at 4.5 units from the origin. The finite element mesh consists 
of 145,402 nodes and 137,280 elements. At every time step 1,113,002 non-linear equations are solved 
to update the flow field. The computations were carried out on the AHPCRC's CM-5. 

Let z be the axis along the wing span and y be the axis in the crossflow direction. The motion of the 
centreline of the wing along the span in the crossflow direction is given as 

where b is the wing span and T is the period of the wing motion. In addition to this motion, the angle of 
attack varies as 12" + 8" cos(2~ct/T+ 7d2). This motion is based on the description given by Lighthill" 
of the flight of birds. A 2D version of a similar problem was reported by Johnson and Tezduyar.'' The 
period of the wing motion in our computations is 2.0. This gives a dimensionless frequency, based on 
the chord length at mid-span and the freestream velocity, of 0.5. The Reynods number based on the 
freestream velocity and the chord length at mid-span is 1000. Plate 5 shows the pressure on the surface 
of the wing during one period of the motion. The left column shows the top view, while the right 
column shows the bottom view. Shown in Figure 20 are the magnitudes of the helicity and vorticity at a 
section 0.75 units from the centre of the wing. Figure 21 shows the time histories of the drag and lift 
coefficients for this simulation. We observe that during one period (the upstroke and downstroke) the 
motion of the wing generates a net thrust and lift. 

-15 I 
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I 
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I I I 
16 24 92 

time 

Figure 21. Flow past a flapping wing at Re = 1000: time histories of drag and lit? coefficients 
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5. CONCLUDING REMARKS 

Numerical results were presented for unsteady, 3D flows, including those involving fluid-structure 
interactions. These computations were camed out on the AHPCRC supercomputers CM-200 and CM- 
5, based on the massively parallel implementations of the stabilized space-time finite element 
formulation. The capability to solve 3D problems involving fluid-structure interactions was 
demonstrated by investigating the dynamics of a flexible cantilevered pipe conveying fluid. Good 
agreement with observations by other researchers was obtained. Computations of flow past a stationary 
rectangular wing confirmed the presence of wing tip vortices. An interesting pattern of vortex 
shedding was observed at Reynolds number 2500. Preliminary results were presented for flow past a 
wing in flapping motion. The use of a specially designed mesh-moving scheme in conjunction with the 
stabilized space-time formulation eliminates the need for remeshing, ensures high accuracy of the 
solutions and aids in the efficient utilization of the massively parallel computers. 
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