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The Navier–Stokes Equations

In Part 1 we saw how diverse flow phenomena can be, even when
we are looking at such common fluids as air and water (more
complex fluids – from paint to slurry  – are another big story by
themselves).  We saw how in many of those flows both order and
disorder are simultaneously present. We have no theories that
can handle these mixed order-disorder phenomena well.

But we do believe that the basic laws governing fluid motion are
known.  They are consequences of Newton’s laws of motion and
his concept of viscosity.  The laws are best written down in the
formalism of a continuous field, along the lines that Leonhard
Euler introduced in 1755 – exactly 250 years ago.  For an
incompressible viscous fluid of density ρ and viscosity μ, the
flow is governed by the equations of conservation of mass and
momentum,

div u = 0

and ρ td
du

 ≡  ρ ( t∂
∂u

+ (u . grad) u) = – grad p  + μ  ∇2 u + F,

where  u  =  u (x, t)  is the (vector) velocity field, dependent on
the position vector x and time t,  p = p (x, t) is the pressure field,
and F=F (x, t) is a body force (per unit volume of fluid).

Note the presence in the equations of the quadratically nonlin-
ear term u.grad u.  This nonlinear term is the crux of the
problems of fluid dynamics; if it had not been there the subject
would legitimately have become ‘classical’ by now.  It is only in
the 20th century that fluid dynamicists began slowly learning
how to handle the non-linearity, but the learning process is far
from over.

1 Part 1. The Diversity of Flow
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Prandtl’s Idea

The first shot here was fired by Ludwig Prandtl almost exactly a
hundred years ago, so I should say a few words about it in this
centenary year.  In 1904 this remarkable engineer read a paper at
the 3rd International Congress of Mathematics held at Heidel-
berg, and showed how, in the limit of large Reynolds numbers,
the equations could be made manageable without sacrificing
nonlinearity.  His approach can be summarized in the recipe,
‘Divide, conquer and unify’.   The first big step was to realize that
the flow could be divided into different regions: let us call them,
in the simplest cases, inner and outer (assuming there are only
two such regions).  The corresponding inner and outer equations,
each the limiting form of the governing equation in its respec-
tive region, are separately conquered, i.e. solved, yielding inner
and outer solutions.  By cleverly specifying their boundary condi-
tions these separate solutions are then ‘unified’ into a composite
solution, which was later shown to be asymptotic to the exact
solution everywhere in the large Reynolds number limit.

Prandtl posed the problem for the flow past an aligned flat plate,

Box  1. The Navier-Stokes Equations

We have written down these equations for an incompressible viscous fluid.  They assume that the fluid is
continuous (no voids, for example), and that the state of internal stress in the fluid depends linearly on the
local rate of strain that the fluid experiences during its motion.  The principles of conservation of mass and
momentum are then sufficient to obtain the partial differential equations that govern the motion: one
expressing continuity or conservation of mass, and three scalar equations (constituting one vector
equation) each of which expresses conservation of momentum in an independent direction.

Because fluid velocity and pressure depend in general on both space and time, the governing equations are
partial differential equations. The term that is responsible for the difficulty of solving these equations is
what may be called the advective acceleration, written as (u.grad)  u in the text.  This term represents the
acceleration experienced by a fluid particle, originally at a given position and time, as it moves a short
interval of time later to a neighbouring position where the fluid velocity is slightly different. Because the
increment in velocity and the distance travelled by the particle both depend on the velocity field, this
advective acceleration is nonlinear in the fluid velocity. This nonlinearity has profound consequences, and
results in all the complexities that we see in the motion of even such common fluids as air and water.
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which was trivial in 19th century Eulerian (inviscid) hydrody-
namics (μ = 0), but was fundamental to the new fluid dynamics
he was creating.  By an ingenious mixture of extensive visual
observation (in a $ 40 water channel), mathematical approxima-
tion and numerical calculation, he produced an answer for the
drag or resistance of the plate that in principle solved the
classical d’Alembert paradox (of no resistance in a non-viscous
fluid).  In the process of solving this special problem, however,
Prandtl did many other things.  He showed how, at high Re,
fluid flows tend to fold or squash into layers; he invented what
later became the more formal method of matched asymptotic
expansions for handling singular perturbation problems; by
example he brought to an end the war between ancient hydrau-
lics and 19th century hydrodynamics, which till then had scorned
each other (hydraulics was dismissed as a science of variable
constants, hydrodynamics as the mathematics of dry water);
and, in the process, he founded modern fluid dynamics, giving
it the tools by which many of the earlier ‘paradoxes’ that had
plagued the subject could be resolved one by one.

Some Things We Know

Thanks to that modern fluid dynamics we now know a lot about
many fluid flows – enough to build aircraft traveling at Mach 3
or carrying nearly a thousand passengers (the A380 can take
upto 873 people including crew), to make rockets that can shoot
us to the moon and bring us back, to predict weather a few days
in advance, to manage flows so as to enhance or diminish heat
transfer between a solid surface and a fluid or to promote or
suppress mixing between two fluids.  But we still do not under-
stand the central problem of turbulent flows, which remains
fundamentally unsolved.  (As the word appears repeatedly in
this article, I should explain what I mean by understanding  a
phenomenon.  In the first place, it implies that there is a
quantitative explanation that is derived from accepted first
principles – e.g. the Navier–Stokes equations – if necessary by
exploiting reasonable approximations using well-tested
methods, but not appealing to additional experimental data.
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Related to this is a second kind of explanation, consistent with
the first but possibly qualitative, where the phenomenon in
question may be shown to emerge from others which are already
‘understood’.) If the physics underlying the phenomenon is
utterly new, it is natural that understanding in the above sense
will emerge only slowly. To illustrate the bizarre situation in
fluid dynamics, consider the common plumbing problem of
estimating the pressure loss suffered by water flowing through a
pipe.  Man has been pushing water through pipes and channels
for thousands of years; our ancestors did that already very well in
the Indus valley civilization of some 4000 years ago. Thousands
of engineers make confident and successful designs using data
codified into diagrams of the type shown in Figure 1. But it is
only the green line in the diagram, representing laminar flow,
that is ‘understood’.  The rest is known, by a mix of testing and
ingenious heuristic argument about turbulent flow, but not
really understood.  To highlight this extraordinary situation, let
me note that there is a new analysis of turbulent pipe flow that
claims that some of the results of the kind shown in Figure 1 can
be wrong by as much as 60% at extremely high Reynolds num-
bers; this new analysis is not yet either confirmed or refuted.

Figure 1. Chart giving pres-

sure-drop data in rough

pipes, of the kind that engi-

neers use to design piping

systems. The only data on

this chart that can be de-

rived from first principles

(like the Navier-Stokes

equations) is the green

laminar line on top left.  All

the rest have to appeal to

experimental data in some

way, supplemented by

some very clever scaling

arguments.
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Deterministic Chaos

This has been the enduring mystery of fluid flows: its governing
laws are known, nevertheless even everyday phenomena, seen by
our eyes all the time, cannot always be explained solely from
those laws. Richard Feynman called turbulent flow “the greatest
puzzle of classical physics”. But the adjective ‘classical’ there
should be carefully interpreted, for ‘classical’ is often equated
with ‘understood’, i.e. intellectually dead.  This of course is far
from being the case with regard to turbulent flows.  I think it
would be more accurate to say that Newtonian mechanics has
turned out to be full of deep, unresolved, sometimes even unsus-
pected mysteries (in spite of having been dubbed as ‘classical’
with the advent of relativity and quantum mechanics).  One such
phenomenon, unsuspected till some forty years ago, is determin-
istic chaos. This forces together two concepts – of necessity and
chance, of law and accident, or (in Upanishadic terms) of niyati
and yadrccha – concepts that had earlier been thought of as two
competing, mutually incompatible views of the nature of the
universe.  The discovery that paradigmatically deterministic
Newtonian systems can behave in ways that appear random has
had such a profound effect on our thinking that Sir James
Lighthill, occupant of the same prestigious Lucasian Chair that
Newton had held some 300 years earlier in Cambridge, felt
compelled to say in 1986:

We [i.e. the community of scientists pursuing ‘classical’
mechanics] collectively wish to apologize for having mis-
led the general educated public by spreading ideas about
the determinism of systems satisfying Newton’s laws of
motion that, after 1960, were to be proved incorrect.

And chaos has now been detected in such exemplars of the
alleged ‘clockwork’ of the universe as the planetary system, the
pendulum and the elastic string.  Einstein famously said that he
did not believe in a God who played dice, but would he have be-
lieved in a Newtonian God who played deterministic nonlinear
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games whose outcomes would be effectively indistinguishable
from the results of playing dice?

Incidentally Newtonian chaos is not unrelated  to the turbulence
of fluid flow – chaos is generic turbulence, so to speak, that may
be encountered in non-fluid dynamical systems as well. Indeed,
a key advance in the emergence of the concept of chaos was the
study of a highly idealized form of convective weather – going
one or two nonlinear steps beyond the saree-border pattern of
Figure 3, Part 1.  That study, undertaken in the early 1960s by the
American meteorologist E N Lorenz, showed how convection
can become erratic, explained why weather is unpredictable
beyond a certain time horizon, showed the relation of these
properties to those of some simple nonlinear maps, and visually
displayed for the first time the mathematical object that later
came to be called a strange attractor.   This theory of chaos has
certainly solved the philosophical problem of how turbulence
can emerge out of the Navier–Stokes equations.  But it has
unfortunately not otherwise been of great help in understanding
or predicting turbulent flows for the simple reason that the
number of degrees of freedom in a flow diverges as the Reynolds
number increases.

The Fundamental Problem

I believe it was John von Neumann who came closest to seeing
the true nature of the fundamental problem of fluid dynamics.
He first of all realized that:

From the point of view of theoretical physics turbulence
is the first clear-cut instance calling for a new form of
statistical mechanics.

He then went on to say:

The impact of an adequate theory of turbulence on certain
very important parts of pure mathematics may be even
greater [than on fluid dynamics].
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Von Neumann thought that there was some hope to “break the
deadlock by extensive but well-planned computational efforts”;
and this was one of the reasons that he got so deeply involved in
the development of computer technology.  But computing solu-
tions of the Navier–Stokes equations is more like doing experi-
ments (– only they are numerical instead of physical), and will
not automatically provide understanding. In any case, even on
the most powerful computers available in the world today, we
cannot reach Reynolds numbers higher than of order 104. To see
that we still have a long way to go, look at Figure 2, which is a
collection of data compiled by Anatol Roshko on the pressure at
the back (more precisely rear stagnation point) of the same kind
of cylinder that sheds  Kármán vortices at lower Reynolds
numbers.  First of all note that the data (collected from many
different sources) show surprisingly small scatter.  Now how can
the pressure on a body whose cross-section is a platonically
perfect circle vary with Reynolds number in such a non-simple
way?  (Could that crazy variation be a set of signatures of the
many transitions that keep occurring as the flow folds into
complex layers?)  Who would dare to guess (based on that data)
what happens to the pressure in the limit as the Reynolds
number Re tends to infinity?  Or, to put it in equivalent terms,
how is it that even at Re–1 = 10–7 we clearly cannot be sure we are

Figure 2. The remarkable

variation of the pressure at

the rear stagnation point

(‘back’) of a circular cylin-

der, as the flow Reynolds

number varies over six or-

ders of magnitude. The

kinky nature of the varia-

tion probably indicates a

complex sequence of flow

transitions, and does not

give unambiguous answer

about the nature, or even

the existence, of a limiting

state as Reynolds number

tends to infinity – suggest-

ing a value of 107 may not

be large enough for this

parameter.
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close to the limit Re–1 → 0 ?  (There must be a discontinuity at R–

1 = 0, showing the limit is singular.)  And, to cap it all, even on
the most powerful computers in the world today, we are not even
half-way past the abscissa in the diagram.  So you can see how far
we are from final solutions.

That the problem is basically mathematical is at last being more
widely recognized, for two problems on the Navier–Stokes equa-
tions are among the seven million-dollar prize problems posed
by the Clay Foundation (Box 2) – along with the Riemann
hypothesis and the Poincaré conjecture.  That I feel is the right
company for turbulence, and shows why fluid dynamics contin-
ues to be such an enduring challenge.

What Can be Done

While waiting for mathematical paradise, there is a great deal
that fluid dynamicists can do and have done about these

Box  2. The Clay Institute’s Million-dollar Prize Problems

The Clay Mathematics Institute (Cambridge, MA) is a private foundation financed by the businessman
Landon T Clay.  The Institute has offered a million-dollar prize for solutions of each of 7 'Millennium Prize'
problems. These include such celebrated and long-standing open questions as the Riemann hypothesis and
the Poincaré conjecture. One of the seven problems is concerned with 'Navier–Stokes existence and
smoothness'.

The basic question underlying the Navier–Stokes problem is to show whether smooth, physically
reasonable solutions of the three-dimensional Navier–Stokes equations exist or not. (The two-dimensional
problem was solved by the Soviet mathematician Ladyzhenskaya (1922-2004) in the 1960s.)

As solution of the problem, proof is demanded of one of four statements.   The flavour of these statements
is conveyed by the following question.  If the initial velocity field is sufficiently smooth everywhere, and
the forcing function F (x, t) is also similarly sufficiently smooth everywhere and at all times, does the
Navier–Stokes solution for the velocity field remain smooth with finite energy, or can it blow up?  (For
a statement of the problem with more precise mathematical qualifications, see the Clay Mathematical
Institute website: http://en.wikipedia.org/wiki/ Millennium_Prize_Problems.)  Even more simply stated,
do smooth initial conditions always yield smooth solutions for all times or not?   For the Euler equations
(valid for an inviscid fluid, ν = 0), the evidence seems to suggest that blow-up is possible.  Answers to such
questions can help us to understand the way that viscous fluid flows are drawn out into thin sheets or
filaments of vorticity, as in Figure c in Box 4.
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Box 3. What We Can Measure

Here are some typical examples of what one can measure by recent techniques. The current trend in fluid
flow measurements is towards development of tools that measure whole pressure, velocity and temperature
fields, rather than making point measurements.

Figure a (left). A recently developed method of measuring pressure distribution on models

in wind tunnels is the use of pressure-sensitive luminescent coatings (‘paints’). This picture

shows pressure measurements made on an aircraft model using a pressure-sensitive paint

developed at NAL.

Figure b (right). Whole-field velocity measurements using particle image velocimetry near

the trailing edge of a flapped aircraft wing.

problems.  Engineers of course cannot always wait for under-
standing  (as the great electrical engineer Oliver Heaviside
pointed out, we do not stop eating just because we do not
understand digestion).  But engineers would love a good theory
– it would cut development costs dramatically (I can hear some
of you saying ugh!). In the absence of a theory, one engineering
way is to treat each flow on its merits, carry out extensive tests
(see Box 3) and make handbooks or catalogues with diagrams
like Figure 1 (using physical or computational experiments) – or
their more modern computerised equivalents. But I think a
great deal more can be done.

Some Basic Ideas

First of all, I believe there are two keys to appreciating fluid flows

(a)
(b)
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Box 4. What We can Compute

Here are some typical examples of the kind of computations that can be made today.  Each of them is
thought to be an exact numerical solution of the governing equations and initial-boundary conditions – that
is, without the aid of any additional empirical or semi-empirical assumptions, hypotheses, models etc.

Figure a. Solution of Navier–

Stokes equations for an

aerofoil at high angle of at-

tach (~29 deg.). Instanta-

neous contours of vorticy.

Reynolds number = 45 000

based on chord.

Figure b.  Diametral cross-

section of a turbulent jet, like

that shown in Figure 9, Part

1.  Solutions of the full

Navier–Stokes equations, Re

= 1600 based on nozzle velo-

city and diameter. Colour

coding indicates values of

the vorticity component

along the direction of jet flow,

i.e. perpendicular to the plane

of the paper. Arrows show

velocity vectors in the plane

of the paper just outside the

core of the jet.  (Left)  Con-

ventional jet.   (Right)  Jet

with volumetric heating,

simulating the release of la-

tent heat of condensation of

water vapour in a cloud.

Notice the dramatic changes in both velocity and vorticity fields, explaining in part why flight

through clouds in an aircraft can be so bumpy.

Figure c(left). A solution of the Navier–Stokes equations for decaying turbulence stirred up in

a box of size 20483.  Reynolds number = 270 based on r.m.s. fluctuating velocity and the Taylor

microscale.  Picture shows contours of constant vorticity.  The solution (with others like it) takes

several weeks on one of the most powerful computers in the world, the Advanced Simulation

and Computing Q machine at Los Alamos.

Figure d (right). A solution of the Euler equations, colour-coded to indicate pressure distribution

on the Light Combat Aircraft.

a

b

c d
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– i.e. to getting an intuitive feel for their structure (which is still
far short of predicting them from first principles).  The two keys,
I propose, are

INSTABILITY, NONLINEARITY

As we have already seen, fluid flows tend naturally to instability
under most conditions barring the mildest (very low Reynolds
or Rayleigh numbers, for example).  The nature of the instability
depends on the particular flow type (jet, boundary layer, convec-
tion, rotation etc.), and can vary widely from flow to flow. That
is, instability is general, but its character is flow-specific.  This
tendency to crumple into instability, enabling small distur-
bances to grow, can be the first step leading to chaos and
turbulence.  It is no wonder therefore that instability has been
seen as a central issue by some of the biggest names in physics
and fluid dynamics: Sommerfeld, Rayleigh, Heisenberg,
Chandrasekhar – and most relentlessly and successfully by
Prandtl and his pupils and by G I Taylor.   But the final stages of
transition, ending up in breakdown, are essentially nonlinear,
and not yet understood.

That leads to nonlinearity, which  has several effects.  The first,
strangely, is to fix order. By this I mean that a linear instability
mode which has started growing can have its amplitude limited
by nonlinear saturation, producing the stable order of which we
saw several illustrations earlier (e.g. convective rolls, Kármán
vortices), without necessarily changing the mode much.

The second effect of nonlinearity is to fold the flow into layers,
as first analysed by Prandtl in the simple case of flow past a flat
plate.  But as thin layers fold into even thinner ones (see e.g.
Figure 3), there is a cascade in scales.  And there can be layers
within layers!  Of course the folding and squashing can result
not only in sheets, but scrolls, filaments, shocks and various
other types of singularities.

Thirdly nonlinearity can generate chaos – as we have already
described.

Fluid flows tend

naturally to
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barring the mildest.



17RESONANCE ⎜ September   2005

GENERAL   ⎜ ARTICLE

Figure 3. A vortex pair de-

scends on a circular cylin-

der, and folds itself into lay-

ers. Smoke flow visualiza-

tion at 40 ms intervals, ba-

sic cylinder Reynolds num-

ber 1500.

And, by a combination of all these mechanisms
nonlinearity can produce strange mixtures of chaos
and order over a wide range of scales – the vicitra-
vibhava of the

V¹asis. t.ha

.

To these two pillars of intelligent thinking about fluid
flows, we should perhaps add a third,

SCALING AND MATCHING

which is a way of reasoning about length and time
scales in the flow.  This is important for several rea-
sons. First of all fluid flows have a wide range of scales
(because of the layer-making property discussed above).
Secondly scaling arguments help us to separate the
more nearly universal features of a flow from those
that are less so. Thirdly a successful scaling argument
helps us to condense vast quantities of experimental
data into manageable patterns.  For example, if the
scales characterizing wake flows are known, then all
wakes become instances of a universal wake, i.e. all of
them collapse into universal functions and numbers in
appropriately scaled variables.  (Of course these func-
tions and numbers cannot still be predicted, and usually
have to be found from physical or numerical experiments.)

One of the most celebrated of such scaling arguments is due to
Kolmogorov (although the fundamental core of the argument
had been used earlier in turbulent channel flow by Clark Millikan
– at least that is the way I see it).  Kolmogorov analysed the
spectrum of turbulence, which he considered as determined by
an energy cascade from large scales in the motion to small scales
(rather as the crushing of coal leaves us with pieces of various
sizes – from a few big lumps to a lot of fine dust). He proposed
that the ‘small eddies’ (high wave numbers) are universal and
depend only on the viscosity and the energy dissipation, and the
large eddies are flow-specific and inviscid. Crucially, he further
postulated that there is a range of intermediate scales over which
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Box 5. The Spectrum

When the flow velocity in turbulent flow fluctuates in an apparently random way (as seen for example in
Figure 7,  Part 1), one useful method of description is in terms of its (frequency) spectrum, or more
precisely the power spectral density. In the case of the turbulent velocity field (u′) this is commonly done
in terms of the wave-number, which is a ‘spatial’ frequency measured say in cycles per unit length, related
to the more familiar temporal frequency (cycles per second) through a translational velocity.  If k is the
magnitude of the wave number, one can express the mean kinetic energy in the fluctuating motion per unit
mass of fluid as ½ (u′)2, and write it as the integral

                         ∞
½ u′2  =  ∫  E(k) dk.

0

The spectral density E(k) can be inferred by measurement of the mean square value of outputs from
appropriate filters through which components of the velocity signal  u′ are made to pass.  Today it is more
convenient to evaluate the spectrum by digitizing measured u′ components and doing a fast Fourier
transform on them in a computer.

both scaling arguments are valid, i.e. they are matchable.  This
led to the prediction that, over that range of intermediate scales
(often called the inertial subrange), the spectrum should be
proportional to k–5/3 (where k is the wave number).  This should
be true in any flow – whether it is a jet stream in the atmosphere,
tidal flow in the oceans, or the boundary layer on an aircraft
wing.  Figure 4 shows how successful the argument is.

I have vastly oversimplified the reasoning here, and must hasten
to caution you that universality may not be as common as it is
sometimes thought to be.  Kolmogorov himself felt compelled to
revise his argument nearly twenty years after he first put it
forward.  Nevertheless, the organizing power of a successful
scaling argument is enormous, its chief attraction being that it is
minimalist in the hypotheses it makes (unlike in the specialized
industry that churns out basically ad hoc turbulence models, for
example). But then we cannot prove when (or even whether)
such scaling arguments follow from the Navier–Stokes equa-
tions, and, even if the arguments are valid, the corresponding
universal numbers and functions have of course to be deter-
mined from experiment of one kind or other.
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Such scaling arguments have been used very widely – some
times with success, at other times in controversy. They can be
seen as simple applications of a kind of group theory, the centre-
piece of the argument being a postulate on what the relevant
group is.

There is, of course, THEORY – a lot of it in fact, although the
central problem of the turbulent solutions of the Navier–Stokes
equations in the limit of high Reynolds numbers remains un-
solved. So the theories we possess have mostly to do either with
linear problems such as inviscid flows without vorticity, small
disturbance flows or low amplitude waves, highly viscous flows
(i.e. at low Re) etc., or with limiting flow situations where the
nonlinearity can be simplified because it is localized or approxi-
mated in some way.

What engineers often do today is use any tool or method that will
help: theory of course, whenever it is available, testing, comput-
ing, simulation, scaling arguments and, increasingly, math-
ematical modelling.  This modelling has to be distinguished
from making direct appeal solely to first principles (e.g. Navier–
Stokes).  Instead, essentially new equations are devised, taking

Figure 4. The high-wave

number end of turbulent

spectra, scaled according

to Kolmogorov. The agree-

ment between atmospheric

and oceanographic mea-

surements, and the pres-

ence of an extended k–5/3

region, demonstrate the

effectiveness of scaling

and matching arguments.
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inspiration from but abandoning equivalence to the Navier–
Stokes equations. Ingenuity lies in inventing equations that give
the engineer the reduced information he wants, like the pipe
data of Figure 1.  Such models can be at many different levels –
from codification into charts or tables like Figure 1, through
ordinary differential equations for each flow type (boundary
layers, jets etc.), all the way to systems of nonlinear partial
differential equations (for mean quantities) expected to be useful
for wide classes of flows – inspired by but not deducible from the
Navier–Stokes equations.  Although none of them is spectacu-
larly successful, many of these models are useful – sufficiently so
that there is a minor industry across the world generating,
testing and applying such models to a vast variety of fluid flow
problems – from making better aircraft wings to estimating how
pollutants disperse to forecasting weather or ocean state.

So I hope you may see in some small way why some of us love
exploring fluid flows: they can be beautiful, crazy, fearsome,
important; a challenge whether you want to stare at nature’s free
displays, or visualize flows in the laboratory, or measure them
with great precision, or control them so that they do your
bidding; a happy hunting ground if you want to match your
skills – of any kind – to try and unravel their secrets and to add
to the great deal that is known; but, in essence, still beyond any
mathematics or computers invented by man; still out there, so to
speak, taunting us to see if we can understand, as we claim to
know the basic laws.

If you also feel taunted by those flows, welcome to the fluid
dynamicists’ club!
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