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Abstract. We present here a brief survey of vortex-dynamical simulations
of the plane mixing layer using different forms of vortex elements. Points
and blobs, which have been widely used in the past, suffer from irregular -
evolution of the vortex sheet approximating the shear layer, and the
rather long time-averaging required to obtain meaningful statistics. A
technique recently proposed by the authors, using vortex arcs or sheet
elements, has been found to be helpful in avoiding these difficulties. In
particular, this technique avoids the singularity in induced velocity associated
with point vortex techniques, and is therefore in no need of any form of the
“desingularization” that is often introduced in the latter. New results for
excited mixing layers using the vortex sheet element model are presented,
and are shown to be in good agreement with experimental’observations.

Keywords. Vortex dynamics; vortex simulation; vortex sheet; mixing
layer. :

1. Introduction: Turbulent flows and vortex dynamics

Turbulent flows have interested scientists and engineers for a long time now, but still
remain poorly or marginally understood (see, €.8., Narasimha 1990). Over the last
two decades, thc advent of modern vector super-computers and, especially, of parallel
computing technology (see Basu et al 1992a in this context), has raised hopes that
one might be able to meet the enormous demands made on computing equipment to
obtain exact numerical solutions of the governing Navier—Strokes equations describing
the evolution of turbulent flows. Such direct numerical simulation of turbulence
(resolving all significant scales down to the smallest) has been achieved only for rather
moderate Reynolds numbers (of the order of 1000 or so, based on macroscopic velocity
and length scales). A direct numerical simulation of the flow past a complete aircraft
was estimated to require machines 10° times faster and possessing 106 times the
memory of the most powerful computers available in 1989 (Reynolds 1990). Direct
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numerical simulations are therefore likely to remain limited to modest Reynolds
numbers in the foreseeable future, and will perhaps be used mainly to provide new
insights into the basic physics of turbulence and guidance in turbulence modeliing,

A logical option therefore is to compute exactly the large scales in a turbulent
flow, and to model the small scales. Such “large-eddy” simulations could be used as
engineering or design tools (Rogallo & Moin 1984). At an even coarser level, Reynolds-
averaged models are sometimes successful in predicting the mean flow (e.g. Launder
1990), but have serious limitations. The current position (see e.g. Narasimha 1990)
is that there are no rational models yet for turbulent flows in general, and those that
feed industry are basically ad hoc.

Thus there still exists a gap in accurate numerical methods for simulating high
Reynolds number turbulent flows, of the kind that are of importance to industry.
Vortex dynamics offers promise of being an efficient tool for simulating just such
flows (see Leonard 1980, 1985 for reviews), although it has its own drawbacks (as we
shall discuss below). Its chief advantage is that it provides a compact Lagrangian
method of describing the evolution of a rotational flow in terms of vorticity. Now
any flow can be thought of as being a combination of potential and rotational parts;
as the former can be considered computationaily under control, specification of
vorticity is virtually equivalent to specification of velocity. Further, as vorticity tends
to be concentrated in space, it provides a description of the flow field that is usually
compact. Turbulent flows are necessarily rotational or vortical, so it seems an
attractive proposition to describe them using vortex dynamics.

Most vortex-dynamical methods are inviscid, and wouid in principle be eminently
suitable for simulating high Reynolds number flows but for certain difficulties. In
two-dimensional flow “point” vortices can be used, but they result in irregular roll-up,
and are known to be non-convergent as the number of point vortices is increased or
the time-step of integration is reduced (Krasny 1986a). (Incidentally, what are referred
to as “point” vortices in the plane are actually line vortices extending from — oo to
+ o0 in the third dimension perpendicular to the plane of the flow). Moreover, such
schemes requiré large and computationally expensive time-series data for convergence
of statistical moments. Vortex “blobs” (ie. patches of continuously distributed
vorticity) have also been used by several workers (e.g. Krasny 1936b). Basu, Prabhu
and Narasimha (1992b; hereinafter referred to as BPN) present a method using vortex
sheet elements that overcome these difficulties to a large extent. (To be consistent
with our terminology of “point” vortices in 2-D flows, these elements would have to
be called vortex “arcs™ they are sheets that extend from — co to + oo in the third
dimension. The first exploratory calculations using this idea were made by Narayanan
1984 and Mudkavi 1985.) Viscous vortex methods using random-walk are correct
only in a statisticai sense (Chorin 1973). Recent work by Fishelov (19902) on a novel
viscous vortex method is promising, but its accuracy still remains to be evaluated
for large integration times. There are also various. problems in enforcing correct
boundary conditions in flows over smooth surfaces (see, e.g. Dutta 1991). Three-
dimensional methods use vortex filaments (Leonard 198 5) and blobs {Fishelov 1990b).
In.the present paper, we will be concerned mainly with two-dimensional methods
using vortex points, blobs and sheets. : '

.V\_fe will, in particular, examine two-dimensional vortex-dynamical simulations of the
mixing layer, which is a flow that has been studied in great detail in the laboratory.
The main reason why the mixing layer has attracted so much attention when compared
to other free shear layers is its quasi two-dimensionality, especially under harmonic
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forcing. This characteristic of mixing layers makes them more tractable both analyti-
cally and numerically. Thus, reasonable simulations of mixing layers can be made using
the tools of two-dimensional vortex dynamics.

The paper is organized as foliows. In §2, we look briefly into the findings from
experimental studies of both excited and unexcited mixing layers. In §3, we review
numerical simulations, concentrating mostly on the two-dimensional vortex-dynamical
techniques. In §4, we provide an overview of the vortex sheet element scheme that
we have developed and used successfully previously (see BPN). In § 5, we present some
new results for an excited mixing layer using the above scheme. We also briefly
describe the previous results for unexcited mixing layer simulation. Section € presents
some conclusions on the status of vortex dynamical simulations of mixing layers.
Details of the present vortex sheet scheme along with some results for unexcited mixing
layers have been published elsewhere (BPN), while a direct comparison between the
vortex sheet scheme and a point vortex scheme has been reported in Basu et al
(1992c). We will draw upon these results whenever necessary.

2. Experimental observations of the plane mixing layer

-] .

The plane mixing layer forms a subject of fundamental interest in turbulence research
(see Spencer & Jones 1971, Brown & Roshko 1974, Roshko 1976 and Cantweil 1981).
In a typical experimental set-up, two parallel streams with different velocities U, and
U, meet at the end of a finite-length splitter plate, and the mixing region normally
extends to a few plate-lengths downstream (figure 1). The turbulent mixing layer is
known to grow linearly in the streamwise coordinate x, and is conically similar in
the variable

n= }’/(x"'xo); ‘

where y is the coordinate normal to the free-stream direction, »and’ xo is the
x-coordinate of a suitable “yirtual origin” of the mixing layer, in general different
from the trailing edge of the splitter plate. Such similarity is achieved asymptotically
at sufficiently large distances downstream, in the limit (x/xo)—> 0. '

Brown & Roshko (1974), through flow-visualization studies, have shown that there
is strong spatial coherence in turbulent mixing layers. It has been found that even at
very high Reynolds numbers (3 x 10 based on x in the experiments of Dimotakis &
Brown 1976), there are large coherent structures with characteristic length proportional
to the thickness of the mixing layer, advecting with the flow and amalgamating nearly
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plate * _ Figure 1. A typical plane mixing layer.
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discontinuously with neighbouring structures at various times. For some distance
downstream of the splitter plate the structures are nearly two-dimensional. The
dynamics of the mixing layer appears to be governed to a considerable extent by the
nearly inviscid interactions of these coherent structures.

It has been observed that the large structures in a mixing layer, and hence its
growth, may be controlled significantly by introducing relatively small periodic
perturbations in the flow. The effect of such periodic forcing has been studied by
Oster & Wygnanski (1982), Browand & Ho (1983) and others. A review of forced
mixing layer studies may be found in Ho & Huerre (1984).

The two parameters that significantly affect mixing layer growth are the amplitude
a and the frequency f of the forcing. The effect of the frequency is best expressed
(see, e.g. Browand & Ho 1983)in terms of the variation of a non-dimensional thickness

(f6/U.) with the non-dimensional streamwise distance (1fx/U,), where 6 is the local
momentum thickness defined as

0= .[ LU~ DT - U,)(U, U, dy,

y=-o

U.=(U,+U,)/2 is the advection velocity, A=(U,~U,)(U, 4 U,) is the non-
dimensional velocity difference, and U(y) is the mean velocity distribution at the
streamwise station where 8 is measured.

It is observed that the forced mixing layer may in general be divided into three
different “response regimes” as follows (Oster & Wygnanski 1982),

Regime I: The growth rate may be greatly enhanced (upto twice the unforced value)
depending upon the forcing amplitude, over the frequency range 0 < (Afx/U.) < 1.

Regime II: In this “frequency-locked” regime (as it is sometimes called), the growth
slows down or ceases, and under extremely large forcing amplitudes may even become
negative. This regime is usually observed in the frequency range 1 < (4fx/U,) < 2.

Regime III: The mixing layer resumes growth at nearly the same rate as in the
unforced case. This regime lies beyond (Afx/U,) = 2.

The effect of the amplitude of forcing is relatively less dramatic. Oster & Wygnanski
(1982) observe that at small amplitudes of forcing (at a given frequency), the growth
is enhanced (especially in regimes II and III) due to amalgamation of large structures,
whereas at higher amplitudes growth is suppressed in regime II because the flow
resonates with the imposed oscillation.

The excited mixing layer has been found to be more nearly two-dimensional in
character than the unexcited one, and may therefore be expected to be simulated
more accurately by two-dimensional vortex dynamics.

3. A review of previous vortex dynamical simulations

Tl.le'discovery of well-defined quasi two-dimensional coherent structures in the turbulent
n?lxmg.layer has paved the way for numerical modelling of the flow using two-
dimensional vortex dynamics (Ashurst 1979; Leonard 1980; Inoue 1985). These efforts

A
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have been inspired by the hope that a suitable model can be developed for the evolution
and roll-up of the vortex sheet that is shed from the end of a splitter plate, the sheet
being the result of the tangential velocity discontinuity between the two streams.

3.1 Temporal simulations

Long before Brown and Roshko’s experiments, there had been attempts to study
numerically the temporal evolution of doubly-infinite vortex sheets with periodic
boundary conditions due to the Kelvin—Helmholtz instability (Rosenhead 1931;
Birkhoff & Fisher 1959). This configuration has come to be known as the “temporal”
mixing layer; it is approached in the limit by a spatial mixing layer when (AU/U,)« 1
(where AU=U, —U,), and can be obtained through a Galilean transformation
involving the average free-stream velocity (Corcos & Sherman 1984). The temporal
mixing layer has been experimentally studied by Thorpe (1968).

Since the work of Rosenhead (1931), there have been a large number of numerical
attempts to simulate the temporal mixing layer using digital computers (Acton 1976,
Krasny 1986a etc., see table 1). Most authors have discretized the vortex sheet in
question by point vortices. Krasny (1986b), following Chorin (1973), has used finite-
core vortices or vortex “blobs”, which may be seen as part of a technique that essentially
removes the induced velocity singularity at a point vortex. While studies using point
vortices have reported irregular roll-up (of the interpolating curve representing the
vortex sheet) in finite time, the vortex blob method has produced smooth roll-up for
small but finite values of a desingularizing parameter. The induced velocity at the
discrete vortices in these studies has been computed usually by direct evaluation of
the Biot—Savart integral, or by the cloud-in-cell method (see Christiansen 1973).
Direct integration is more expensive in terms of computing time but more accurate
than the cloud-in-cell method, which cannot resolve flow features smaller than the
grid size (see Saffman & Baker 1979). Reviews of various vortex methods and of
numerical studies of the mixing layer may be found in Saffman & Baker (1979) and
Leonard (1980, 1985). '

Many numerical techniques have been developed and much qualitative insight has

been gained into mixing layer flow by these studies. But direct information on the

Table 1. Temporal simulations.

Investigator (s) Method  Re Comments

Rosenhead Point o  Showed smooth roll-up at large times
(1931) vortex

Birkhoff & Point o  Showed that smooth roll-up in Rosenhegd’s
Fisher (1959) vortex calculation was due to use of few vortices

' ' ‘ and first order time-integration scheme

Acton Vortex o  Cloud discretization approach used
(1976) blobs

Krasny Point o  Showed that point-vortex scheme does not
(19864a) vortex converge as number of vortices isincreased

Krasny Vortex «  Showed smoothroll-up at long times. The
(1986b) blobs desingularizing in the vortex blob scheme

does not have any physical significance
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spatial mixing layer, enabling comparison with experimental data, is not yet available
from such computations of the temporal layer.

3.2 Spatial simulations

Simulations of the spatial mixing layer flow using vortex dynamical techniques, on the
other hand, are far fewer, due to the complexity of the problem and the (consequently)
large computational resources required (see table 2). The first such attempt, to our
knowledge, was made by Kadomtsev & Kostomarov (1972). Their method uses point
vortices interacting via the Biot-Savart law to simulate the mixing layer; the far
downstream is modelled by an absorbing wall. Ashurst (1979) has made a detailed
study using vortex blobs. He uses numerical techniques like a long-range cut-off and
exponential spreading (in time) of the core of each discrete vortex, and imposes a
“random walk” (as in Chorin 1973) to simulate viscous diffusion. Leonard (1980)
replaces the upstream splitter plate and the far downstream by semi-infinite vortex
sheets; the vortex sheet in the domain of interest is replaced by discrete vortices with
Gaussian cores. Inoue (1985) has made an essentially inviscid computation of a mixing
layer flow using vortex blobs; a similar methodology has been used by Inoue &
Leonard (1987) in a more recent simulation of both excited and unexcited mixing
layers. Ng & Ghoniem (1985) have simulated shear layers enclosed in a duct. Three-
dimensional shear layers have been simulated using vortex filaments by Leonard
(1985) and Ashurst & Meiburg (1988), among others; however, we will not pursue
three-dimensional simulations in this paper.

It may be noted that most two-dimensional simulations use discrete vortices to

»

Table 2. Spatial simulations.

Investigator(s) Method Re Comments

Kadomisev & Point o) Porous wall used as downstream boundary

- Kostomarov vortex
(1972)

Ashurst Vortex 1000  Exponential spreading of vortices and
(1979) blob random-walk method used to simulate

viscous diffusion

Leonard Vortex e Upstream boundary conditions are taken
(1980) _ blob . into account

Inoue (1985)- Vortex w0 Upstream and downstream boundary

blob conditions not satisfied. Computed moments
- do not compare well with experimental data

Inoue & Vortex o Large number of samples used to obtain
Leonard (1987) - blob results comparable to experimental data

Ng & Ghoniem Vortex oo} Shear layer in a duct. Results compare well

- (1985) blob with experiments

Ghoniem & Ng Vortex o) Forced shear layer. Upsiream boundary
(1986) -~ blob conditions satisfied properly

Basu et al Vortex o Both upstream and downstream properly
(1992b) . s{xeet modelled. Computed moments converge

clement

fast and compare well with experiments
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approximate the vortex sheet in the domain of interest. These attempts follow what
is broadly known as the “cloud discretization” approach, where the question of the
actual evolution of the vortex sheet (that the discrete vortices are supposed to represent)
is considered unimportant in general

Most of these studies have presented visualizations of the mixing layer by means
of streak lines or isovorticity contours, but some have also sought to estimate the
growth rate and the profiles of mean longitudinal velocity, Reynolds stresses, and
higher order moments. Computed streak line pictures show qualitative similarity with
the shadowgraphs of the mixing layer (as in Brown & Roshko 1974}, and thus have
strengthened the idea that certain aspects of the large-structure dynamics may be
effectively simulated and understood using two-dimensional vortex techniques.

There have been some recent vortex-dynamical attempts to simulate the forced
mixing layer (Ghoniem & Ng 1986; Inoue & Leonard 1987). These simulations
reproduce several characteristic flow-features of the forced mixing layer, including
the generation of negative Reynolds stresses in the frequency-locked regime as
observed in laboratory studies (e.g. in Oster & Wygnanski 1982).

3.3 A critique of temporal simulations

Despite the large number of numerical investigations of the mixing layer, the following
questions concerning vortex dynamical simulations still remain.

(i) In the limit of infinite Reynolds number, the primary ingredients of the mixing
layer flow are infinitesimally thin vortex sheets which cannot be accurately rcpresentgc}
by point vortices or vortex blobs, because they cannot .reproduq: the t@gentxm
velocity discontinuity of a vortex sheet faithfully. In particular, pomt -vortlccs le?d
to infinite velocities in their immediate neighbourhood, whereas there is no velocity
divergence associated with vortex sheets. There has beep no re.port of any srrzooth
solution for a reasonably long time using models of pou}t vortices to ‘approxxm_ate
a vortex sheet. In fact, the roll-up of the vortex sheet obtained through interpolation
in such computaticns is usually highly irregular, preci§e1y because of the rf:placcm:g
of the sheet by point vortices (Moore 1971): indeed using a larger (but ﬁxfnte()hrllm:n o
of point vortices could make matters worse (Krasny 19§6a). Tl}ere are fundam :
differences between vortex sheets and an assembly of point vortices: the lattfar is only
a weak solution of the Euler equations, and an assembly of vortex blobs 13821%; :nn
exact solution in any sense, although it may be a reasonable approximation (
& Baker 1979). ' _ |
(11) The caicul;ti_on of induced velocity using discret: vortices that z;lre (t:ll](:sre Sﬁi&j
~ is unreliable since they tend to form pairs an@ rotate aroux}d ealc o(i)nts éloser o
(1977) reports that ‘the error in calculating th:.; n}duced velocity at p
vortex than the average vortex spacing may be 1arge. ) _
(iii) Calculations usiné the cloud discretization approach are p}lysgizlldy unrealistic
since the question of the actual evolution of the vortex slgzet 1.-1 ;gsnmootil roll-up for
(iv) Calculations using vortex blobs (see, €.8. Krasny }98 d) iles arbitrariness in the
large times, but the desingularizing method ‘adoptedl introdu o e appropriate
form of an additional core-size parameter. Dutta (1989)'ha§ shown h o ation of the
«size” for vortex blobs can be determined, using as criterion the nrll:ortcx dynamics.
errors that will be committed in certain invariants of two—dunen;mnw oo, but not
This method has been applied by him to wake and separated-flow p
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yet to mixing layers. This technique may provide useful criteria for blob size in the
limit of infinite Reynolds numbers.

.Drawing inferences about the nature of spatial mixing layer dynamics from the
results of temporal mixing layer studies is not always satisfactory; e.g., whereas in a
real flow an event like vortex pairing has an effect everywhere (including upstream),
in a temporal mixing layer such an event is clearly unable to affect the previous

development of the flow. In addition, the spatial layer (unlike the temporal) has no
symmetry about any axis.

3.4 A critique of spatial simulations

Numerical studies of the spatial mixing layer carried out to date can be subjected to
the same criticisms as those listed under (i) to (iv) above regarding the study of the
temporal layer, but contain the following additional sources of error as well.

(i) With the notable exception of Leonard (1980), long-range effects of downstream
vortices or the downstream boundary condition have not been properly taken into
account. Leonard models the downstream as a single semi-infinite sheet, which takes
adequate care of the inherent divergence in the problem, but the question of taking
into account the lateral spreading of the mixing layer downstream remains.

(ii) The equally important role played by the upstream boundary condition on the
splitter plate does not appear to have been recognized except in, e.g. Ghoniem & Ng
(1986).

(iii) The Kutta condition is usually implemented by shedding a new vortex near the
trailing edge of the splitter plate at each time step; Kuwahara (1973) reports that the

development of the mixing layer is sensitive to the position where the new vortex is
introduced.

It must be admitted that despite many idealizations and incomplete modelling in
many vortex dynamical simulations in the past, the mean velocity profiles computed
in these simulations compare reasonably well with experimental results. However, the
computed maximum Reynolds stresses are often much larger than the experimentally
observed values (see BPN). Ashurst matched computation (for a mixing layer at Re =
1000 based on x) with experimental results by introducing an exponential spreading
of each discrete vortex (as already pointed out, the introduction of such spreading
cannot be justified from any solution of the Navier—Stokes equations). The maximum
Reynolds stresses (especially the r.m.s. quantity 4’ and the Reynolds shear stress —u'v’;
' and v' are the fluctuating components of the streamwise velocity u and normal
velocity v respectively) computed by Inoue (1985) using 1000 data-samples are twice
the experimental values. A subsequent calculation using a similar model (Inoue &
Leonard 1987) but with about 12,000 data samples, however, brings down the maxima

of #’ and — u'v’ to the observed order, while yielding a maximum of the r.m.s. quantity
¢’ that is higher than that previously obtained by Inoue. It was suggested that the
differences with experimental results were due to three-dimensionality and viscosity
in actual laboratory flows. It may be noted here that one or more of the computed
Reynolds stresses may match the experimental results for certain values of the core-
size parameter in the vortex-blob approach; this is not unexpected since increasing

o
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the parameter value will in general result in lower velocity fluctuations in the neigh-
bourhood of a discrete vortex.

It seems evident from the above that there are certain inherent deficiencies in
previous models of the spatial mixing layer, especially in the discrete vortex methods
used. In particular, the discrepancies in the values of the moments just described
could be related to the unrealistically large velocities induced in the neighbourhood
of discrete vortices; the intense fluctuations that are a consequence of the approximation
do not exist in the limit of a continuous vortex sheet. Hence, it is likely that part of
the discrepancies between computed and experimentally observed stresses and moments
is due to an over-simplified approach to (rather than to the inherent physical limitations
of) two-dimensional vortex dynamics.

3.5 Previous simulations using vortex sheet elements

In BPN it has been shown that some of the drawbacks of the vortex point and blob
methods mentioned above can be significantly reduced by using a vortex sheet element
method, and modelling the upstream and far downstream adequately. In the above
method, care had also been taken to satisfy the boundary condition of zero normal
velocity on the splitter plate. The results of this study for an unexcited mixing layer
show faster convergence for various statistical quantities compared with equivalent
point or blob methods, and correspond reasonably well to the available experimental
data. In a separate paper (Basu et al 1992¢), we have shown, through a direct comparison
between a vortex sheet and a point vortex model, that the slower convergence of
statistical moments in the point vortex scheme is directly related to higher fluctuations
of induced velocities in the neighbourhood of a point vortex.

" The vortex sheet element scheme has its drawbacks too. The main problem is to
remove a rolled-up “eddy” as it passes out of the main computational domain. In
a point vortex scheme, for example, each point vortex is a separate and discrete
object, and can be removed independently of others as it moves out of the domain.
On the other hand, a vortex sheet is continuous and an element of it cannot be removed
independently of others without disturbing the continuity of the sheet. We have
developed some techniques such as using a “buffer space” (described in the next
section) to tackle this difficulty. We will use this scheme here to compute the evolution
of an excited mixing layer, but first briefly describe the vortex sheet element model
for both excited and unexcited mixing layers.

4. The vortex sheet element method

Following BPN, we study here an idealized form of mixing layer that they call
“canonical”, namely one that, in the limit of infinite Reynolds number, forms down-
stream of a semi-infinite splitter plate and extends to infinity far downstream (see
figure 2). The advantage of such a configuration is that there are no other external
boundaries or parameters, and the divergences associated with the upstream and
downstream semi-infinite vortex sheets cancel each other out; thus the problem sh_ould
be well-posed and possess a well-defined solution. The effects of a fmite-lex?gth splitter-
plate and finite computational domain are eliminated in this configuration.
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Figure 2. A typical plane canonical mixing layer.

The model and the numerical scheme used, along with an assessment of the accuracy
of the scheme, have been discussed in BPN, while the effects (generally small) of various
numerical parameters on the computed statistical moments have been reported in
Basu et al (1989). Hence we shall describe the scheme here only briefly. We consider
a two-dimensional, incompressible canonical mixing layer with free-stream velocities
U, above and U, below the splitter plate. In the present computation, viscosity is
assumed to be infinitesimal and is present only to generate the necessary vorticity,
after which it ceases to play any further role. The flow is modelled in terms of an
infinitesimally thin continuous vortex sheet shed from the edge of the splitter plate.

The flow-field is divided into four parts: (i) the region upstream of the trailing edge
of the splitter plate, (ii) the computational domain, {iii) a variable “buffer” space and
(iv) the downstream far-field (see figure 3). The boundary layer in the upstream region
(from x = — o0 to x = x;) is replaced by a semi-infinite vortex sheet of strength AU
(= U; — U,) per unit length. The doublet sheet used to satisfy the boundary condition
of zero normal velocity on the plate is taken to extend only upto a finite distance
(say from x=xg, to x = xp; figure 3). Because the boundary condition is more
severe near the trailing edge of the plate, we shall use shorter elements there. This is

discretised finite-length ’ ‘ multiple
doublet sheet ' semi-infinite
vortex sheeis

discretised
vortex sheet

%

e
semi-infinite
vortex sheet
main
upstream computational buffer downstream
field T O e sPaCe e Tty —>
~00 <+ X i X=Xy X=XpM  X=XR X~ + 00

Figure 3. The vortex sheet model of a canonical mixing layer.
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accomplished by dividing the sheet into small linear segments using the scheme

X, =Xgp— Lplli— 1)/Np1%,

where x,, represents the x-coordinate of the right-hand edge of the ith doublet
element, L the total length of the doublet sheet, N, the number of doublet elements
and Qp a parameter that controls the element-density near the trailing edge of the
splitter plate. Inside the computational domain (extending from x =X, to x=X M)
the vortex sheet is divided into short linear elements of constant strength. A small
sinusoidal perturbation of the form

y= Ao Sln(Zﬂx/Wo)

(where A, and W, are respectively the amplitude and wavelength of the perturbation)
may be given at t =0 to accelerate the rolling-up process. The actual values of Ag
and W, (when 4, is sufficiently small) are found not to affect the final state of the
mixing layer, at least in terms of the computed statistical moments (Basu et al 1989).
At each time-step, the induced velocities at the mid-points of the elements are computed
by direct evaluation of the Biot—Savart integral. The velocities at the end-points
(where the integral is singular) are then calculated using a linear interpolation scheme.
The elements are moved over each time-step using a first order Euler time-integration
scheme while maintaining the circulation constant. If an element is seen to stretch
beyond twice its initial length, it is divided into halves and the evolution of the new
elements is recomputed from the previous time-step. :

The Kutta condition is satisfied by shedding an element of strcngth AU tangential
to the splitter plate at each time-step. As each vortical structure leaves the computational
domain, it is accommodated in the variable buffer space (extending from x = X tO
x = x) until the whole structure has left the domain; it is then replaced by the far-field
vorticity distribution (to be discussed). The buffer space provides a “soft” coupling
between the computational domain and the downstream far-field. ‘

To start with, the downstream far-field (from x =xg to x =+ o0) is replaced by a
semi-infinite vortex sheet of strength AU per unit length. The mean vorticity profile
is then computed inside the domain, and the downstream far-field is replaced by a
collection of semi-infinite vortex sheets approximating this distribution assuming
conical similarity. This iterative procedure is repeated until the profile converges in
the domain. All subsequent calculations are made with this “converged” mean vorticity
distribution far downstream. ‘ ‘

For studies of the excited mixing layer, the flow is forced by sinusoidally varying
the normal velocity at the trailing edge of the splitter plate; the incremental velocity
is given by : o ' '

As(x = xp,t) = asin(2nf1).

In this case A, is taken to be equal to zero, since perturbation to the vortex sheet
is anyway provided through the harmonic forcing described above. - '
5. Results

In this section, we present the results of a numerical simulation of a canonical mixing
layer with a non-dimensional velocity difference 4 — 0-25. This particular value 18
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chosen because of the wealth of laboratory data (Spencer & Jones 1971, Oster &
Wygnanski 1982 etc.) and numerical results (Inoue 1985, Inoue & Leonard 1987 etc.)
available at this value of J, thereby making comparisons easier. The various parameters
describing the model for this simulation are:

.

U, =25 U,=15 At=001,
x;, =0, S Xy =2, Xgp=2,
xLD= ‘“‘10, xRD=0, ND=2O, QD=5;

At is the time-step of integration. In addition, the frequency f and the amplitude a
of forcing are to be specified for an excited mixing layer. For an unexcited mixing
layer, we chose 4, =0-01 and W, = 0-25; for the excited layer, A4, =0.

At time t = 0, the downstream far-field is approximated by a semi-infinite vortex
sheet of strength y =1 per unit length, extending from x =2 to x = + oo along the
x-axis. This distribution is subsequently improved by the iterative technique described
previously (see §4), using upto 21 semi-infinite vortex sheets. The computed mean
vorticity profile is found to converge satisfactorily within 4 iterations in most cases.
Once convergence has been achieved, all subsequent calculations are performed using
this “converged” vorticity distribution to provide boundary conditions far downstream.

The present computations are inviscid, and thus have an effective Reynolds number
of infinity. However, comparison with experimental data at finite but high Reynolds
numbers (10° or more) is justified since one can expect statistical similarity among
flows at high Reynolds numbers (Townsend 1976). Hence the present simulation
should capture the essence of high Reynolds number mixing layers. The calculations
being two-dimensional, one can expect some difference with the experimental studies
which are three-dimensional. However, computed gross quantities such as the maximum
Reynolds stresses should at least be of the observed order. Comparison with published
two-dimensional vortex dynamical simulations, on the other hand, should bring out
the relative merits and drawbacks of the present method.

5.1 The unexcited mixing layer

The unexcited mixing layer has been simulated using the vortex sheet element scheme
for the above-mentioned parameters; details are available in BPN. However, we shall
briefly summarize the main results below.

The computations have been carried on for 4200 time steps, that is from t = 0 to
t=42. Beyond ¢ = 1, the mixing layer that develops over the computational domain
is found to be statistically steady. The vortex sheet in the computational domain rolls
up into large vortical structures, in a manner very similar to what is seen, in the
shadowgraphs of Brown & Roshko (1974) for plane turbulent mixing layers. The
computed mixing layer has been found to grow nearly linearly and the growth rate
is similar to that seen in laboratory experiments. The virtual origin has been estimated
to be located at (0-34, 0) downstream of the end of the splitter plate. Computed
invariants such as the Hamiltonian have been found to be well-conserved, thereby
confirming the accuracy of the computations. o

The computed mean streamwise velocity profile converges when averaged over just
200 data-samples. This is much less than what is required when point vortex schemes
are used, for example (see Basu et al 1992c). The mean velocity defect (U — U ;) is
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Figure 4. The maxima of rms. &', ¢ and the Reynolds stress —W'v' obtained
from: ¥, Basu et al (1992b); O, Inoue (1985); O, Inoue & Leonard (1987). The

spread of relevant experimental data (from Basu et al 1992b) is shown by hatched-
lines. '

found to be self-similar when plotted against the non-dimensional variable

n—no =y — yo)/(x — Xo);

here y, refers to the y-coordinate where U(y)=U,. The computed mean velocity
profile agrees well with the published experimental data. :
The computed mean profiles of r.m.s. turbulence intensities & and ¢, along with

the Reynolds shear stress — u'v', have been found to converge when averaged over
only 1000 velocity samples. The computed profiles are found to be similar when
plotted against the non-dimensional parameter (1 —1o)- Figure 4 shows a direct
comparison between the laboratory data and the computed results obtained by BPN
and other vortex-dynamical studies. The maximum values of the stresses computed
by the present method fall at the higher end of the scatter in the experimental data.
The point to be noted is that similar correspondence with experimental data has
been achieved in other vortex dynamical computations (Inoue & Leonard 1987, for
example) only on using about 12,000 data-samples for averaging purposes. Inoue
(1985) averages over 1000 data-samples and obtains maximum 2 that is about twice
the experimental value. It is clear from this that the vortex sheet element scheme
shows faster convergence. : '

__ Similar behaviour has been seen while computing the third-order moments u'’,
3, w2y and w'v'2 Of these, the W2y and w'v'? profiles converge reasonably well

when averaged over 4000 data;samples, but u'? and 1'? are slower in convergence,
and need more data-samples than we could afford with the available computational

resources. However, the computed moments, especially #2¢ and u'%, showed reasonably
close correspondence with experimental data. The details of comparison with
experimental and other numerical results are given in BPN. In figure 5, we show
laboratory data and the present computed results along with those of Inoue (1985).

Thus we have found that the vortex sheet element method simulates the unforced
mixing layer reasonably well, and the computed statistical moments converge faster
when compared to other discrete vortex methods.
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Figure 5. The maximum and minimum values of the third-order moments u'%1’,

u't'2, w3 and v'? obtained from: ¥ and A, Basu et al (1992b); V and A, Inoue
(1985). The spread of the relevant experimental data (Spencer & Jones 1971) is
shown using single-hatched and cross-hatched areas.

5.2 The excited mixing layer

In the results presented below, the vortex sheet element method has been used to
compute the spatial development of a mixing layer subject to sinusoidal forcing in
the normal velocity component, for different forcing frequencies and amplitudes. We
will present the effects of forcing frequency and amplitude separately. The results are
compared with the experimental data of Oster & Wygnanski (1982) and Browand

& Ho (1983), and other two-dimensional vortex dynamical simulations such as Inoue
& Leonard (1987). '

52a Effect of frequency of forcing: Here we shall study the effect of forcing
frequency on the development of mixing layers by examining solutions at f = 5, 10,
15 and 20. The amplitude of forcing is kept constant at a=0-1 in all cases. The
roll-up of the vortex sheet inside the computational domain at time ¢ = 2 for the four
different cases are shown in figure 6. As may be seen, the computed vortex sheet
intersects itself at places, which is of course a violation of the laws of vortex dynamics.
But, as we have previously argued (see BPN), these intersections can be removed using
shorter elements and smaller time-steps, but at the expense of higher computational
cost. However, while such intersections are not physically or mathematically correct,
their effect on the mean flow quantities is negligible, and the additional computing
effort required to remove them is unnecessary if interest is confined to certain mean
quantities. It must be recalled here that in point vortex methods, merely increasing
the number of vortices does not guarantee convergence (Krasny 1986a).

There is clear evidence of the pairing process for low-frequency forcing at f=35
(figure 6). The frequency-locked regime, if one exists, is perhaps outside the computa-
tional domain in this case. As we increase the forcing frequency, the frequency-locked
regime may be observed inside the domain, though its length gets progressively shorter.
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Figure 6. Effect of frequency of forcing: roll-up of the vortex sheet at time t=2
due to: f %5 (a), 10 (b), 15 (c), and 20 (d); for all cases a=0-1. ~

For f = 15, there is pairing and renewed growth downstream of the frequency-locked
regime, whereas for f = 20, there does not seem to be any enhancement of the mixing
layer growth inside the computational domain, even though many of the structures
downstream appear to be in a state of partial amalgamation through mutual interaction.
The qualitative scenario of the effect of forcing frequency on mixing layer growth
described so far is essentially similar to that found in other experimental (e.g. Oster
& Wygnanski 1982) and numerical (Inoue & Leonard 1987) studies.

In figure 7, we present the computed variation of the local momentum thickness
9 along x as a function of the forcing frequency (figure 7 may be compared with
figure 13 of Oster & Wygnanski 1982, and figure 8a of Inoue & Leonard 1987; these
results are qualitatively similar to the present one and are not superposed on figure 7
since that would spoil the clarity of the figure). The unforced mixing layer growth from
BPN is shown superposed for comparison. We can clearly see evidence of frequency-
locked regimes from this figure, especially for f=10, 15 and 20.

The effect of forcing frequency is better expressed if x and 6 are non-dimensionalized
as Axf /U, and 6f/U,, respectively. The results are shown in figure 8. The asymptotic
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Figure 7. Vorticity thickness growth of computed mixing layer shown as a
function of the forcing frequency: f=5 ([7J), 10 (+), 15 (x), and 20 (<); for all
cases a =0-1. The solid line shows the unforced mixing layer. growth obtained by
Basu et al (1992b).

growth rate as in BPN is superposed along with the growth law for the forced mixing
layer (Browand & Ho 1983). We see that for f = 5, the frequency-locked regime which
appears between 1 < Afx/U, <2 is obviously outside the computational domain as
mentioned before. For f=10 and 15, the computed results follow the growth law

0.25

00 10 20 30 oo 50
| Axf / Uc

Figure 8. Effect of frequency of forcing: scaled growth of computed mixing layer
for: f=5(00), 10 (+), 15 (x), and 20 (©); for all cases a=0-1. The asymptotic
growth rate of the unforced mixing layer as computed ‘by Basu et al (1992b) is

shown as a dashed line, along with the growth law for the forced mixing layer
(Browand & Ho 1983) as a solid line. : : ‘



Vortex simulation of turbulent mixing layers 959

curve quite well, whereas for f =20, the growth rate in regime 11 falls much below
the predicted one. This behaviour can actually be noticed also in the results of Inoue
and Leonard, who point out that Oster and Wygnanski use forcing frequencies that
are much smaller than the predominant frequency found at the end of the splitter
plate in an unexcited mixing layer. The growth law suggested by Browand and Ho
has been based on the data of Oster and Wygnanski, and hence fails to take into
account the effects of forcing frequencies that are high compared to the predominant
frequency. Based on these results, it appears that the growth law of Browand and
Ho is valid only for forcing frequencies smaller than the predominant frequency. At
high forcing frequencies, the growth in regime 111 (at least upto Ax f/U, = 45)is very
much below the predicted rate. The present results are thus qualitatively comparable
to both experimental data and other numerical results, but show rapid convergence.

52b  Effect of amplitude of forcing: We shall examine here the effect of four different
amplitudes of forcing, a = 0-01, 0-05, 0-1 and 05, keeping the forcing frequency constant
at .f = 10. These forcing amplitudes cover a wide range, going up to the order of the
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Figure 9. Effect of amplitude of forcing: roll-up of the vortex sheet at time t =2
due to: a =001 (a), 0:05 (b), 01 (c), and 0-5 (d); for all cases f=10.~
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normal velocity fluctuations in the unforced mixing layer. It may be noted that the
amplitude here refers to that of the normal velocity perturbation at the trailing edge
of the splitter plate, and not (as in the experiments of Oster and Wygnanski) to the
displacement of a trailing edge flap. Because of this, quantitative comparison with
experiments is difficult.

Figure 9 shows the roll-up of the vortex sheet at time ¢ =2 for different forcing
amplitudes. With increasing amplitude of excitation, the mixing layer starts evolving
closer to the trailing edge of the splitter plate, and the three different response regimes
may be observed inside the domain for a=0-1 and 05, For low-amplitude forcing.
(a=0-01), amalgamation through pairing (as also observed by Oster and Wygnanski)
is seen. At higher amplitudes of forcing the linear downstream growth of the mixing
layer appears retarded; there is some indication that it becomes negative for a = 0-5.

The mixing layer growth'in terms of the momentum thickness 6 at various x-statioqs
is shown in figure 10 as a function of 4; unforced mixing layer growth from BPN 18
superposed for comparison (figure 10 may be compared with figure 12 of Oster &
Wygnanski 1982 and figure 12a of Inoue & Leonard 1987, these results are qualitatively
similar to the present one and are not superposed for the sake of clarity in presentation).
For a=0-01, the initial growth rate is nearly the same as in the unforced case. For
a =005, we can see the beginning of a frequency-locked regime inside the computational
domain, whereas for a=0-1 and 0-5 regime III also appears inside the domain. The
growth rate for a =01 is higher than that for the unforced case. For a=0-5, there
is indeed a negative growth rate region around x = 1-2. The above scenario is in
qualitative agreement with previous experimental and numerical results. Oster and
Wygnanski provide data only for a short distance downstream of the splitter plate

(Axf/U.=1:6), so it is not possible to compare the present results (upto 2-5) with
experimental data for large downstream distances.

0.0z
s 5 8
6 om-
s .
0o 05 10 15 20

X
Figulie 10. Vorticity thickness growth of computed mixing layer shown as a
function of the forcing amplitude. a =0-01 ([J), 0:05 (+), 01 (%), and 05 (<), for

all cases f = 10. The solid line shows the unforced mixing layer growth obtained
by Basu et al (1992b). ’
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6. Conclusions

In this paper, we have reviewed the status of two-dimensional vortex dynamical
simulations of both excited and unexcited mixing layers. Most vortex dynamical
simulations use vortex points and blobs to approximate the vortex sheet that makes
up the shear layer at high Reynolds numbers. Such methods have been found to have
two main drawbacks: (i) irregular evolution of the vortex sheet in question; (i) long
averaging time required for convergence of statistical moments. In addition, most
simulations carried out to-date donot handle the upstream and downstream boundary
conditions satisfactorily. The present vortex sheet element method, on the other hand,
has been found not to suffer from the above mentioned difficulties. The differences
“observed between the results from the point and sheet schemes can be traced to the
large fluctuations in the velocity ‘nduced in the neighbourhood of vortex points. Such
fluctuations are noticeably small in the vortex sheet element method.

The vortex sheet element method simulates the features of both excited and unexcited
mixing layers reasonably well. The main practical advantage of the method is its
rapid convergence in computing mean stresses and moments. This method can easily
be extended to 3-D as well, using vortex panels instead of 2-D vortex sheet elements.

This work has been partially supported by the Department of Science and Technology,
Government of India. One of the authors, AJB, gratefully acknowledges support from
the Jawaharlal Nehru Centre for Advanced Scientific Research during the latter part
of this study. Thanks are also due to the students and staff of the Centre for Atmospheric
Sciences, Indian Institute of Science, for their help and cooperation, and for letting
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