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Abstract. Models for the laminar—turbulent transition zone have in
recent years become increasingly important, especially in technological
applications where the design is driven by peak heat-transfer rates or
extensive regimes of laminar or transitional flow. Models in current use
can be classified into three types, namely linear-combination, algebraic
and differential. The first type based on the principle of combining mean
laminar and turbulent velocities, in proportions determined by the
intermittency, is shown to be both successful and relatively easy to
implement, especially if recent improvements in estimating turbulent spot
formation rates and ideas concerning the possibility of sub-transitions
within the transition zone are incorporated. Algebraic models, where the
eddy viscosity is released by the intermittency, and differential models
involving fairly elaborate schemes for determining the kinetic energy of
turbulent fluctuations and their length scale, are found to require further
development for handling flows with large pressure gradients.

Keywords. Boundary layer; laminar-turbulent transition; transition-
zone modelling; intermittency.

1. Introduction

The computation, of viscous flow around a body, such as an aircraft wing or a
turbomachine blade, is often critically dependent on the modelling of laminar—
turbulent transition in the boundary layer on the body: Cebeci (1983) has called the
representation of transition “perhaps the most important immediate modelling
problem” in such flows. Generally speaking (see figure 1), the boundary layer on any
surface is steady and laminar for some distance from the leading edge; as the Reynolds
number for instability is exceeded it first exhibits unsteady behaviour involving two-
dimensional (2-D) (‘“Tollmien-Schlichting’) waves, and a three-dimensional (3-D)
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Figure 1. A schematic picture of various stages in the transition from laminar to turbulent
flow in a flat plate. « and y respectively denote the spot spread angle and intermittency. The
route shown here, one among many that are possible, seems to be relevant when external

, disturbances are low. The instability stages may be bypassed when the environment is highly
disturbed.

secondary instability further downstream. As the 3-D disturbances grow, a stage is
eventually reached where the flow ‘breaks down’ with the appearance of intermittent
turbulent fluctuations, coinciding with what we shall call the onset of transition.
Finally the ‘laminar’ intervals disappear, and the flow attains a fully turbulent state
sufficiently far downstream. As schematically shown in figure 1, there is often a
substantial transition zone between the laminar and turbulent flow regimes: the
overall process can be gradual, although the onset of intermittency is relatively
Sud‘de‘n.‘ Various experimental studies (Klebanoff et al 1962; Kachanov & Levchenko
1984; Saric & Thomas 1984; Suder et al 1988) show that there are variations in this
‘route to chaos’, and indeed in highly disturbed flows large chunks of the route can
e'ypn‘ be completely by-passed (Morkovin 1969); nevertheless, figure 1 represents a
useful framework in a large class of boundary layer flows. ‘
‘ *‘ Unfortunately, the basic fluid-dynamical problems associated with many of the
stages along the transition process above still remain poorly understood, although the

wide recognition of the scientific and technological importance of the subject has led
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to extensive research. The state of the art has been reviewed several times in the recent
past from different points of view (see e.g. Morkovin 1969, Tani 1969, Narasimha 1985
and Herbert 1988). These reviews highlight the complex physical processes preceding,
during and following onset of transition. Further information on experimental
observations and theoretical predictions pertaining to transition are also available
(e.g. Eppler & Fasel 1980; Kozlov 1985). In spite of all this effort, however, the
development of a general theory of transition is “yet a utopia”, as Herbert (1988)
remarks in his excellent review of pre-onset flow; this is highlighted by the lack of
complete agreement (already suggested above) on the precise stages in flow
development leading to transition, on the order in which they occur, and on the
factors that influence them.

In technological applications transition-zone modelling has if anything become
increasingly more important in recent years. A turbine blade designed on the basis of
fully turbulent flow from the leading edge, for instance, underestimates the peak heat-
transfer rate experienced on the blade, as the peak is associated with the end of the
transition zone (Turner 1971, see his figure 11). This in turn affects the estimated
maximum values of the temperature and its gradient in operation (Krishnamoorthy
1986), leading to less realistic values for the design stress in the blade. On reusable
satellite launch vehicles such as the space shuttle, which experiences wide excursions of
the transition zone during flight (Gong et al 1984), estimates of peak heat-transfer rate
exert decisive influence on the available design options (Masaki & Yakura 1969).
Looking to the future, the potential rewards in the ability to manage the transition
zone are yet uninvestigated; while methods for delaying transition onset have been
widely studied, other options (e.g. extending the transition zone) have as yet received
little attention.

The present review is chiefly concerned with modelling the intermittent transition
zone. This cannot be done without suitable models for the laminar and (in particular)
turbulent zones as well, but there is an extensive literature on this subject (see e.g.
Rosenhead 1963; Bradshaw 1976; Launder 1989) and so it will not be separately
considered here. Furthermore, this review excludes higher order models as defined by
Narasimha (1985), namely those that simulate transition using the full Navier—Stokes
equations. Although such simulations (e.g. Wray & Hussaini 1984; Orszag & Patera
1983; Laurien & Kleiser 1989) have reproduced many features observed in laboratory
experiments and provided other information unobtainable from them (Herbert 1988),
these simulations have not yet covered the transition zone as defined here.

The key variable in the transition zone is the intermittency, denoted here by 7,
which may be defined as the fraction of time that the flow is turbulent. It was proposed
by Emmons (1951) that intermittency arises due to the passage of randomly occurring
turbulent spots in the flow. This spot picture of the transition zone was confirmed by
Schubauer & Klebanoff (1955) who also provided the first quantitative data on the
shape, growth and propagation of such spots. A great deal of work has since been
done on the flow within and in the neighbourhood of such spots (Cantwell et al 1978;
Wygnanski et al 1976; Gutmark & Blackwelder 1987 Glezer et al 1989 etc). In a
somewhat oversimplified view that is adequate for the present modelling purposes, the
spot may be considered to have a relatively sharp reference boundary within which
the flow is fully turbulent, the flow elsewhere being laminar.

In terms of the intermittency factor y, the transition zone may be conveniently
defined as beginning where y has just departed from zero and extending to where it is
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nearly unity: ie. by the condition 0% <y<1~.

After some general remarks in the next section, various transition zone models are
discussed in §§3 through 5. A brief assessment of these models followed by conclusions
are given respectively in §§6 and 7.

2. General remarks

The available transition zone models can in general be classified (Narasimha 1985)
into three types: (a) linear-combination, (b) algebraic, and (c) differential. There are
also numerical solutions of the complete Navier-Stokes equations attempting to
simulate transition, but as mentioned earlier these still do not cover the transition
zone, and so are not considered further here. Apart from these models, there are also
in use various.data correlations (e.g. Abu-Ghannam & Shaw 1980).

In the earliest models (see e.g. Goldstein 1938), transition was assumed to occur
suddenly at some station x = X (say), where x denotes the streamwise distance, the
fully turbulent flow for x > X being so determined that the momentum thickness is
continuous at X. This approach, however, is unsatisfactory, as it would yield
unrealistically high values for the peak wall shear-stress and heat-transfer coefficients.
To avoid this difficulty, Prandtl suggested that the emerging turbulent boundary layer
should be considered to originate at the leading edge. This results in a smaller
discontinuity in the wall stress, but causes a larger one in the boundary layer thickness
(Narasimha 1985). However, these ‘instantaneous-transition’ models are inadequate
especially when the transition zone occupies a significant fraction of the body surface:
numerous measurements on turbomachinery blades (Turner 1971; Brown & Burton
1978; Priddy & Bayley 1985; Krishnamoorthy 1986) have shown that this does
happen often, the proportion being sometimes as high as 80%, In situations where the
design is driven by the maximum heat-transfer rate (e.g. the space shuttle, Masaki &
Yakura 1969) estimates that are too conservative involve a heavy penalty.

The ‘sudden transition’ model is therefore of little use, except possibly in adverse
pressure gradients producing a separation bubble, where the transition zone can be
very short (see e.g. Walker & Gostelow 1989). Various more detailed transition zone
models have been proposed over the years; these are listed in table 1, with brief
remarks on the salient features of each of them.

Table 1. . A brief summary of transition-zone models,

Au}}ibfs ‘ Type Remarks

Dhawan & '+ Linear Combination of laminar and turbulent velocities in proportions
Narasimha (1958) combination determined by the intermittency. Requires onset (x,), extent of zone,
model for fully turbulent flow. Constant pressure. Simple

Chen & Thyson  Linear For axisymmetric flows. Special intermittency model, correlation for
(1) combination length. Limited validation
Lakshminarayana Linear As in Dhawan & Narasimha. Integral method for axisymmetric body
(1976) - combination and high spezd flows
Arnal (1986) Linear Integral method. Linear combination for shape factor and skin-friction,
combination Intermittency in terms of momentum thickness, not related to spot
theory

(continued)
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Table |. ({continued)

Authors

Type

Remarks

Fraser & Milne
11986)

Fraser et al (1988)

Dey & Narasimha
(1989%a)

Harris (1971)
Kuhn (1971)
Adams (1972)
Cebeci & Smith
(1974)

Gaugler (1985)
Michel et al (1985)

Krishnamoorthy
(1986)

Krishnamoorthy
¢t al (1987

McDonald & Fish
(1973)

Blair & Werle
(1980, 1981)
Wilcox (1981)
Arad elal (1982,

1983)
Vancoillie (1984)

Wang et al (1985)

Krishnamoorthy
et al (1987)

Linear
combination

Linear
combination
Linear
combination
Algebraic
Algebraic
Algebraic
Algebraic

Algebraic

Algebraic

Algebraic

Algebraic

Differential

Differential

Differential

Differential

Differential

Differential

Differential

Velocity and skin-friction as in Dhawan & Narasimha. Intermittency is
error-function. Extent in terms of standard deviation of intermittency.
Integral method

Extension of Fraser & Milne, but different correlation for zone-length.
Good agreement with data on turbine blades

Extension of Dhawan & Narasimha. Extent from new spot formation
rate parameter. Integral method. High favourable pressure gradient
data also predicted

Eddy viscosity and thermal diffusivity. Intermittency of Narasimha.
Requires extent. Compressible plane and axisymmetric flows

Eddy viscosity. Method of integral relations for high speed flows.
Intermittency distribution of Narasimha (1957)

Eddy viscosity. Intermittency distribution of Narasimha (1957); takes
extent =x,/2:96

Eddy viscosity. Intermittency distribution of Chen & Thyson (1971).
Predicts x,

Eddy viscosity, based on sTan5 code. Intermittency distribution of
Abu-Ghannam & Shaw (1980). Onset and extent adjusted to obtain
agreement with experimental data

Intermittency in terms of momentum thickness, exceeds | for ensuring
agreement with data

Extension of Patankar-Spalding (1970) for predicting heat transfer
rates on turbine blades and nozzle guide vanes. Intermittency
distribution of Narasimha (1957).x, and extent from measurements.
Effect of large free-stream turbulence by addition to eddy viscosity,
shows good agreement with experiments

Extension of Krishnamoorthy (1986)with onset momentum thickness
Reynolds number= 160. Dhawan-Narasimha correlation for extent
extended to pressure gradients

Integral form of a turbulent kinetic energy equation. Source terms in
governing equation through which free-stream turbulence triggers
transition

Extension of McDonald & Fish (1973)and McDonald & Kreskovsky
(1974). Zero pressure gradient heat transfer generally predicted well
(but not for the flow at free-stream turbulence level =0-25), less
satisfactory for pressure gradient flows

Stability related closure model. Tested for constant-pressure flows at
low free-stream turbulence levels

Modified two-equation model of Ng (1971). Requires adjustment of
numerical constants

Based on K-¢ model. Conditional averages of all quantities require
intermittency, which is taken as that of Narasimha (1957). Good
agreement with data considered

Based on K- model; sensitive to boundary conditions for X, ¢ lor
airfoil cascade. Discrepancy noted in transitional and turbulent regions
on suction surfaces of turbine blades

K-¢ model of Jones & Launder with change in a constant. Tested for
nozzle guide vane data. Underpredictions near trailing edge attributed
to separation

A R P T s
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3. Linear combination models

This class of models in general takes the mean flow during transition as a linear
combination, in the proportions (1 —y):y, of the mean flow in the laminar and
turbulent boundary layers respectively. All models of this class require methods for
carrying out the following tasks:

(a) calculation of the larninar boundary layer,

(b) estimation of mean flow parameters in a fully turbulent boundary layer starting
from an arbitrary station in the flow,

(c) prediction of the location of the onset of transition, and

(d) the intermittency distribution in the transition zone.

The methods differ only in the manner in which these tasks are performed, as we shall
see below.

3. Dhawan & Narasimha (1958)

Thiswas the earliest transition zone model that could make reasonable predictions of
all parameters (including mean velocity profile) in the transition zone, provided the
onset location was given. The model considered only constant-pressure flows. The
laminar boundary layer is considered to originate from the stagnation point, and the
turbulent boundary layer from an onset station further downstream, to be denoted
here by x,. The mean velocity and skin friction coefficient are respectively taken as

u=(1 —y)uy + yur, (1)

Here (and in what follows)suffixes L and T denote valuesin the laminar and turbulent
boundary layers, each starting from its respective origin, and the velocity is non-
dimensionalisedwith respect to the free-stream velocity U (x). The fully turbulent flow
was calculated from a prescribed origin using well-known similarity laws (e.g. Coles
1968).

The interrnittency was taken to be the universal distribution (Narasimha 1957),

y=1—exp(—041£%), ¢=X—x)/4 @)
where
A =x(y =0-75) — x(y = 0-25) @)

is a measure of the extent of the transition zone. There was no attempt to predict x;,
but an effective method of determining it from experimentaldata proceeded as follows
(Narasimha 1957). A consequence of (3) is that the quantity

F@)=[~In(1 —9)]"?

varies linearly with x. The value of x, may therefore be found by plotting F(y} vs x, and
extrapolating a best straight-line fit for the bulk of the data to the point F(y) =0. This
procedure is particularly desirable because very low and very high values of y are not
too easily measured, as they are sensitive to the discrimination technique adopted
(Narasimha et a! 1984), and furthermore because (3) may not be strictly valid near x,
especially at low Reynolds numbers, as it assumes that all breakdowns occur at x,,



;

i)

Transition zone models for 2-D boundary layers 99

w_hereas in actual fact they do so in a narrow belt around it. Thus it is preferable to
give greater weight to measurements of moderately high values of the intermittency
Following Walker & Gostelow (1989) we shall call the procedure described above as.
analysis on the ‘F(y), ¢’ basis. The great importance of x, so determined is that it also
corresponds to the origin of the emerging turbulent boundary layer. Although y need
not be strictly zero at this x,, it is always small.

It was shown by extensive comparison with experiment that the linear
combinations (1) and (2) led to an excellent description of the transition zone in
constant pressure flows; in particular, mean velocity profiles, skin friction, and all
integral parameters of the boundary layer were shown to be well-predicted.

Dhawan & Narasimha (1958) further proposed that the transition zone length
parameter A was given by the rough correlation

Rez = SReS,'B, (5)

where Re; and Re,, denote the Reynolds numbers based on 4 and x, respectively.
(Hereafter, the relevant Reynolds number will always be denoted following this
notation; for example, Re,, will correspond to x,.) The data collected by Dhawan &
Narasimha (1958) showed considerable scatter in part because the definitions used for
onset and extent were not uniform. (The use of a variety of transition detection
techniques has led to a corresponding variety of definitions of the beginning of
transition; some examples will be cited later. Unless otherwise stated, however, we will
always use x, here to denote the onset of transition.)

From (3), Dhawan & Narasimha (1958) also drew the interesting conclusion that
the extent of the transition zone varies as the inverse square root of the breakdown
rate, so that '

fi=nov?/U® =041 Re; * = 0016 Rey, ™, (6)

where n denotes the number of spots born per unit time and spanwise length at the
point of breakdown, ¢ is a non-dimensional spot propagation parameter and v is the
kinematic viscosity.

Various extensions and improvements of this model are seen in the work of Chen &
Thyson (1971), Lakshminarayana (1976), Fraser and his co-workers (Fraser & Milne
1986; Fraser et al 1988) and Dey & Narasimha (1989a).

3.2 Chen & Thyson (1971)

This model is formulated for an axisymmetric body, on which the y-distribution is

taken as
y=1 —exp{—nr(xb)[r r’lds][r U’ldS]}, ™

with a characteristic length of the transition zone defined by
her = x(y=095)—x(y=0). ®)

In (7), r and x denote the body radius from the axis of symmetry and streamwise
distance along the surface respectively, and x, denotes the location of the onset of
transition (y = 0%). The spot formation rate is assumed (at zero Mach number) to be
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given by the relation
i =Re;!3*/1200;

note the similarity between this proposal and (6) above. Chen & Thyson estimate the
heat transfer coefficients by a relation similar to (2). ‘
The intermittency distribution (7) is open to the criticism that it does not yield the
correct one-dimensional distribution in axisymmetric flows (Narasimha 1985), and
does not agree with measurements in pressure gradients (Narasimha et al 1984).

3.3 Lakshminarayana (1976)

In this method, devised for compressible flow over blunt bodies, laminar and
turbulent parameters are estimated respectively using the methods of Lees (1956) and
Spence (1961). An extension of the Dhawan-Narasimha model is used for heat
transfer in the transition zone.

34 Arnal (1986)

Here integral methods are used for calculating laminar and turbulent parameters.
Arnal predicts C; using (2), and the shape parameter H = 6*/6, where 6* and
respectively denote the displacement and momentum thicknesses, also by a similar
linear combination

H=(1-y)H, +yH;. ©9)
The intermittency distribution is taken to be
y=1—exp[—45(6/6,—1)] (10)

where 0, denotes the value of § at x,.

There are some difficulties with this approach. First of all, the prescription of the
intermittency in terms of 6 has not only no basis in the spot theory of transition, but is
inconvenient, as 0 is itself a function of the intermittency - in fact a rather complex
one. This is easily seen from the expression

s
0= f u(l —u)dy

0
S .
=y(1 - V)L [ug(t = ug) + ug(l —ug)1dy + (1 —9)%0, +y%0y, (11)

(where & denotes the boundary layer thickness), which follows from the linear-
combination principle (1) for the velocity. If this principle is accepted — as it must be to
use (2) for the skin friction — then it is necessary to show that a prescription of  as a
function of § is consistent with the principle. Relation (9) is certainly not so consistent;
unlike the displacement thickness, and as (11) shows, the momentum thickness is not a
linear functional of the velocity profile and hence cannot be obtained from a linear
combination of the type (2). Therefore H cannot be, either. For the prediction of x,,
which appears to be taken to correspond to the minimum in the skin friction
distribution, a stability-related correlation is used. Arnal computes solutions of his
model for the flows measured by him and his coworkers (Michel et al 1985), and finds
good agreement.
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Arnal and his coworkers (e.g. Michel et @ 1985)assume that the y-distribution is
independent of pressure gradient, but this assumption is valid only for weak pressure
gradients as shown by the experiments of Narasimha et al (1984). The model therefore
does not allow for the occurrence of the sub-transitions observed on flows subjected to
high pressure gradients, which we shall discuss below in §3.6.

35 Fraser & Milne (1986)

This is another integral method in which laminar and turbulent parameters are
estimated using respectively the Thwaites (1949) method and the lag-entrainment
scheme of Green etal (1973); the required velocity profiles are taken from
Pohlhausen’s (1921) quartic for u, and a power-law for u;, with non-constant power
law index. The log-plus-wake profile (Coles 1968) was not used as the integral
parameters in the transition zone were found by Fraser & Milne to be predicted better
by the power-law profile. For the prediction of onset, these authors utilise the
correlation of Abu-Ghannam & Shaw (1980). The intermittency distribution is based
on a Schubauer-Klebanofl (1955)type error-function fit in terms of the parameter
n=(x—X)/a,, where X =x(y =0-5) and o, is the standard deviation, but is approximat-
ed by the polynomial

y =0-5[1 + (0-0165]y}* —0-073[n|> — 0-094[n|* +0-8273 1))/ Inl]. (12)

Fraser & Milne (1986) also assume that the intermittency distribution is independent
of pressure gradient. The extent in terms of the standard deviation is correlated to the
free-stream turbulence by the relation

Re,, =[8:5 —29(q/10)° 5TRe,

g = 1.635F0:00367(Re,,/100) — 0-00129(Re,,/100)2, (13)

where ¢ denotes the free-stream turbulence intensity (as percentage of the mean
velocity). The correlation (13)is preferred by Fraser & Milne as it shows less scatter
than another considered by them, namely

Re,, =7-13(Reg)" S, (14)

which is obtained by relating ¢, to 4 and using (5).

Fraser & Milne (1986)start their turbulent calculation from the station x (y =0.01)
taking the initial value of 8 (required in the method of Green et al 1973)as 0-26,.
They also mention that the turbulent calculation started at a downstream station
corresponding to y =01 gives “optimal agreement with data”. The variation of C;,
however, is found to require smoothing, which is done using a special correlation.
Predictions of C, H and & agree well with the pressure gradient data of Abu-
Ghannam & Shaw (1980) and with constant-pressure data from various sources
including their own.

36 Fraser et al (1988)
Thisis an extension of Fraser & Milne’s (1986) method. The onset location is taken by

Fraser etal to correspond to y =001, Fraser etal also measured intermittency
distributions in both zero and non-zero pressure gradients, and found the results to be
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independent of pressure gradient, a fact attributed by them to the low pressure
gradients in their experiments. The Abu-Ghannam-Shaw model was found to depart
considerably from the intermittency data measured by Fraser et al (1988). For the
extent (in terms of the standard deviation), the correlation (13) is abandoned in favour
of a new correlation,

Re, =Rego[1+ 170L *exp{—(1 +¢*°)*%}]7,
Re 0 = [270— {250¢% (1 + ¢*%) 71} ] x 103, (15)

where L, is the value of the pressure gradient parameter L (= §2U’/v; U' = dU/dx) at
X;, and Re, corresponds to L= 0. The correlation (15), however, is restricted to zero
and adverse pressure gradients (0 < — L, < 04). Comparison with measurements on
the suction surface of a turbine blade, reported by Sharma et al (1982), shows good
overall agreement (figure 2).

3.7 Dey & Narasimha (1989a)

The integral method proposed recently by these authors has a structure which is most
easily understood by examining the block diagram (figure 3) that shows the modular
structure of the comprehensive boundary layer package (called TRANZ 2) developed by
them. The LAMFLO module does laminar calculations based on the Thwaites (1949)
method as extended and modified (Dey & Narasimha 1989b) to handle large pressure
gradients better (in the range — 0-082 < L <04 compared to — 0082 < L<0-25 of
Thwaites) and provide the additional parameters (like &, ) required in the model; u,
(from LAMVEL) is a quartic profile similar to that of Pohlhausen (1921). The module
TURFLO estimates turbulent parameters using the lag-entrainment scheme of Green

( 'aft-loaded’ blade profile) (‘squared off blade profile)
—— prediction(q=z2.3 %) — prediction (gq=1.9%)
6—
4 g
Cex 103
2—.
3-07
0 o o °
20- ° H
[o]
ISOO'T 5 - . )
S00- Re, 1000 ;
<o °Re,
T . T .
0 400mm 800 x 0 v T r T
0 400 mm 800 x

Figure 2. Comparison by Fraser et al (1988) of their predictions (full lines) for the flow
measured by Sharma etal (1982; open symbols) on the suction surface of turbine blading.
The prediction is made by a linear-combination type integral method. Re, denotes the
Reynolds number based on the momentum thickness.
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input

U(x),q,v LAMFLO

l

LAMVEL

output
BLEND [——

X
t
ONSET TURFLO

I

EXTENT TURVEL

X4, A

INTER y(x) Figure 3. Schematic structure of
the TRANZ2 package.

et al (1973); uy is obtained from TURVEL using the log-plus-wake profile. The ONSET
module provides the origin of the emerging turbulent boundary layer utilising the
correlation developed by Govindarajan & Narasimha (1939). The extent of transition
(from the module EXTENT) is derived from values of a new non-dimensional spot
formation rate parameter N (Narasimha 1985) defined below. The intermittency
distribution (from the origin of the turbulent layer) is obtained from the module INTER.
The module BLEND provides the transitional parameters u, C, and 0 respectively
from (1), (2) and (11), and &*, H and 4 respectively from

5% = (1 —9)0% +70%, H=0%/6,

5=5L, if 5L>6T’ (16)
and
5=5T’ 1f 5T>6L‘

Various computational domains adopted in this model are shown in figure 4.
Predictions of C;, H, 6, 0* and é agree well with the strong favourable pressure
gradient data of Blair & Werle (1981) and Narasimha et al (1984), and with the
constant-pressure data of Schubauer & Klebanoff (1955), Abu-Ghannam & Shaw
(1980), Narasimha et al (1984) and Blair & Werle (1980).

The onset prediction scheme of Govindarajan & Narasimha (1989) utilised in the
onseT module takes into account the residual non-turbulent disturbances in a facility
when predictions are made for test results. The correlation proposed by these authors
is

Re,, = Rego[1 + 015 {exp(—q) + 2} {1 —exp(—60L)}],
Rey,o = 100+ 310/[¢* + 931"/ (17)

Here Re,, denotes the Reynolds number based on the momentum thickness at the
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laminar
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: boundary layer turbulent
{ — boundary layer
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e x step
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power .
law—t+—1ag entrainment method —o . - .
Figure 4. Various  computational
turbulenft boundary layer __ 4omains adopted in the linear-
parameters combination type integral model of
laminar boundary layer parameters ———=  Dey & Narasimha (1989a).

origin of the turbulent layer, Re,, is its value at L =0, and do is the equivalent
free-stream turbulence for the residual disturbances associated with a given facility.

The non-dimensional spot formation rate, which provides information on the
extent of the transition zone, is derived from the physically appealing consideration
that the breakdown rate scales primarily with the local boundary layer thickness
and the viscosity v, suggesting that the appropriate non-dimensional spot formation
rate is N = nof)} /v, where 0 is preferred to § as it is more precisely defined. In constant-
pressure flow, this scaling is suggested by the y-distribution

y=1—exp[—no(x—x,)?/U]

(which is the original relation on the basis of which the non-dimensional distribution
(3) is derived), and the correlation (Narasimha 1985)

Re, = C Rel75, (18)

(where C is a constant), with the use of the Blasius relation for the boundary layer
thickness as a function of x. The correlation (18) fits the data compiled by Dhawan
Narasimha (1958) as well as the correlation (5) does. ‘

The use of the parameter N has already permitted the study of the effect on the
transition-zone length of free-stream turbulence (Narasimha 1985; Narasimha & Dey
1985) and pressure gradient (Dey & Narasimha 1989¢; Gostelow 1989) in a more
meaningful way than before. Thus, systematic variations have been revealed within
the data which earlier had just been interpreted as scatter (e.g. Dhawan & Narasimha
1958, and others following it, such as Harris 1971 and Adams 1972). In constant-
pressure flows, N is found to decrease with increasing ¢ to a constant value of about
07x 1072 in transition driven by free-stream turbulence (Narasimha 1985). The
increase in N at low ¢ may at first appear paradoxical, but then 0, drops rapidly with
increasing ¢, and the actual spot formation rate goes up. This behaviour of N with q
had not been discovered using empirical relations like (5).

The intermittency distribution (3), derived for constant-pressure flows, appears to
be valid in mild pressure gradients also, the limit being L < 0:06 according to
Narasimha & Dey (1983). In stronger pressure gradients, Narasimha et al (1984) have
shown that an important parameter is the location of the pressure gradient relative to
the onset. For example, a favourable pressure gradient applied near the onset tends to
lenghen the transition zone: furthermore, the y-distribution does not follow the
constant-pressure law (3), and F(y) shows a segmented linear variation (see figure 5).
The kink in this figure may be thought of as indicating a ‘sub-transition’ (Narasimha
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Figure 5. Segmented linear variation
(full lines) of F(y) in favourable pressure
gradient. Filled symbols are experi-
mental points from flow NFUI
(Narasimha et al 1984).

1985), caused by a relatively sudden change in the nature of the flow from a subcritical
to a supercritical state. In such cases (3) holds in segments, and is so used in the model of
Dey & Narasimha; for the favourable-gradient flows examined by these authors, the
station x,, (see figure 5), determined by extrapolating to zero the downstream
(supercritical) part of the F (y) curve, is found to be the effective origin of the turbulent
layer; laminar calculations are adequate upstream of x,,. It is interesting that, based
entirely on calculations from this model, Dey & Narasimha (1989a) inferred the
presence of sub-transitions in the data of Blair & Werle (1981); direct confirmation of
their inference has since become available with the measurements of intermittency
(Blair 1988), which shows kinks in the F(y) plots of precisely the kind seen in figure 5.

The value of using N as the appropriate parameter for specifying the spot formation
rate has been recently confirmed by the work of Gostelow (1989). He has found that
while earlier methods led to double-valued parameters, the consistent use of the F(y), ¢
basis leads to a well-defined, unique value of N at each value of the pressure gradient
parameter L at the onset location (figure 6).

4. Algebraic models

These models directly tackle the time-averaged equations of motion with an
appropriate algebraic model for the Reynolds stress, which is gradually turned on in
the transition zone in proportions determined by the intermittency. For example, an
effective total diffusivity (including viscosity) in the flow may be taken to be

V=v+7yvr, (19)

where vy is the eddy diffusivity. The transitional intermittency in (19) has to be
obtained separately; implicitly, this requires information on onset location and
transition-zone length.

Though the use of an eddy viscosity in certain flows has been justified by Townsend
(1956) based on considerations of large-eddy equilibrium, the concept suffers from the
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Figure6. Variation of the quantity [N ,(g)— N4g)] with
the pressure gradient parameter L in adverse pressure
N gradients, N, denotes the non-dimensional spot forma-
* o~ tion rate in pressure gradient, and N, is the value of N,
al the same free-stream turbulence level (4) but without
-0.08 - Q04 L pressure gradient; N(g) is taken as 0.7 x 1073,

well-known limitations of all gradient-transport theories (ie. Batchelor 1950;
Narasimha 1989). Nevertheless, when properly used, an eddy viscosity can provide
useful estimates of certain gross boundary layer characteristics.

4.1 Harris (1971)

This model was formulated for compressible plane or axisymmetric flow using mass-
averaged velocities and the intermittency model of Narasimha (1957). To determine
X,, Harris used a critical vorticity Reynolds number as proposed by Rouse (1945) as
well as various empirical correlations. The transition zone length was often taken
from experiments, but it was suggested that when this was not possible, one may take

Xmax ~ Xmin = l = Xmin» (20)

where x.;, and x,., denote the streamwise locations corresponding to the minimum
and maximum in the surface-Pitot measurements. [It may be noted that while
extrema in surface parameters (whether Pitot pressure, skin-friction or wall heat-
transfer) have been widely used (e.g. Schubauer & Skramstad 1948;Coles 1954)to mark
the limits of the transition zone, different indicators do not necessarily coincide. For
example, x,,;, does not correspond to the onset location x, mentioned earlier, and X, is
upstream of x.;, (Narasimha 1958; Owen 1970; Suder et al 1988). The tentative
conversion factors (Narasimha & Dey 1985)

Xy = Xmin — 0‘26(xmax - xmin)’ L= 0'4(xmax - xmin)v (21)
have been found to be useful for making consistent comparisons of data from
intermittency distributions and surface parameter extrema.]

4.2 Kuhn (1971)

Kuhn’s prediction scheme for high speed flows is based on the method of integral
relations, and the intermittency is taken as

7=1—exp[—A(x —x,)’]. 2)
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The parameter 4, is related by Kuhn to the transition zone length [ defined in (20),
A = 2:66/1%, (23)

with x,, taken to correspond to y=095. It is clear that (22) and (23) (wrongly
attributed by Kuhn to Emmons 1951) are really (3) in disguise. Analysing various high
speed data, Kuhn also proposes the correlation

where 4, B and f are constants, and M denotes the Mach number; for different flow -
geometries, various values have been proposed for these constants. Once again (24) is
an extension of (5) to include Mach number effects. It is therefore no surprise that
Kuhn finds good agreement with the low speed constant-pressure data of Schubauer
& Klebanoff (1955), and his value of 4, = 0-838 ft~ 2 is equivalent to taking 4 = 07 ft in
(3), which is virtually the same as that used by Narasimha (1957).

Kuhn'’s high speed flow analyses have produced some interesting results. He finds
that his model is comparable to that of Harris (1970) (and presumably therefore also
of Harris 1971), who uses the y-distribution (3). Kuhn also finds that his predictions
[with (22)] show good agreement with the measurements made by Zakkay et al (1966)
on a cone-flare geometry at M = §; transition in this flow occurs in a region of adverse
pressure gradient, and x, and 4, are inferred by him from the measured heat transfer
distribution. Implicit in these results is the effectiveness of the hypothesis of
concentrated breakdown. Kuhn, however, finds that his scheme could not predict the
flat plate data obtained at the Langley Research Center at M =6-18, as well as the
data of Fischer (1970) on a cone of 10° half-angle at M =5-5; intermittency
distributions inferred by him by matching predictions with the experimental data
differed from (22) as shown in figure 7 as an example. He proceeded to conclude that
“the intermittency distributions of hypersonic boundary layers do not always fit the
simple probability distribution of Emmons as used by Dhawan and Narasimha”. This
conclusion is unjustified for the following reasons. First it is not based on any
intermittency measurements. The detailed measurements of y by Owen & Horstman
(1972) on a cone of 5° half-angle at a Mach number of 7-4, on the other hand, show
good agreement with (3). Second, an inappropriate choice of the parameters x, and 4,
in (22) [and therefore of x, and 4 in (3)] will result in a misleading intermittency
distribution (Dey 1988); as Kuhn does not report the values of these parameters used
by him, a comparison similar to that carried out above for the low-speed data of
Schubauer & Kiebanoff (1955) remains difficult here.

43 Adams (1972)

This model for hypersonic flows utilises the intermittency distribution (3) and a
mixing-length model with a Van Driest damping factor (se¢ Bradshaw 1976) for the
eddy viscosity. The transition zone length proposed by Adams is equivalent to putting
A =x,/296 (Narasimha 1985).

44 Cebeci & Smith (1974)
This method uses a more elaborate model for the eddy viscosity, allowing for low

Reynolds numbers and possible mass transfer at the surface. The intermittency
distribution adopted is the Chen-Thyson model (7). Comparisons with the
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Figure 7. An example of Kuhn's
o data (1971)  prediction of Stanton
number (St) data on a sharp-
leading-edge flat plate at a Mach
number of 618 utilising two
intermittency distributions as re-
ported in his figure 11; unit
Reynolds number for this flow is
1332 10°/t.  The intermittency
distribution (22) and the prediction
based on it are shown by broken
lines. Full lines correspond to his
prediction that is matched with the
experimental data on St the
intermittency  distribution  thus
0.2 T inferred is considered by Kuhn as
0 1.0 1.5 ft X the experimental data.

0.6 4

0.4

experimental data of Schubauer (1939) on an ellipse at low speed, and of Coles (1954)
on a flat plate at M = 1-97, demonstrate reasonable agrecment and emphasize the
necessity for modelling the transition zone. This model is among the most self-
contained available at present, in that it includes a method for prediction of Re,, as
well.

4.5 Gaugler (1985)

This method, based on the STANS code of Crawford & Kays (1976), requires both the
onset and extent of transition to be specified; the intermittency distribution is that of
Abu-Ghannam & Shaw (1980), who have proposed the relation

7=1—exp(—58s),
where
Cas=(x—x;)[(x,—x;) or (U-U)(U,-U,), (25)

depending on whether y is measured along x at a given U (first definition) or at a
fixed x with change in tunnel speed (second definition); suffixes s and e denote the
start and end of transition. This intermittency model requires a length scale that is
based on the asymptotic values (0 and 1 at the start and end respectively) of the
intermittency distribution, and so is difficult to prescribe (Fraser et al 1988). Gaugler
matched his pfedictions with experimental data from various sources, obtaining both
onset and extent by trial and error. An interesting feature of his results for heat
transfer is that x(y = 0") is always upstream of x,,,, in agreement with the data of
Narasimha (1958), Owen (1970) and Suder et al (1988).

4.6 Michel et al (1985)

The Reynolds stress in this prediction scheme is also slowly turned on in the transition

zone. However, the intermittency distribution (10) is abandoned in favour of a new
expression

y=1—exp[—045(6/6, - 1)*]. (26)
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Michel et al note that predictions made on this basis show respectively an unduly slow
variation of H and an underprediction of C, towards the end of the transition zone.
The predictions were, however, considerably improved by adopting a distribution
with an overshoot above unity in the later part of the transition zone (figure 8).
Although Michel ez al justify the overshoot from a consideration of the Reynolds
stress,an intermittency higher than unity is physically meaningless, and must be taken
asan indication of internal inconsistency in the model. Interestingly, Michel et a! find
it necessary to use the overshooting y-distribution to predict their own experimental
data, which Arnal (1986) had earlier predicted using the distribution (10) and the
integral method mentioned in $3.4.

4.7 Krishnamoorthy (1986)and Krishnamoorthy et al (1987)

An extension of the Patankar-Spalding (1970) method with the y-distribution (3) is
utilised by Krishnamoorthy for predicting his heat-transfer measurements on turbine
blades and nozzle guide vanes. In general, the onset of transition was taken from the
measured heat-transfer distribution, and the extent was selected to obtain the best
agreement. For pressure surfaces, the onset is also considered by Krishnamoorthy to
correspond to the location at which measurements begin to deviate from the predicted
laminar values; 4 is taken as 0.24 times the chord length.

Krishnarnoorthy finds that the Patankar-Spalding (1 970) relation for the mixing-
length used (in estimating v,) overpredicts his measured heat transfer rates both
during transition and in the fully turbulent regimes. The use of a Van Driest type
damping factor for the viscous sub-layer, however, was found to considerably improve
predictions.

For predicting flows at relatively high turbulence levels, Krishnamoorthy assumes
an effective total diffusivity

i =v Ty, + Ve 27

where v, takes into account the effect of free-stream turbulence, and is prescribed as a
function of its intensity and length scale. Agreement with experimental data seems to
be better with the use of (27) than that with (19).

Krishnamoorthy et al (1987) have extended (27) for predicting Krishnamoorthy’s
data on nozzle guide vanes, The onset is assumed to correspond to Reg, = 160,and the
extent is given by a modification’ of (5) to include the effect of pressure gradients,

Re, = SRe% 41425 x 108K, ], (28)

Cexl102

Figure 8. Variations of the shape
factor (H) and skin-friction c¢o-
efficient (C ;) as predicted by Michel
etul (1985) with and without over-
shoot in the intermittency distribu-
tion: 7; denotes the overshooting
intermittency: filled symbolsare the
measurements of these authors.




110 R Narasimha and J Dey

where K, (=vU'/U?) is a pressure gradient parameter. Predictions are in qualitative
agreement with the data.

5. Differential models

These models also directly tackle the Reynolds-averaged equations of motion with
either one- or two-equation turbulence closure models. The former postulates a
turbulent kinetic energy equation, which in essence determines a velocity scale. The
basic argument behind two-equation models is that, in addition to a velocity scale, a
separate equation for a length scale is also necessary. Such an equation has for
example been proposed by Ng & Spalding (1972), who put v, = const. K*/2L,, where
K and L, denote the turbulent kinetic energy and length scale respectively. Partial
differential equations are then devised for K as well as KL ,, although the dynamics
governing the length scale is obscure (Narasimha 1983). Instead of an equation for a
length scale, Saffman (1970) proposes one for pseudo-vorticity, which may be
considered the reciprocal of a time scale. Perhaps the most widely used two-equation
model is the so called ‘K¢’ (turbulent kinetic energy-dissipation rate) model
discussed by Jones & Launder (1972, 1973) and Launder et al (1973).

Although the prediction of boundary layer parameters in these models does not
require any specific definitions of the beginning and end of transition, the range over
which the turbulent energy increases from initially low values to the final turbulent
values can be considered to correspond to the transition zone (e.g., Wilcox 1975). For
triggering transition, however, these models require some initial disturbance, e.g, in
terms of an initial profile of turbulent energy as in Wilcox (1981) or a source term in
the energy equation as in McDonald & Fish (1973).

5.1 McDonald & Fish (1973)

The model of McDonald & Fish for plane compressible flow assumes a one-
parameter mixing length profile normal to the wall; the streamwise development of
this profile is computed using an integral form of the turbulence kinetic energy
equation. This equation contains a source term through which free-stream turbulence
may be introduced to start the transition process. The onset of transition is considered
to correspond to the minimum in the skin friction distribution. For the data of
Schubauer & Klebanoff (1955), who measured the intermittency distribution in the
transition zone, a higher free-stream turbulence level than quoted in the experiment
was necessary in order to initiate transition at the experimentally observed point.
Reasonable agreement with experimental data is obtained at free-stream turbulence
levels upto 39%,. However, it is not clear how other triggers for transition, such as
surface vibrations or roughness, can be taken into account. The variation of zone-
length Reynolds number with onset Reynolds number is weaker than that implied by
the Dhawan-Narasimha correlation (5). Free-stream turbulence levels actually used
for predicting the measurements of heat-transfer rates on turbine blades by Turner
(1971) differed by + 30% from those quoted by Turner. These differences, however, are
considered by McDonald & Fish to be insignificant in view of the uncertainty in their
inference of free-stream velocity and of the inherent error in the measurements of free-
stream turbulence intensity. These authors also point out the sensitivity of the
prediction scheme to the imposed pressure distribution on the surface.
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5.2 Blair & Werle (1980, 1981)

This scheme is mainly an extension of the turbulence models of McDonald &
Kreskovsky (1974) and McDonald & Fish (1973). Blair & Werle in general prefer the
former; it appears from their (1980) analyses of their own constant-pressure data that
the two models are comparable in performance, but that the second is marginally
better than the first (referred to as the BW Model 1 hereafter) at high free-stream
turbulence levels. Heat transfer distributions are predicted better for zero than for
non-zero pressure gradient flows, although both models fail on the constant-pressure
heat transfer measurements at g = 0-25. Extensive comparisons of these measurements
and models have been carried out by Dey & Narasimha (1989a) with their linear-
combination type integral model, and will be discussed in §6.

53 Wilcox (1981)

Wilcox utilises the linear stability solutions at the e*-amplification point to model a
key closure coefficient in his turbulence model, and to provide initial profiles for the
turbulent energy and its dissipation rate. Unlike McDonald & Fish (1973), Wilcox
does not report any boundary layer parameters although it should not be difficult to
calculate them. The applicability of this method to flows at high g and with pressure
gradient cannot yet be assessed, as comparisons are provided only with the constant-
pressure data of Schubauer & Skramstad (1948) for a relatively low free-stream
turbulence level (g <0-2).

54 Arad et al (1982, 1983).

In these papers, which cover compressible, axisymmetric flows, Ng's (1971) two-
equation turbulence model is modified and incorporated in the Patankar-Spalding
(1970) computational scheme. Additional empirical constants are introduced by Arad
et al (1982) to improve predictions at low turbulence levels. Arad et al (1983), however,
find that, in order to obtain any agreement with the experiments of Meier & Kreplin
(1980) on transition in the boundary layer on a body of revolution, the numerical
constants in the model need to be adjusted, as the experimental length scale was seven
times the computed value.

5.5 Vancoillie (1984)

A modification of the K—¢ equations of Jones & Launder (1973) is used by Vancoillie
for computing transitional flows. Conditional averages of all quantities for
intermittent flow are introduced, leading to mass and momentum equations for each
of the corresponding velocity fields; these are supplemented by equations for K and e.
All these equations, with the exception of continuity for the conditionally laminar
flow, involve the transitional intermittency, which is taken to be given by (3).
Reasonable agreement is shown with the experiments of Schubauer & Klebanoff
(1955) and Arnal & Juillen (1977) on a flat plate, and of Blair & Werle (1981) in
favourable pressure gradients.

56 Wang et al (1985)

Boundary layer parameters including heat-transfer rates are predicted by Wang et al
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incorporating the low Reynolds number version of the K- Emodel of Jones & Launder
(1972, 1973)in the stan5 code of Crawford & Kays (1976). Wang etal find that for
turbine blades, the boundary conditions for K and e near the leading edge are
important, and they propose a technique for providing them. Although their
predictions “agreed favorably” with the measurements considered by them, they also
note discrepancies in the transitional and fully turbulent regions on the suction
surface.

5.7 Krishnamoorthy et al (1987)

Krishnamoorthy’s (1986) measurements of heat-transfer rates on turbine nozzle guide
vanes are predicted by these authors using the K- Emodel of Jones & Launder (1973),
with a change in one of the constants associated with the model (T R Shembharkar,
private discussion). Of the various measurements at different free-stream turbulence
levels (16, 3.6, 73 and 12.7%) considered by Krishnamoorthy et al, calculations
downstream of the predicted laminar separation point were not carried out by them
for flows at turbulence levels 1-6 and 3.6%.Underpredictions of heat-transfer rate near
the trailing edge are attributed to separation of the flow in the region. Agreement is
found to be “not satisfactory” on pressure surfaces. It may be noted that their eddy
diffusivity model (27) discussed in §4.7 predicts these measurements better than their
differential model.

6. Assessment

As of today, it has not been possible to solve the Navier-Stokes equations in the
transition zone, and this may remain so for many years to come. Numerical solutions,
which have so far been confined to such simple geometriesas a channel, have not yet
produced encouraging pictures of turbulent spots and the transition zone on a flat
plate.

To provide estimates for engineering applications, it has been necessary to resort to
modelling. A large number of algebraic and differential models have been proposed,
whereas integral models based on the linear-combination principle are few. The
differential models are more complex in the sense that they involve several partial
differential equations, whose solution furthermore does not seem to be
straightforward in all flows (as can be inferred from Arad etal 1982, 1983, Wang etal
1985 and Krishnamoorthy etal 1987, for example). The choice of an appropriate
closure model is also important, but remains difficult, as can be illustrated by the
analyses of Tanaka et a/ (1982) and Tanaka & Yabuki (1986). These authors, who
have undertaken measurements in flows first undergoing relaminarization and then
retransition to a turbulent state in a constant area duct, calculate the flow using the
K — KL, model of Rotta (1951, 1972)and incorporating modifications suggested by
Kawamura (1979)for low Reynolds number effects. Comparisons reveal that while the
heat transfer distribution is predicted reasonably well for retransition over a short
region in the constant area duct, the skin friction is not. Tanaka & Yabuki (1986)
therefore suggest that a careful choice of the turbulence model is necessary in such
flows. Also, Tanaka et a! (1982) find that their scheme is better than the K- Emodel of
Jones & Launder (1972) which was seen to overpredict the measured dip in the heat

transfer distribution (figure9). Tanaka et al (1982), however, do not rule out the "
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possibility of improving the performance of the K-¢ model by optimising the
associated constants. Two-equation models in particular are gaining popularity, but
their value is still to be demonstrated. As Simoneau et a/ (1988) comment, thesa
models are sensitive to the initial conditions, and the turbulence production term
remains a key unknown; they seem only to ‘mimic’the physics rather than contain it,

For engineering calculations, computational speed, simplicity and accuracy are
important. However, it is paradoxical that while differential (and higher order) models
are being developed, simple integral models seem to have received less emphasis,
although they are attractive and especially appropriate for engineering design. Indeed,
“the simpler and the more sophisticated methods are complementary” (Cousteix
1982), and in turbulent flows, integral methods are known to perform well (see Kline
etal 1968, Green eral 1973). Furthermore, integral methods require data that are
easier to obtain and are far more abundant (Cousteix 1982)than those demanded by
differential models.

An authentic evaluation of various models remains rather difficult, as
comprehensive data of the type required for such comparisons are still scarce. (At the
least, such data should include mean velocity, the Reynolds stresses, surface
parameters and the intermittency, as well as a specification of the disturbance
environment.) Nevertheless, the only available comparison between a linear-
combination type integral model and the differential models (Dey & Narasimha
1989a) reveals some interesting results. An adequate representation of the transition
zone is possible by the linear-combination principle, which is at least as good as the
differential models (figure 10), and in some cases better than them (figures Ila, b).
Both linear-combination and algebraic models, however, require a prescription for
obtaining the onset location and the extent of the transition zone. The prediction of
the former is still an open problem, and considerable effort is being made towards
developing various correlations (Abu-Ghannam & Shaw 1980, Govindarajan &
Narasimha 1989, for example) as well as more elaborate methods involving flow
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instability (see e.g. Bushnell et al 1988). The extent is connected closely with the
breakdown rate, which appears to be best specified via the non-dimensional
parameter N. In fact, the proposals of Dey & Narasimha (1989¢) and Gostelow (1989)
on N now offer more refined estimates of the extent of the transition zone in both zero
and non-zero pressure gradient flows (figure 12).

7. Conclusion

Models based on the linear-combination principle show great promise for predicting
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against the measurements (symbols) of
Blair & Werle. BW2l corresponds to
0 I ] Blair & Werle's measurements at
0 40 80 120cm x  K,=02x107¢ with grid 1.

[N,0q)-Nyfa)] x 10°

e Gostelow (1989)
\\ ———  Dey & Narasimha (1989¢)
T\ (025 (%, ,0 <Ly <0.12)
\
\ [ ]
10— \
o\
N
\
i N
‘.
\ /
\‘
.
0 T T T ? T T T T T
-008 -0.04 0 0.04 0.08 L2

Figure 12. Variation of the quantity [N,(q) — No(¢)] with the pressure gradient parameter
Ly, in both favourable and adverse pressure gradients, based on the data of Gostelow (1989)
and the proposal of Dey & Narasimha (1989c); L,, is the value of the pressure gradient
parameter L at the station X;,.
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the flow in the intermittent transition zone in 2-D boundary layers. Algebraic and
differentialmodels seem to need further development before they can handle flows in
high pressure gradients. The prediction of onset, and in particular of the location of
sub-transitions when they occur, remain difficult problems. Comprehensive
experimental data are still needed. Scarcely a beginning has yet been made in 3-D
flows, which now require considerably more attention.

The authors wish to express their appreciation to Prof. A Prabhu for support through
the project ‘Transition and turbulence in shear flows’ sponsored by the Department of
Science and Technology.

List of symbols

C, skin-friction coefficient;

Fy) the quantity [ —In(l —v)3*/%;

H boundary layer shape factor, =4*/6;

K turbulent kinetic energy;

K, a pressure gradient parameter, = (v/U*)dU/dx;

! a transition zone length, =x.,, — Xmin;

L a pressure gradient parameter based on the momentum thickness for
laminar layer, =(6%/v)dU/dx;

L, .Latx;

Lzz L at X125

L, length scale of turbulence fluctuation;

M Mach number;

n spot formation rate per unit time and spanwise distance;

A non-dimensional spot formation rate;

N non-dimensional spot formation rate in terms of the boundary layer
thickness at the onset of transition;

N, non-dimensional spot formation rate in terms of the boundary layer
thickness at the origin of the turbulent boundary layer in pressure
gradients;

N, value of N at a free-stream turbulence level corresponding to that for N,,
but without a pressure gradient;

Nu Nusselt number;

q free-stream turbulence intensity (%);

o equivalent free-stream turbulence for residual disturbances associated
with a given facility;

r body radius in an axisymmetric geometry;

Re Reynolds number;

St Stanton number;

t time;

u boundary layer velocity;

U free-stream velocity;

X streamwise coordinate;

X x aty =05,
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Subscripts

Y, Yy
Y, Y,

Ymin ) Ymax
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the onset location in constant pressure, obtained by extrapolating the best
linear variation of F(y) with x to F(y) = 0;

the onset location in pressure gradients, obtained by extrapolating the best
linear variation of F(y) with x to F(y)=0 as in figure 5;

a virtual onset location derived from extrapolation to F(y) = 0 of data after
subtransition, as in figure 5; also the virtual origin of the turbulent
boundary layer in pressure gradient;

the streamwise location corresponding to the ‘kink’ in the F (y) plot in
figure 5;

the streamwise location at which the lag-entrainment scheme for turbulent
boundary layer becomes effective, as in figure 4;

coordinate normal to x;

spot spread angle;

transitional intermittency;

boundary layer thickness;

boundary layer displacement thickness;

turbulent kinetic-energy dissipation rate;

a transition zone length, = x(y = 075)— x(y = 025);

transition zone length parameters in pressure gradient, defined in figure 5;
a transition zone length, = x(y = 095) — x(y = 0-0);

a transition zone length in (22);

kinematic viscosity;

eddy diffusivity;

effective total diffusivity;

additional term in ¥ to take account of the effect of high free-stream
turbulence, as in (27);

(x—x, )/

non-dimensional scale in (25);

(x —%X)/oy;

boundary layer momentum thickness;

6, at x;;

non-dimensional spot propagation parameter in constant pressure;
standard deviation of intermittency distribution.

values of Y in laminar and turbulent flows respectively;

values of Y at beginning and nd of transition respectively corresponding
to y=0 and 1 in (25);

values of Y corresponding to the minimum and maximum respectively in
the measured distribution of surface parameters (e.g. Pitot pressure, skin
friction etc.);

value of Y based on 4;

values of Y at x, and x, respectively;

value of Y based on 6,;

value of Y based on a;

value of Y, in constant-pressure;

value of Y based on the distance to the origin of the turbulent boundary
layer;
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Yo Y at constant-pressure;
Yy value of Y based on /.
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