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The capability to visualize flow around an aerospace or surface vehicle
enables engineers to evaluate designs with a computer while reducing the
need for building physical models and conducting costly wind-tunnel
experiments. Designers of automobiles and watercraft, for example, can
use these techniques to test new design concepts. Software is used to lay
a mesh or grid over the geometry of the test design; intensive flow
computation then determines flow variables such as density, pressure, and
velocity at thousands of discrete points. The images obtained — some-
times enough to create an animation — enable engineers to visualize the
flow of air or water under specified operating conditions.

Carrying out such computations requires solving a set of complex fluid-
dynamics equations involving billions of operations; thus, the use of
supercomputers has become indispensable. Qur work includes the compu-
tation of moving boundaries and interfaces, and mesh update strategies.
One of the challenges in these computations is parallelizing the software
so that many operations can be performed simultaneously on multiproces-
sor machines, thereby reducing the time needed to obtain results. The
computations we describe were carried out on Connection Machines,
either a 1,024-node CM-200 or a 512-node CM-5 equipped with vector
execution units; they were based on implicit methods, that is, the simul-
taneous solution of coupled equations.

0018-9162/93/1000-0027$03.00 ©1993 IEEE 27




Numerical stabilization

In a standard Galerkin finite-element formula-
tion, the test and solution function spaces are the
same, and the formulation is derived by starting
with global integrations of the products of the
governing equations and the test functions.
However, finite-element computations based on

the standard Galerkin

formulation of a flow

problem can involve

In applications to compressible flows gov-
erned by the Euler and Navier-Stokes equations,
the SUPG and GLS methods were also used in
the context of the entropy variables formulation
of the governing equations.’ With a shock-cap-
turing term added to the formulation, the solu-
tions obtained with the entropy variables were
highly accurate. Recently, LeBeau and Tezdu-
yar* showed that the SUPG formulation with
conservation variables, supplemented with a sim-
ilar shock-capturing term, gives results that are

numericalinstabilities. nearly indistinguishable from those obtained
We considerbothcom-  with the entropy variables. In our parallel com-
pressible and incom- putations we always use some type of stabilized
pressible flows.Incom-  formulation, usually the SUPG and GLS meth-
pressible flows, the ods. These stabilization techniques help signif-

In our parallel
computations we always
use some type of stabilized
formulation.

density of a fluid parti-
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cle changes as it travels
in the flow field. This
happens when the flow speeds, measured in
terms of Mach number, are sufficiently high to
cause fluid bulks to compress or expand. Most
flows encountered in aerospace engineering are
compressible — for example, flows involving
aircraft, missiles, and spacecraft. With incom-
pressible flows, the density of a fluid particle is
assumed to be constant as it travels in the flow
field. This assumption is valid for low Mach
numbers. Most flows involving water fall into
this category.

The numerical instabilities related to the
standard Galerkin formulation can result from
the presence of a constraint, such as the incom-
pressibility condition, and from the dominant
advection terms in the governing equations. To
stabilize the finite-element formulation of a
given equation system involving advective
terms and possibly an incompressibility con-
straint, we have been using stabilization tech-
niques such as the streamline-upwind/Petrov-
Galerkin (SUPG), Galerkin/least-squares (GLS),
and pressure-stabilizing/Petrov-Galerkin
(PSPQG) formulations. With these formulations,
potential numerical instabilities are prevented
without introducing excessive numerical diffu-
sion and therefore without compromising the
accuracy of the solution. Stabilization methods
of this type became quite well established after
their earlier deployment for both incompress-
ible! and compressible? flows. Some of these
stabilization techniques are based on finite-ele-
ment discretization in both space and time, and
all of them are developed in the context of
unstructured meshes. Being able to use unstruc-
tured meshes instead of just structured ones
gives us the flexibility to lay a mesh over complex
geometries encountered in practical problems.

icantly with the convergence of the iterative
strategies used to solve the implicit equation
systems arising from these formulations.

Computation of moving boundaries
and interfaces

When flow problems involve moving bound-
aries and interfaces, for example, a liquid drop
changing shape, computations are achieved by
using the Deformable-Spatial-Domain/Stabi-
lized-Space-Time (DSD/SST) method.’ This is
an accurate, general-purpose stabilized finite-
element formulation for computing unsteady
flow problems involving free surfaces, two-lig-
uid interfaces, and fluid-structure and fluid-
particle interactions.

In this method, the stabilized finite-element
formulation of the governing equations is writ-
ten over the space-time domain of the problem;
therefore, the deformation of the spatial domain
with respect to time is taken into account auto-
matically. In the DSD/SST method, the mesh is
updated in such a way that remeshing is per-
formed only when necessary to prevent unac-
ceptable degrees of mesh distortion. With this
approach, less frequent remeshing reduces the
projection errors involved in remeshing and also
makes parallelizing the computations easier.

In several problems we considered, remesh-
ing was eliminated by designing special meshes
and mesh-moving schemes specific to a given
problem.® In a more general setting, the motion
of the mesh is governed by the modified equa-
tions of linear homogeneous elasticity,”® there-
by minimizing, and in some cases eliminating,
the need for remeshing. This, of course, reduces
cost and parallel setup overhead. The mesh up-
date schemes we’ve developed can also use
combinations of structured and unstructured
meshes.
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In recent years there has been significant
progressin massively parallel finite-element com-
putations based on implicit formulations and
which assume unstructured grids.”* The for-
mulations for both incompressible and com-
pressible flows have been implemented on
massively parallel CM-200 and CM-5 super-
computers, making possible the three-dimen-
sional simulations we describe later. We are now
conducting essentially all of our computational
fluid dynamics studies, including those in 3D
and those involving moving boundaries and in-
terfaces, on these massively parallel machines.
The 3D problems successfully modeled include
sloshing in a liquid-filled container subjected to
vertical vibrations (52,000-plus equations), in-
compressible flow between two concentric cyl-
inders (282,000-plus equations), supersonic flow
past a delta wing (725,000-plus equations), and
supersonic flow past a toy missile (1.1 million-
plus equations).

Mesh update strategies

If the motion of an object in the domain has a
predetermined order, a special problem-depen-
dent algebraic mesh-update scheme can be used
to facilitate this motion. Take, for example, a
pitching airfoil.* We have a rigid airfoil that is
allowed to rotate throughout a wide range of
angles of attack. A mesh update scheme in which
amesh is moved to adapt to the desired angle of
attack was designed specifically for this problem.
Figure 1 shows meshes at different angles of
attack; they contain a solid circular core that
rotates rigidly with the airfoil. Outside this re-
gion is a deforming region between the solid
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rotation zone and the fixed portion of the mesh
that lies outside the deforming zone.

If the motion of an object or an interface is
more general, it is desirable to have a mesh
update scheme that is independent of the type of
mesh used and the type of motion. For these
cases, we have implemented a new automatic
mesh update scheme in which a linear elastostat-
ics problem is solved each time the mesh is
required to move. In this elastostatics problem,
desired displacements (movements) at the bound-
aries and interfaces become boundary condi-
tions. To better preserve the structure of the
original mesh in the more refined areas, it is
desirable to have greater stiffness where smaller
elements are present. To achieve this, we drop
from the formulation the Jacobian of the trans-
formation from the element domain to the phys-
ical domain.

This mesh update strategy has been applied to
the case of a viscous drop falling in a viscous
fluid.” In this axisymmetric problem, gravity is
applied to a combination of a heavier liquid
embedded inside a lighter one. The heavier
liquid (the drop) falls and deforms until a steady-
state solution is reached. The whole computa-
tional domain is forced to translate with the
center of gravity of the drop, and on top of this
motion, our automatic mesh update scheme will

deform the mesh so that it conforms to the

desired shape of the drop. Figure 2 shows the
mesh in its initial, undeformed shape and in its
final shape at terminal velocity.

This mesh update method is applicable to
unstructured meshes such as those with triangu-
lar elements generated with general-purpose
mesh generators. Also, meshes involving a com-

Figure 1. Mesh
around a

NACA0012 airfoil

at two different

angles of attack.

The figure illus-

trates how the ro-
tation of the air-

foil is absorbed

by the flexible cir-

cular region in
the mesh while
the mesh disk
adjacent to the

airfoil, as well as

__ the outermost

mesh region, re-

main rigid.
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Figure 2. Initial
and final meshes
for a viscous drop
falling in a vis-
cous fluid. In this
example the
mesh in the en-
tire domain de-
forms as a result
of the deforma-
tion of the inter-
face between the
drop and the sur-
rounding fluid
(heavy line). The
displacement of
the nodes not be-
longing to that in-
terface is deter-
mined by solving
a linear elasto-
statics problem.

0V WL WL

EEEERRERE R e |

IR

LT

T
T

o

. s O

bination of element types can be used in con-
junction with the automatic mesh update scheme.
Figure 3 shows a mesh around a NACAQ012
airfoil with bilinear-quadrilateral elements adja-
cent to the airfoil; triangular elements (generat-
ed with the Emc? mesh generator from INRIA,
France) fill out the rest of the domain. In such a
mesh, it is desirable to move the quadrilateral
region as a solid body and let the triangular
elements deform to accommodate the motion of
the airfoil. Figure 3 shows this type of move-
ment.

Massively parallel implementations

The bulk of the computations in an implicit
finite-element program will typically occur in
two stages. Firstis the formation of the element-
level matrices and residual vectors. Second is the
solution of a linear system of equations, whose

components were constructed in the first stage.
Efficient implementation of these two stages on
a massively parallel architecture is at once the
most important and the most challenging task.

The starting pointin the design of a massively
parallel implementation is deciding how to dis-
tribute the variables among the computer’s pro-
cessors. Since most of the massively parallel
architectures are distributed-memory machines,
the placement of the data is of paramount impor-
tance and can radically affect the performance of
the implementation. We will assume that the
architecture chosen has a developed concept of
virtual processors, so that each of the data entries
subject to a parallel operation can be assumed to
reside on its own processor. In reality, each
physical processor takes over the duties of sever-
al virtual processors.

We will use two primary data-storage modes,
Elem and Eqn. The Elem mode is used for
storing element-level data, with one element
and its degrees of freedom associated with exact-
ly one virtual processor. The Eqn mode will hold
variables at the level of the global equation
system, with the data corresponding to a single
equation assigned to a single processor. The
nodal data, coordinates, element-level proper-
ties, and element-level matrices are stored in the
Elem mode. The global increment vector, glo-
bal residual vector, and certain intermediate
variables used in the solution stage are kept in
the Eqn form.

The mapping between the two data sets is
denoted LM (location matrix): Elem — Eqn.
Communication operation Elem « Eqn is a
gather operation, while movement of the data in

SPANIVANMIARIEE

VAVAY

Figure 3. Mesh around a NACA0012 airfoil at two different angles of attack, with mixed structured-unstructured meshes. Here
the mesh region adjacent to the airfoil is filled with a structured mesh of quadrilateral elements, ensuring that the solution in
the boundary-layer region is of good quality. The outer region is filled with unstructured triangular elements, providing an in-
terface between the obstacle and the outer boundary of the domain and other obstacles. Such an interface is hard to achieve
with structured-mesh techniques.
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the opposite direction, Elem — Eqn, is a scatter.
The scatter is usually coupled with a combining
operation — for example, addition or overwrit-
ing — at the destination. Both gather and scatter
can be implemented efficiently on the Connec-
tion Machine computers, provided they are done
repeatedly with a static communication pattern
as defined by LM. When this is done, the com-
munication trace can be saved the first time
communication is performed, resulting in ex-
tremely fast subsequent gathers and scatters.

The process used here for solving the global
linear system does not require assembly of the
global matrix in any form. Instead, it operates on
unassembled element-level matrices. Therefore,
apart from a simple assembly, or scatter, of the
global residual vector from element-level resid-
uals, the task of forming the equation system
takes place entirely at the element level. Conse-
quently, in the matrix formation phase, no inter-
processor communication is involved, and the
parallelism of the operations can be fully exploit-
ed. Behr et al.'® provide a more detailed descrip-
tion of the matrix formation phase, including a
pseudocode fragment.

To solve the linear system, we’ve implement-
ed! a data-parallel version of the GMRes tech-
nique. The Generalized Minimum Residual is
an iterative method for solving large linear sys-
tems of equations with a nonsymmetric coeffi-
cient matrix. Belonging to the class of Krylov
subspace methods, the GMRes algorithm projects
the large linear system onto a much smaller
subspace, where the approximate solution can be
found by using standard solution techniques. It
is normally used in conjunction with a precondi-
tioner designed to improve the algebraic prop-
erties of the linear system. In solving our linear
system, the bulk of the computations in the
GMRes algorithm will involve Eqn structures
only. These include the set of Krylov vectors
(original and preconditioned) and the entries of
the diagonal preconditioner. The computation-
ally intensive task of Gramm-Schmidt orthogo-
nalization of the Krylov vectors involves only
on-processor operations and communication
operations of the scan/reduce type. The only
interplay between Elem and Eqn occurs when
the matrix vector product is to be computed.
Such a product involves a gather of Eqn-level
values into the Elem data set, followed by a
communication-free on-processor matrix-vec-
tor product, and finally a scatter back into the
Eqn data set. The gather and scatter operations
use the highly optimized Connection Machine
Scientific Software Libraries available on the
CM-200and CM-5. In the current implementa-
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tion, all variables related to the reduced system
are stored on the scalar front-end processor, and
the factorization and back substitution of that
system are also performed in a scalar fashion.

Since they are memory intensive, the steady-
state compressible-

flow computations use
amatrix-free version of
the GMRes algorithm
to eliminate even the
need to store element-
level matrices. Johan et
al.? discuss the matrix-
free GMRes imple-

The process for solving
the global linear system
operates on unassembled
element-level matrices.

mentation concepts.
With one exception,

so indicated, all performance measurements
quoted in the next section are from either a
1,024-node CM-200 or a 512-node CM-5
equipped with vector execution units (VEU).
Note that “node” refers to either a Weitek float-
ing-point unit on a CM-200 or to a four-VEU
processing node on a CM-5. All computations
are carried out in double (64-bit) precision, and
all speeds reported are in gigaflops (billion float-
ing-point operations per second). It is signifi-
cant that while the communication libraries on
the CM-200 were subjected to optimization ef-
forts lasting several years, the development of
their CM-5/VEU counterparts has just begun.
Our results are based on a test version of the
Thinking Machines Corp. software wherein the
emphasis was on providing functionality and the
tools necessary to begin testing the CM-5 vector
units. This software release has not had the
benefit of optimization or performance tuning;
consequently, it does not necessarily represent
the performance of the software’s full version.

Numerical examples

Sloshing in a tank subjected to vertical vibra-
tions. We performed a 3D study of liquid slosh-
ing in a rigid container subjected to vertical
vibrations. It is the continuation of a set of 2D
computations inspired by a sloshing problem
used to test the Arbitrary Lagrangian-Eulerian
method.!! In the 3D case, experimental and the-
oretical evidence!? indicates the existence of
multiple solution branches when the horizontal
cross section of the tank is nearly square. De-
pending on the frequency of the vibrations, the
competing wave modes interact, generating
complex periodic — as well as chaotic — wave
behavior. The case we consider here is based on
the experiment performed by Feng and Sethna. "

The horizontal cross section of the tank is a
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Figure 4. Three-
dimensional
sloshing in a
tank. The tank Is
partially filled
with water and
subjected to ver-
tical vibrations.
The sequence of
Images (top left
to right , then
bottom left to
right) shows the
free surface and
the pressure
fleld. The number
of nonlinear equa-
tions solved at
each time step Is
52,000 plus. The
computation was
carrled out on the
CM-200.
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Flow between two
concentric cylinders
(Taylor-Couette
flow). The aim of this
set of computations is
to simulate the insta-
bilities that develop
between two concen-
tric cylinders. The
Reynolds number, a
nondimensional ratio
of the inertial effects to
viscous effects, is based
on the gap between the
two cylinders and the
speed of the inner cyl-
inder; the outer cylin-
der is at rest. Beyond a
certain critical Rey-

Wx Hrectangle, where W=0.178 m (7.0in.) and
H =0.180 m (7.1 in.). The water level, initially
flat, is at D = 0.127 m (5.0 in.). Side and bottom
surfaces of the tank allow slip in the direction
tangent to the surface. The open surface of the
water is assumed to be free from normal and
shear stresses, and it moves with the normal
component of the fluid velocity at the surface.
The external forces acting on the fluid consist of
a constant gravitational acceleration of magni-
tude g = 9.81 meters X (seconds)? and of a sinu-
soidal vertical excitation Ag sin wt, with @=2 xf;
f=4Hz, and 4 such that the amplitude of the
oscillations remains at 1 millimeter. We select a
time-step size to obtain 20 time steps per excita-
tion period. The space-time mesh for each time
slab consists of 14,112 nodes and 6,000 quadri-
linear 4D elements.

In the GMRes solver, a Krylov space size of
40 was chosen, and the maximum number of
outer GMRes iterations was five initially and 10
for larger fluid motions. At each time step, an
average of three nonlinear iterations were per-
formed.

On the CM-200 computer, formation of the
element-level matrices and residuals took place
at 0.80 gigaflops. We observed the speed of the
GMRes solution phase as 0.87 Gflops. For a 3D
space-time formulation, the bulk of time taken
by the GMRes solution process is consumed by
the matrix vector product. The entire code,
including the parallel input/output operations
and problem setup, performed at 0.79 Gflops.
Figure 4 shows a sequence of images depicting
the free surface and the pressure field.

nolds number, the reg-
ular Couette flow be-
comes unstable and we
see the development of Taylor vortices. A fur-
ther increase in the Reynolds number leads to an
unsteady flow pattern — the wavy vortex flow.!
The results we present here are for three differ-
ent Reynolds numbers: 150, 250, and 1,498.

The finite-element mesh employed consists
of 38,400 hexahedral elements and 45,024
nodes. The mesh contains six elements in the
radial direction, 32 elements in the circumferen-
tal direction, and 200 elements in the axial
direction. At each time step, a system of 282,366
nonlinear equations resulting from the finite-
element discretization is solved iteratively using
the GMRes technique with diagonal precondi-
tioners. A Krylov space of dimension 30 is used.
For this problem, the overall computation speed
is 2.1 Gflops on the CM-200 and 3.6 Gflops on
the CM-5. This timing excludes the input/out-
put phase of the computations. The formation
speed of the element-level matrices and the right-
hand-side vector is 3.0 Gflops, while the speed
for the GMRes part is 1.4 Gflops on the CM-
200. The corresponding speeds on the CM-5 are
5.2 Gflops and 2.6 Gflops, respectively.

As boundary conditions, at the upper and
lower boundaries, the axial component of the
velocity and the ¥ and y components of the stress
vector are set to zero (the 2 axis lies in the axial
direction).

Reynolds number = 150: Taylor vortex flow.
This value of the Reynolds number is greater
than the critical Reynolds number. Thus, for
certain disturbances, one would expect the Cou-
ette flow to develop instabilities. We have an
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interesting observation related to this flow. When
the solution is computed with no external distur-
bances, a stable Couette flow is observed. How-
ever, if the solution is obtained with an initial
condition that corresponds to an unsteady solu-
tion from a higher Reynolds number, a Taylor
vortex flow is realized. Figure 5 (top) shows the
axial velocity at the horizontal and vertical sec-
tions and the cylindrical section midway be-
tween the inner and outer cylinders. We observe
that the solution at this Reynolds number is

axisymmetric.

Reynolds number = 250: Wavy vortex flow. At
Reynolds number 250, our computations reveal
the presence of a wavy vortex flow; the Taylor
vortex flow discussed above is itself unstable, and
the solution is no longer axisymmetric. Figure 5
(center) shows the axial velocity at the horizontal
and vertical sections and the cylindrical section
midway between the inner and outer cylinders
for a nearly temporally periodic solution. In
addition to the cells in the axial direction, there
are four waves traveling in the azimuthal direc-
aon.

Reynolds number = 1,498: Wavy vortex flow. At
Reynolds number 1,498, we again observe the
wavy vortex flow. Compared with the solution at
Reynolds number 250, the vortices for this Rey-
nolds number are much stronger. In this case,
there are three waves traveling in the azimuthal
direction. Figure 5 (bottom) shows the axial
velocity at the horizontal and vertical sections
and the cylindrical section midway between the
inner and outer cylinders for a nearly temporally
periodic solution.

Supersonic flow past a delta wing at Mach 3.
In this air-flow problem, the angle of attack is 0
degrees and the Reynolds number, based on the
free-stream values and the maximum chord
length (along the plane of symmetry), is 1.1
million. The finite-element formulation used to
solve this problem is in conservation variables.*
Because of the assumed symmetry of the prob-
lem with respect to the z = 0 plane, only half of
the domain is considered; but for better visual-
ization, ghost nodes are created by a simple
reflection and the results are presented over the
entire domain. Chien Li from the NASA John-
son Space Center provided the geometry of the
delta wing.

The delta wing has a wedge-type cross sec-
tion. Its underbody merges smoothly with the
flat surface on the top. The finite-element dis-
cretization is carried out using 143,920 trilinear
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hexahedral elements, with one integration point
per element. To capture the details of the bound-
ary layers, the first three layers of the elements
are kept very close to

the delta wing. At each
time step, 725,688 non-
linear equations are
solved simultaneously
using a matrix-free
GMRes search tech-
nique. This problem

Beyond a certain
critical Reynolds number,
we see the development
of Taylor vortices.

was solved on the CM-
§ at a sustained speed
of 10.4 Gflops. The front, side, and top views of
the delta wing, and the Mach number distribu-
tion are shown in Figure 6.

Axial Velocity
000 0 4009

Vertical and Cylindrical Sections

Horizontal Section

Axial Veloclty
Vertical and Cylindrical Sections

08 0 408
T

Horizonlal Section

Axial Veloelty

-7 0 +L7
L]

Horizontal Section

Figure 5. Three-
dimensional in-
compressible flow
between two con-
centric cylinders
at Reynolds num-
bers 150 (top),
250 (center), and
1,498 (bottom).
The images show
the axial velocity
at horizontal, ver-
tical, and cylindri-
cal sections. The
number of nonlin-
ear equations
solved at each
time step is
282,000 plus.
The computations
were carried out
on the CM-5.
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Figure 6. Three-
dimensional su-
personic flow
past a delta wing
at Mach 3. The
Reynolds number
is 1.1 million. The
images show the
front, side, and
top views of the
wing, and the
Mach number dis-
tribution. The
number of nonlin-
ear equations
solved at each
time step is
725,000 plus.
The computation
was carried out
on the CM-5 with
a sustained speed
of 10.4 gigaflops.
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Table 1. Performance in gigaflops for implicit incompressible-flow implementations.

Taylor-Couette Flow

282,366 Equations
CM-200 CM-5

Flow Past a Sphere
1,052,216 Equations
CM-200 CM-5

Flow Past a Sphere
649,630 Equations
CM-200 CM-5

Element computation 3.0 5.2
GMRes solution 1.4 2.6
Sustained 2.1 3.6

11 82 — 96
1.3 31 — 29
12 46 — 46

Supersonic flow past a toy missile at Mach
3.25. Our compressible finite-element formula-
tion is also used to solve Mach 3.25 flow past a
toy missile at a 0.5-degree angle of attack. The
Reynolds number, based on the free-stream val-
ues and the length of the missile, is 110,000. As
with the delta wing, the problem is assumed to be
symmetric with respect to the z = 0 plane, and the
same technique is used in presenting the results.

The missile has a spherical tip and a circular
cross section. There are two “V”-type control
surfaces attached to the sides of the missile. The
finite-element discretization involves 224,332
elements, with one integration point per ele-
ment. At each time step, 1,121,290 nonlinear
equations are solved simultaneously with a ma-

trix-free GMRes search technique. This prob-
lem was solved on the CM-5 at a sustained speed
of 9.5 Gflops. The front, side, and top views of
the missile, and the Mach number distribution
are shown in Figure 7.

A benchmark computation: Flow past a
sphere. The space-time formulation was also
used to solve a benchmark problem involving
incompressible flow past a sphere at Reynolds
number 100. The problem was solved using a
range of meshes that differ in refinement; the
timings from the two largest meshes are report-
ed here. For the mesh with 79,932 elements,
649,630 nonlinear equations were solved at each
time step, while for the mesh with 129,736 ele-
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ments, the number of nonlinear equations solved
was 1,052,216. In both cases the GMRes param-
eters included a Krylov space size of 20, and five
outer iterations (restarts). For the smaller mesh
the computation was possible on both the CM-
200 and the CM-5. On the CM-200, the compu-
tational rates for the matrix formation and the
GMRes solution stages were 1.1 and 1.3 Gflops,
respectively, and the overall rate was 1.2 Gflops;
for the CM-5 these numbers were 8.2, 3.1, and
4.6 Gflops. Computation with the larger mesh
was not possible on the CM-200 with a nonma-
trix-free implementation because of memory
limitations. On the CM-5, the performance was
measured at 9.6, 2.9, and 4.6 Gflops for the
matrix formation, GMRes solution, and total
speed, respectively.

It is apparent that the speed of the matrix
formation stage is still benefiting from the in-
crease in the subgrid length from around 40
elements per vector unit for the smaller mesh to
more than 60 for the larger one. On the other
hand, the speed of the GMRes solver is approx-
imately the same for the two meshes.

Tables 1 and 2 summarize the parallel perfor-
mance observed in computing the 3D problems
described above.

In a recent computation of the delta wing

Table 2. Performance in gigaflops for matrix-free implicit compressible-

flow implementations.

Flow Past a Delta Wing Flow Past a Toy Missile

725,688 Equations

1,121,290 Equations

CM-5 CM-5
Element computation 15.4 17.1
Sustained 10.4 9.5

problem, we used 1,002,684 elements, with eight
integration points per element. The number of
equations in this case was 5,001,031. The sus-
tained performance in this computation was mea-
sured at 17.2 Gflops on the CM-5 with 512
processing nodes. On a CM-5 with 1,024 pro-
cessing nodes, located at Los Alamos National
Laboratory, sustained performance was measured
at 37.5 Gflops.

T he type of equation systems considered here
can occur in electrical, chemical, and civil engi-
neering as well. Thus, the strategies we used may
serve a broad range of applications, and compara-
ble parallel performance can be expected.
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Figure 7. Three-
dimensional su-
personic flow
past a toy missile
at Mach 3.25.
The Reynolds
number is
110,000. The im-
ages show the
front, side, and
top views of the
missile, and the
Mach number dis-
tribution. The
number of nonlin-
ear equations
solved at each
time stepis 1.1
million plus. The
computation was
carried out on the
CM-5 with a sus-
tained speed of
9.5 gigaflops.
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