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We first demonstrate that, if the contributions of higher-order mean flow are ignored,
the parabolized stability equations (Bertolotti et al. 1992) and the ‘full’ non-parallel
equation of Govindarajan & Narasimha (1995, hereafter GN95) are both equivalent
to order R−1 in the local Reynolds number R to Gaster’s (1974) equation for the
stability of spatially developing boundary layers. It is therefore of some concern that
a detailed comparison between Gaster (1974) and GN95 reveals a small difference in
the computed amplitude ratios. Although this difference is not significant in practical
terms in Blasius flow, it is traced here to the approximation, in Gaster’s method,
of neglecting the change in eigenfunction shape due to flow non-parallelism. This
approximation is not justified in the critical and the wall layers, where the neglected
term is respectively O(R−2/3) and O(R−1) compared to the largest term. The excellent
agreement of GN95 with exact numerical simulations, on the other hand, suggests
that the effect of change in eigenfunction is accurately taken into account in that
paper.

1. Introduction
Early studies of boundary layer stability used the ‘parallel-flow’ approximation,

i.e. they neglected the effects of streamwise growth of the boundary layer on the
grounds that, since this growth was slow (being O(R−1) in the local boundary layer
Reynolds number, R), its effects on stability were likely to be ‘small’. Hence, the
Orr–Sommerfeld equation, which is applicable to strictly parallel flows such as the
fully developed flow in a channel, was used to obtain quantitative results for boundary
layers also. The logical improvement of this approximation was to include the effects
of spatial development, which has been done by several authors in the last two
decades (e.g. Gaster 1974, hereafter G74; Smith 1979; Bertolotti, Herbert & Spalart
1992; Saric & Nayfeh 1975) using rather different approaches.

Gaster was the first to develop a method wherein all effects up to a given order
in integral powers of R−1 could be consistently included. In this approach, non-
parallel effects appear as higher-order corrections to the Orr–Sommerfeld operator.
For nearly two decades after the publication of Gaster’s work, there was a great deal of
controversy about the subject, since different workers obtained different results from
stability analyses, and there were no new experiments to compare with. Over time,
however, these differences were all traced to inconsistencies in the methods employed,
until all the different approaches gave stability results which essentially agreed with
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Figure 1. Amplitude ratio at the inner maximum in Blasius flow; ω/R = 1.4× 10−4.
Symbols from Gaster (1974) and Fasel & Konzelmann (1990) (FK).

those of Gaster. His approach was further vindicated by direct numerical simulations
(Fasel & Konzelmann 1990) and by the accurate experiments of Klingmann et al.
(1993). The early non-parallel results of Gaster are therefore noteworthy.

The theory of Govindarajan & Narasimha (1995, referred to hereafter as GN95)
follows a different approach: it begins from first principles and results in a stability
equation for spatially developing boundary layers nominally correct to O(R−1) (i.e.
including all terms with the factor R−1 in the primitive equations). The approach
and the solution method are described in § 3: unlike G74 it does not make any use
of parallel-flow results. The final results obtained by G74 and by GN95, say for the
stability loop, are so close that they have been considered to be in good agreement
(see e.g. figure 2, GN95). However, when amplitude ratios are computed, a small
discrepancy becomes noticeable: this is shown in figure 1, which is reproduced from
figure 6 of GN95. It will be seen, however, that the GN95 theory is in excellent
agreement with the full numerical simulations of Fasel & Konzelmann (1990) (see
also figure 2). The present investigation has the aim of identifying, if possible, the
reason for this discrepancy: although the discrepancy appears so small that it may
not be considered of great practical value, it seemed worthwhile to see whether
there was an issue of principle or method, as the magnitude of such a discrepancy
could increase in e.g. adverse pressure gradient flows, which are more sensitive to
approximations of this kind (see e.g. Govindarajan & Narasimha 1999, referred to
hereafter as GN99). Furthermore, an acceptable explanation of the discrepancy should
enhance confidence in stability computations, especially of the streamwise evolution
of the amplitude ratios, which forms a crucial step in the estimation of transition
location in technological applications (e.g. by the use of the en method). The chief
objective of the present work is to focus attention on the order of magnitude of
terms included or omitted in the different approaches, and hence to help arrive at
self-consistent theories.

2. Gaster’s formulation and solution method
We propose first to show that Gaster’s formulation, if truncated at O(R−1) and

recast in the coordinate system of GN95, leads to a stability equation identical to
theirs in the absence of pressure gradients. As mentioned before, Gaster considers the
non-parallel solution to be a higher-order correction to the Orr–Sommerfeld solution.
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Figure 2. Dependence of critical Reynolds number on the normal coordinate: shown here in the
units (based on displacement thickness, δ1) used by Fasel & Konzelmann (1990).

In particular, the disturbance eigenfunction is taken to be the Orr–Sommerfeld
eigenfunction φ0 modulated by a spatially varying amplitude A with an additional
small correction term:

φG(ξ, ζ) = A(ξ)φ0(ξ, ζ) + εφ1(ξ, ζ), (2.1)

where ξ = xd/x0 is proportional to the dimensional value of the downstream distance,
xd, x0 being a constant reference length. The normal variable ζ is proportional to y,
as discussed in the Appendix. The correction term in (2.1), however, does not appear
in the solution process described in G74; the important steps in the argument are
reproduced below for clarity. The explicit non-parallel contribution can be lumped
together in the Gaster operator {NPG} and written down as

{OS}φG +
1

R
1/2
x0

{NPG}φG = 0, (2.2)

where {OS} is the Orr–Sommerfeld operator (defined in the present coordinates in
equation (3.2) below), with the boundary conditions

φG =
∂φG

∂ζ
= 0 at y = 0, and φG → 0,

∂φG

∂ζ
→ 0 as y →∞. (2.3)

For clarity of discussion, equation (2.2) is rewritten, using the Reynolds number
R ≡ θU/ν (where θ and U respectively are the momentum thickness and the free-
stream velocity and ν is the kinematic viscosity), as

{OS}φG +
(2qξ)−1/2

R
{NPG}φG = 0. (2.4)

The Reynolds number used in G74 is related to the present definition by

R
1/2
x0 =

R√
2qξ

. (2.5)

Since

{OS}φ0 = 0 (2.6)
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by definition, equation (2.4) may be simplified, using (2.1), to(
1

R

)
{NPG}[Aφ0] = −ε(2qξ)−1/2{OS}φ1 − ε

(
1

R

)
{NPG}[φ1]. (2.7)

From the above equation it seems reasonable to take ε = R−1. If ε is prescribed to
be of this order, the second term on the right-hand side appears at first sight to be
of higher order, and has on these grounds been dropped by Gaster. This neglect of
{NPG}[φ1] turns out to be the primary cause for the difference between Gaster’s and
GN95’s approaches, and will be discussed in detail in § 4.

Setting ε = R−1 and dropping the last term, equation (2.7) is rewritten by Gaster
as

{NPG}[Aφ0] = −(2qξ)−1/2{OS}φ1, (2.8)

or (collecting terms involving A),

AF0 +
dA

dξ
F1 + (higher-order terms) = (2qξ)−1/2{OS}φ1, (2.9)

where F0 and F1 are functions involving only φ0.
Following a procedure similar to that used by Stuart (1960), we can write∫ ∞

0

χ{OS}[ρ] dy =

∫ ∞
0

ρ{OS} [χ] dy, (2.10)

where ρ(y) is any function with homogeneous boundary conditions at the wall and
in the free-stream on itself and its first derivative (such as in equation (2.3)), χ is the
adjoint eigenfunction to the Orr–Sommerfeld equation, and {OS} is the corresponding
adjoint operator. The function ρ need not satisfy the Orr–Sommerfeld equation. By
definition, the right-hand side of (2.10) is identically zero and therefore∫ ∞

0

χ{OS}[ρ] dy = 0. (2.11)

The eigenfunctions φG and φ0 both satisfy the boundary conditions in (2.3). Hence,
from equation (2.1) it can be seen that φ1 also satisfies the same boundary conditions.
Therefore equation (2.11) may be applied to φ1:∫ ∞

0

χ{OS}[φ1] dy = 0. (2.12)

Dropping the higher-order terms in (2.8), the amplitude function A is then given by
the ordinary differential equation

A(ξ)

∫ ∞
0

F0χ dy +
dA

dξ

∫ ∞
0

F1χ dy = 0. (2.13)

Since F0 and F1 are known, the streamwise variation of amplitude can be obtained
from (2.13), without having to solve for the non-parallel contribution φ1 to the
eigenfunction.

3. The approach of GN95
In zero pressure gradient, the non-parallel stability equation of GN95 can be written

{OS}φ+
1

R
{NP}φ = 0, (3.1)
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with boundary conditions on φ as in (2.3). The operators {OS} and {NP} are
respectively

{OS} ≡ i(ω − αΦ′)(D2 − α2) + iαΦ′′′ +
1

R
(D4 − 2α2D2 + α4), (3.2)

{NP} ≡ q(ΦD3 + Φ′D2 + [2yα(ω − αΦ′)− α2Φ+ Φ′′] D + [−αω + Φ′′′])

+(−ω + 3αΦ′)Rα′ + [Φ′′′ + 3α2Φ′ − 2αω − Φ′D2]R
∂

∂x
. (3.3)

Here θ and U have been used as scales. The operator D stands for differentiation
with respect to the normal coordinate y, y being proportional to the Blasius similarity
variable, and the streamwise coordinate x is non-dimensionalized in a special way:

yd = θy and dxd = θ dx. (3.4)

Φ and φ are respectively the mean and the disturbance amplitude of the streamfunc-
tion ψ:

ψ(x, y, t) = Φ(y) + φ(x, y) exp

[
i

(∫
α dx− ωt

)]
. (3.5)

For the flow over a flat plate, the parameter q, defined by the relation

q

R
≡ dθ

dx
, (3.6)

is constant. Equation (3.1) is derived from the two-dimensional incompressible Navier–
Stokes equation in streamfunction form assuming linear normal mode disturbances;
details are available in GN95. All terms with a factor R−1 are retained and higher-
order terms are neglected. The analysis assumes that ∂φ/∂x and α′ are O(R−1), and
that the second and higher derivatives with respect to x are of higher order.

Consider the following representation of equation (3.1):

{D4 + b3D
3 + b2D

2 + b1D + b0}φ = Bx
∂φ

∂x
, (3.7)

where b0 to b3 are functions of y and x (the latter through the Reynolds number,
wavenumber etc.), and Bx is an operator in y. Since ∂φ/∂x is small, its variation
in the downstream direction is negligible, so the right-hand side of this equation is
primarily a function of y. Hence the partial differential equation (3.7) can be solved
iteratively, first solving the equation putting the right-hand side of (3.7) equal to zero,
then estimating the value of ∂φ/∂x, etc., as described in detail in GN95.

4. Discussion
The expression for the ‘full’ non-parallel operator is not written out explicitly in

G74, but it can be indirectly deduced using the expressions for F0 and F1 as given
in Appendix A of that paper. On transforming this expression to the coordinate
system of GN95, it is found that Gaster’s non-parallel operator is the same as that
given by GN95 in their equation (5), as shown in the Appendix. Thus, in the case
of flow over a flat plate, G74 and GN95 are equivalent formulations, both correct
to O(R−1). It therefore emerges that the primary cause for the quantitative difference
in the results from the two approaches, seen in figure 1, must be that the term
(ε/R){NPG}φ1 in equation (2.7) is neglected by Gaster but included in the analysis
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of GN95. The argument below shows that while neglecting the term is entirely
justifiable in the bulk of the boundary layer, the term is of an order lower than
or equal to R−1 in the critical and wall layers and must therefore be retained in
an analysis correct to that order. By neglecting this term, the correction φ1 to the
shape of the Orr–Sommerfeld eigenfunction need not be evaluated at all, and Gaster
achieves a considerable operational advantage. The properties of the Orr–Sommerfeld
operator and its adjoint eigenfunction can be used to obtain non-parallel effects as a
perturbation on the ‘locally parallel’ result – but at a cost to be determined below.
GN95, on the other hand, do not consider the non-parallel eigenfunction to be a
correction on the Orr–Sommerfeld eigenfunction: they directly obtain the non-parallel
eigenfunction φ and do not neglect any part of it.

In the bulk of the boundary layer (i.e. the region which is not within either the
critical or the wall layer), the factor ε in equation (2.7) may be set equal to R−1,
and the second term on the right-hand side may indeed be neglected. However, as
discussed below, the neglect of this term is not valid in the critical and wall layers. In
these layers, the disturbance eigenfunction φ is expressed in the form of asymptotic
expansions respectively as (GN99)

φ(y) =
∑
k

εkcγck(ηc) +
∑
m

εmc (log εc)λcm(ηc), (4.1)

and

φ(y) =
∑
k

εkwγwk(ηw) +
∑
m

εmw(log εw)λwm(ηw), (4.2)

k = 0, 1, 2, . . . , m = 1, 2, . . . .

Here εc ∼ R−1/3 and εw ∼ R−1/2 as shown in GN99. The relevant normal variables in
the critical and wall layers, respectively, are

ηc =
(y − yc)
εc

and ηw =
y

εw
, (4.3)

yc being the critical height (at which the mean flow velocity equals the phase velocity
of the disturbance).

In the critical layer, therefore, differentiation with respect to the relevant normal
variable lowers the order by R1/3 (Drazin & Reid 1981; Govindarajan & Narasimha
1997, hereafter GN97; GN99). Returning to equation (2.7), we can see that the second
term on the right-hand side is only O(R−1/3) compared to the left-hand side. Since
{NPG} contains a third-derivative term, it can be shown that

εc

R
{NPG}[φ1] = O(R−2/3) (4.4)

relative to the largest terms in the full non-parallel equation (2.4) and is thus not
negligible in the critical layer.

In the wall layer, setting εw = (αR)−1/2 makes

εw

R
{NPG}[φ1] = O(R−1) (4.5)

relative to the largest terms in the wall layer. In a rational theory correct to and
including O(R−1), this term may not be neglected.

The resulting difference is ‘small’, i.e. we expect it to make little numerical difference
in eigenvalue computations. This is indeed the case, as shown in GN95, where the
neutral stability boundaries agree closely with the results of Gaster. However, in the
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computations of downstream growth of disturbance amplitude, the effect of these
discrepancies is cumulative. Hence the small but noticeable differences in the two
results, as demonstrated in figure 1.

Before we end, it is necessary to note that the present conclusions are not affected
by the recent work of Gaster (2000), who has proposed an approximate solution
method for the full non-parallel equation by the appropriate scaling of a related
parallel-flow solution. The reason is that it cannot yield an amplitude distribution
that is of greater accuracy than G74. To relate the present work to Gaster’s, it
is important to note that, while the theories for non-parallel flows formulated in
GN95, GN97 and GN99 all adopt the same philosophy and mathematical approach
– namely that of formulating what we have called minimal composite equations, as
explained in detail in Narasimha & Govindarajan (2000) – the equation derived in
each of the three papers is different from the others, as they reflect different levels
of approximation in the minimal composite theory. More specifically, GN95, GN97,
GN99 may be thought of as correct respectively to O(R−1), O(R−1/2) and O(R−2/3) in
the limit as the local Reynolds number R →∞.

The outcome of GN99 is a ‘lowest order parabolic’ partial differential equation, in
which a term involving a derivative of the eigenfunction in the streamwise coordinate
appears explicitly in the equation. The eigenfunction in GN99 is therefore completely
specified, and the comments to the contrary in Gaster (2000) clearly cannot apply.
Similarly, the eigenfunctions are also specified completely in GN95, which formulates
a partial differential equation more accurate than GN99.

Naturally the eigenfunction cannot be completely specified in the above sense
whenever the stability of a spatially developing shear flow is to be treated by an ODE.
This is true for the solutions of the equation formulated in GN97, as also of all work
done with the Orr–Sommerfeld equation. Indeed, it was for this reason that GN99
(see p. 1450) sought to formulate, using again minimal composite theory, the lowest-
order equation that explicitly enabled the complete specification of the eigenfunction.
The chief contribution of GN97, on the other hand, is the demonstration that there
is a rational non-parallel flow ODE, different from Orr–Sommerfeld, which includes
explicitly the effect of non-parallelism; thus there is one term in the GN97 equation
that is directly proportional to the rate of growth of a boundary layer thickness,
and appears because of the mean normal velocity which is necessarily absent in a
parallel flow/Orr–Sommerfeld type of theory. However, the problem of specification
of the dependence on x remains with GN97 (and the Orr–Sommerfeld equation), and
has usually been and continues to be handled through engineering approximations
in which the equation is solved locally at each streamwise station and the solutions
at neighbouring stations are patched using an (unstated) principle of the streamwise
continuity of the amplitude distribution. This problem can be tackled in different
ways, but it is not our purpose here to describe the logic of these procedures.

The iterative scheme of GN95 (contrary to the suggestion in Gaster 2000) is in fact
robust and has been used to compute amplification factors over a variety of aerofoil
sections. The scheme, therefore, and the philosophy underlying it, seem satisfactory.

5. Conclusions
It has been shown here that, while the equation of GN95 and the parabolized

stability equation of Bertolotti et al. (1992) are equivalent to that of G74, minor
inconsistencies do arise from the methods of solution adopted when (as in G74) the
Orr–Sommerfeld eigenfunction is used to compute the streamwise evolution of the



410 R. Govindarajan and R. Narasimha

amplitude. This approach permits a useful exploitation of the properties of adjoint
operators, but the results so obtained are correct only to O(R−1/2), whereas the
governing equations are more accurate (to O(R−1)). The computations of GN95,
exploiting as they do the full accuracy of the governing equations, eliminate the small
discrepancy, and are in excellent agreement with direct numerical simulation results.
These results enhance confidence in the approach adopted in GN95, GN97, GN99.

This work is supported by the Naval Research Board, Government of India. We
are grateful to Professor M. Gaster for several discussions, and for his comments on
an early version of this manuscript.

Appendix
It is shown below that, up to the order considered, the operators {NP} in equation

(3.1) and {NPG} in equation (2.4) are equivalent. The left-hand side of (2.9) may be
expanded using the expressions for F0 and F1 (up to O(R−1)) from equation (A6) of
G74:

{NPG}[Aφ0] = AF0 +
dA

dξ
F1

= −A[2αGωG − 3α2
Gfζ − fζζζ]

[
∂φ0

∂ξ
− ζ

2ξ
φ0ζ

]

−Afζ
{
∂φ0ζζ

∂ξ
− ζ

2ξ
φ0ζζζ − φ0ζζ

ξ

}
− (ωG − 3αGfζ)

(
dαG
dξ
− αG

2ξ

)
Aφ0

+
A

2ξ
{(fζζ + ζfζζζ)φ0ζ + (f − ζfζ)(φ0ζζζ − α2

Gφ0ζ)}

−dA

dξ
{[2αGωG − 3α2

Gfζ − fζζζ]φ0 + fζφ0ζζ}. (A 1)

The Gaster eigenfunction φG = Uθφ. For the flow over a flat plate, U is constant,
and

φG ∝ ξ1/2φ. (A 2)

In order to rephrase Gaster’s non-parallel operator in such a way as to compare
directly with equation (3.3), we make use of (A 2) to define a new variable

υ =
Aφ0

ξ1/2
, (A 3)

in terms of which equation (A 1) can be written as

{NPG}[Aφ0] = −ξ1/2

{
[2αGωG − 3α2

Gfζ − fζζζ]
[
∂υ

∂ξ
+

υ

2ξ
− ζ

2ξ
υζ

]

+fζ

[
∂υζζ

∂ξ
− ζ

2ξ
υζζζ − υζζ

2ξ

]
+ (ωG − 3αGfζ)

(
dαG
dξ
− αG

2ξ

)
υ

+(fζζ + ζfζζζ)υζ + (f − ζfζ)(υζζζ − α2
Gυζ)

}
. (A 4)
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Here ζ is Gaster’s normal variable given by

ζ =
U

ν

yd

(Rx0ξ)1/2
=
√

2q y, (A 5)

fζ = Φ′, αG and ωG respectively are the wavenumber and frequency of the disturbance
in Gaster’s coordinate system. From equation (6) of G74 it is straightforward to obtain

αG =
α√
2q
, (A 6)

and it may be inferred that ωG = ω/
√

2q. The relations for differentiation with respect
to dimensional variables in the two coordinate systems can be equated, giving

U

νRx0

{
∂

∂ξ
− ζ

2ξ

∂

∂ζ

}
=

1

θ

{
∂

∂x
− yq

R

∂

∂y

}
(A 7)

and
U

ν(ξRx0)1/2

∂

∂ζ
=

1

θ

∂

∂y
. (A 8)

Equations (A 5) to (A 8) may be used to rewrite (A 4) as

4q
√
ξ{NPG}[Aφ0] = −[2αω − 3α2Φ′ − Φ′′′]

[
R

q

∂υ

∂x
+ υ − yDυ

]

−Φ′
[
R

q

∂D2υ

∂x
− yD3υ −D2υ

]
− (ω − 3αΦ′)

(
R

q

dα

dx
− α
)
υ

+(Φ′′ + yΦ′′′)Dυ − (yΦ′ − Φ)(D3υ − α2Dυ). (A 9)

Combining terms in v, Dv etc. we get

4q2
√
ξ{NPG}[Aφ0] = q

{
ΦD3 + Φ′D2 +

[
2yα(ω − αΦ′)− α2Φ+ Φ′′

]
D

+(Φ′′′ − αω)} υ + (3αΦ′ − ω)R
dα

dx
υ

+R
[−2αω + 3α2Φ′ + Φ′′′ −D2

] ∂υ
∂x
. (A 10)

On examining the inviscid operators of the Orr–Sommerfeld equation on the left-hand
sides of (3.1) and (2.4) it is seen that Gaster’s inviscid operator is (2q)3/2 times the
corresponding operator in (3.1). When this is accounted for, it is seen that the Gaster
non-parallel operator (appearing in (2.4)) is the same as that of GN95 (equation (3.3)).
The only difference (as discussed in the main text) is that the former acts only on υ
while the latter acts on the total eigenfunction φ.
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