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Population genetics deals with a study of changes which the gene pool of a
Mendelian population may undergo when it is exposed to systematic forces such
as selection, mutation and migration. When the population is of limited size,
the sample of genes transmitted to the next generation can deviate randomly"
from the true genetic composition of the-parental generation and these random
changes can accumulate over several generations. In other words, the change
in the gene frequency over time due to systematic as well' as. random forces is a
stochastic process. Usually the behaviour of the gene.frequency in.a generation

" depends ounly on its value in the immediately preceding generation so that the
process is Markovian in structuré. It can be-studied either approximately as a
diffusion process in which gene frequency as well as generations are treated as
continuous or strictly as a finite Markov chain in which gene frequency is a dis-
crete random variabie and generations are discrete. In a series of investigations
[Narain (1969), Narain and Robertson (1969), Robertson and Narain (1971),
Narain (1971a)], it was shown how the process can be treated as a finite Markov
chain and how the use of a transition probability matrix can be helpful in a genetic
context. In particular, it was shown how to calculate the probability of fixation
of a gene as well as the first two moments of the distribution of time taken for
its~fixatio.n,,_disregarding the cases. in which it.is.lost... The-calculation-of the -
first two moments of time until fixation of a particular allele was also attempted
by the diffusion approach [Narain (1970), Narain (1974)]. The last investigatic;n
as well as that of Ewens (1973) have demonstrated that invoking a conditional
process facilitates the.calculation of the moments of the distribution of time
taken for the fixation of a gene. This aspect is intimately connected with the
Cvoncept of average number of generations required to attain limits of genetic
improvement due to artificial selection which was first introduced in Narain
(1969) and later elaborated in Narain (1971b). Although the diffusion approach
to the conditional process is completely documented in.EWens (1973) and Narain
(1974), the transition matrix approach is only briefly indicated in the former
reference. The purpose of this paper is therefore to describe the conditional
Markov chain and demonstrate its application in a genetic context relating to
response to selection in finite populations. In addition, the theory has been
applied to study the effect of linkage on the mean and-variance of time-until fixa-
tion of a gamete in populations practising self-fertilization.
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50 Conditional Markov Chain in genetics

CONDITIONAL MARKOV CHAIN

Assuming no mutation, consider a finite population of gametes of size 2N
(corresponding to a population of diploid individuals of size N) and a single locus
with-two alleles A and a. Such a population can assume (2N+1) states Eg, Eq, ...
Epn.1,E2N,. the state Ej representing the state of i A ‘genes and (2N-i) a genes.
The frequency of A, denoted by x; for the populatiopn in state Ej, can then take
values i/2N, i=0,1,...(2N-1),2N. When x;=0 or 1 for i=0 and 2N respectively,
the population is said to be fixed for A or a respectively. But when xi# 0 or 1,
the population is said to be segregating for A and a alleles. Such'a genetic situ-
ation corresponds to a finite absorbing Markov Chain with two absorbing-states

iEo and Epp and (2N-1) transient stateS,El, Ez,. . E2N.1- A detailed descrip~
tion of this chain, in such a context, is given in Narain (1971a). If Pij represents
one step transition probability for the system to move from Ej to Ej, the transi~
tion probability matrix P of order (2N+1)x}2N+1) takes the form

[T o o A
E=]E 2 En| ' ’ Y
o 0 1

where Q is of order (2N-1)x (2N-1), giving the one-step transition probabilities
amongst the transient states only, P and Py are column-vectors of order -
(2N-1) x1 representing the one-step transition probabilities from a transient
state to E, and Epyy respectively. The vectors of the eventual probabilities of
fixation of A and a, denoted by U and L are respectively given by

€- 9 Ean - B @)

[
1

it

L=(L-9"'F | (3)
Consider now a finite absorbing Markov Chain conditional to the eventual ~
absorption in Epp+ We then have only one absorbing state Epn and (2N=-1) tran- .
sient states E1,...EpN.1 from which absorption is only possible in Epp. Tet
P{E1) pe the one-step transition probability for the system to move from Ej to
E. relative to the event of ultimate absorption in Ez. Denoting by Uj, the i-th
element of vector U, the eventual probability of fixation of A when initially the’
population was in state E; and following Kemeny and Sunell (1960), we can define

(C1) _ : ‘
Piy " = Py Uy/U; (4)
with Uppy = 1. We then have the conditional one step transition probability
matrix P Cl), of order 2N x2N given by

| g€ picl)
cn. = - (5)
1
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where Q(Cl) is'of order (2N-1) x (2ZN=1), giving thé one-step transition probabl—

lities amongst the transient states only, conditional to fixation in Eppy and PZSIC\:I )
is the column vector of order (2N«1)}x1 representing the one-step transition
probability from a transient state to Epp relative to the eventual absorption in
Eoy. The corresponding t-step transition matrix is given by

(C1) C1l) (t)

oMy pIS

(Chy = | =
o 1 | (6)

g

and the use of Chapman-Kolmogorov [Feller (1951)] for the Conditional Markov
Chain gives '

E(Cl)(t) =[ g(C”T (7y
so that N )

NG [g(cnlt ®)

D - [ ] [ugen]” pie )

Following Narain (1971a), the column vector Q(CI):(t) of the probab_ﬂity of fixation
of A by the t-th generation relative to the eventual fixation for A is obtained as

gleh (C1)

ut = ey (10)

As t tends to infinity, (Q(CI))t' tends to zero so that the vector of the eventual
probability of fixation for A, for the conditional process, is given by

E{(C“ - [}_'QC”_[ p(c1 : , (11)
Writing Dy = diag(U;, Uy, .., Uppn.1).of order (2N-1) x 2N=-1), we find
1

g el (2)
{" (C1)

! 2 Q' D, (13)

- -1
{;I.g I =07'C-27 Dy (14)
(cl)y _-1
Eon " 21 Doy 1)
It, therefore, follows that

o€ _ ol g o v (16)

Dy

= e
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a column vector of unities, as expected due-to the-conditioning-of-the precess —

Further, we get

E(Cl)(t) = ;.. 2 Q 21_{ e (17)

for wo'rking out the probabilities of fixation of A by the t-th generation,

Similarly, if we consider a finite absorbing Markov Chain conditional to the
eventual absorption in E , we have again one absorbing state and (2N-1) transi-
ent states. Defining the corresponding one-step transition probability Pij =
Pij LJ~/L~L with L = 1 and proceeding in the same way as above, we get

[ 1 o T

(€0) (19)"

P (t)
E LE(CO)(t) Q{CO)(U—I
where, writing D_ = diag(Ly,Lp,..., LZ&-lj’
0“% = p3t ot b, 20)
wa P = [1-p;' 0 no e
- &(C'O)(t) , ' (21)

giving the prc;babilities of fixation of a by the t-th generation in the conditional
process with L Co) = e as usual.

CONDITIONAL EXPECTED RESPONSE DUE TO ARTIFICIAL SEL'ECTION

The random change in gene frequency due to finite population size has im-
portant applications in animal breeding as shown by Robertson (1960). The pro=
bability of fixation of the desirable allele can be converted into the expected
response in the character under selection at the limit by making use of the rela
tion between the selective advantage of a gene with its effect on the metric cha-
facter under selection given first by Haldane (1931). Under the assumption of
independent segregation of several loci affecting the character, the expected
response at the limit, expressed in relation to the initial genetic standard devi-
ation, is a functionof Nih (the product of population size, intensity of selection
and the square-root of heritability) and the initial frequency, p of the desirable
allele, assumed equal at all loci. Narain (1971a) showed that this expected
limit of response to selection, expressed in terms of the vector of changes in
the frequency of desirable allele and denoted by E(R) is given by

-t £(5p) (22)

where E(SB) is the vector of initial expected responses. Also, the the vector of
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the expected response by the t-th generation, E[R(t)] was shown to'be equal'to

E[R(t)]= (I -0 E(R) : ’ (23)

Invoking a conditional process of selection along the same lines as in the
previous section, we get the vector of conditional expected response due to selec-—
tion by the t-th generation as

E I:B(C)(t)I = [‘; - (Q(CI))t]E(B(C))‘ ' (24)

relative to the eventual fixation of A xegarded as a desirable allele.. The expres=~
sion for E( ), however, becomes, as expected

E(E(C)) - (__I. . g(CI))-l E(B )

= (1.- olCIh=1 pc1) : :
= @- ! Pon - E(0) | (25)
where p(0) is the vector of the frequency of desirable allele in the initial popula-
tion. We then have,

-]_ .
R‘C’ ”J 12°0) ;__1—] [e-pw)] (26)

PROBABILITY GENERATING FUNCTION OF THE DISTRIBUTION OF
TIME UNTIL FIXATION OF A PARTICULAR ALLELE

Let T; be the time taken to first reach fixation of A, given that the 1ﬁ1t1a1
populatlon contains i A genes and; SZN -i) a genes relative to the hypothesis of
eventual absorption in Epp. Let S;"/ 'be the probability that Tj=t. Then clearly,

gl = p(Cl) ' ‘

Si Pi,ZN’ (27)
The probability generating function 7r§C1)(zS,_ in this case, can then be expressed
as

=2,
' o) ZN-1
- (C1
= aplCl a3 1y plCl gl
=2 i=1
2N-1
: Cc1
= ngf;zll\}~+ Z'Zl 1(1< ) ‘H"k(Cl)(z) (28)
i

In matrix notations, we can write it as
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7(Cl)(y) = Z(__Ew__zjc:l),d (1-0€Y) e - (29,

where z is still a scalar and W(Cl)(z) is the vector of probability generating func-
t'u("ms conditional to fixation of A. Using the relatlonshtp between functions of
and Q given in Section 2, we get

E(Cl)(?):zD~1(l"Zg) (1-QU o (30)

The vector of the first moments of the distributions of time until fixation of A is
obtained by differentiating lT(Cl)(Z) once and putting z = 1. This gives

t

(1)) = |(8/a) T2 ) = [@/anDy =" wo)nl

|D‘11z-2(z' 1-0)?1-Q)Ul

Doty (31)

(Cl))--le

It is easy to see that this is also equivalent to (I-Q The vector of

the second factorial moment is given by

2 Cl
B(1)-E) = |(@2/aA) 7 ey
= 2p; -2 -g-g)‘llt_r - (32)
Using (31) and (32), the vector of the second moment about origin is obtained
as
) ) | |
£(r?) = D' l2@-0)"%-1-9) o (33)

) With the help of the elements of the vectors given by (31) and (33), oune can obtain
the variances of the time until fixation of A.

In a similar manner, we obtain the vector of the probability generating func -
tions Z_T( (z), of the distributions of time until fixation of a. This is given by

7 (CO)y)

1

ZQ_ZQ(CO))AQ_Q(CO)) .

20y 02 Q)7 -QIL (34)

The vectors of the first and second moments in this case are given by

E(Lo) = D5'0-@)7'L  (3s)
E@If = D5l @@L (36)

From which one can get the corresponding variances of the time until fix-
ation of a.

7
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EIGEN-ROOTS AND EIGEN-VECTORS OF THE CONDITIONAL MARKOV
CHAIN WITH BINOMIAL TRANSITION PROBABILITIES

It is apparent from the above matrix derivations that for applying this theory,
the element of E(Cl), E(CO), Dj and Dg are required to be known, Analytically,
this involves warking out the eigen-roots and eigen~vectors of _E_’( ) and p{CO),
Since the conditional transition matrices ,E(Cl) and E( i d'_ap_er;a on the condi-
tional transition matrix P and since Dy and Dy ar.e’;_-hown to be certain functions
of P [Narain (1971a)], the problem boils down to a’study of P or its derivative
Q. " For specifying the elements of P, we consider, as an e;ample, the binomial
transition probabilities. This case is commonly known as Wright's model
[Wright{1931)]. It assumes absence of selective forces and considers only
random drift based on binomial sampling with a constant population size N. The
eigen-roots and vectors of P in such a case are also known [Feller (1951)]. Ex-
tension of such a model so as to involve selection in the context of limits of res-
ponse to selection has been extensiyely studied by Narain and Robertson (1 969).
However, it is still of interest to study the eigen-roots and eigen-vectors of the
conditional transition matrices P Cl) and E(CO). For this purpose we follow the
approach given in Feller (1951). N

With binomial sampling and no selection, we have

_ [ 2NY 2N-j -0
Pij = ( j )P{(I'Pi) ] i=0,1,...2N
5=0,1,...2N (37)
Cl 2Ny 2N=j .
P () o0 N py/y) i=1,2,...,2N
i=1,2,...,2N (38)

Where p; = i/ZN.
The eigen-roots of ___’E_’(Cl) are obtained by solving the characteristic equation

'E(Cl)_)\g =‘0 (39)

It is found that the roots are given by

AE) = (l-r/ZN)(ZrN)r!. /2N)*, r=0,1,...(2N-1) (40)
Forr=1,2,...(2N-1), the roots are the same as that of Q(CI) and similarly as
that of gzco), which in view of (12), are the same as that of Q viz.

>\r=(211.\1) rt /N, r=1,...2N-1 . (41)

Writing j(v) = j(j~1) . (j=vE]l), we get

(e,

Piy iy = [@N)(gp1y 0¥ + v(@N)(y) B} 711/ 2N (42)
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This shows that, taking v= 1; the expected-value of the gene frequency, with pure.——-
randorh drift, will not be simply p; but instead given by

2N . (Cl)'
2 opyy o (3/2N) = py + (1-py)/2N (43)
=1
S0 tHat
E(3pj) = (1-pj)/2N | . (44)

Similarly, with' v=2, we get

2N - 2N
Y pg:l)(j/ZN)z—(l/ZN) y pgfl)(j/ZN)= (1—-1/2N)(1-2/2N)pzi +(2/2N)(1-1/2N)p,
=1 =1 (45)

This shows that, using (43), the variance of the change in the gene frequency,
with pure random drift, will not be simply pi(l‘pi)/ZN but, instead, given by

V(8py) = (1/2N)(1-1/2N)p;(1-p;) (46)

From (44) and (46) it is evident that for a population so large that (1/2N)2‘ is neg=..
ligible, the mean and variance of the change in gene frequency due to random

drift, in the conditional process, are (le-pi)/ZN and pi(l-pi)/ZN as against 0 and
pi(l-pi)/ZN respectively in the unconditional case. This is exactly what we get from
the diffusion approach for the pure random drift case as shown in Narain (1974).

It is however interesting to note that for the exact process, conditioning the pro-
cess increases the mean but decreases the variance.

'Corresponding to each characteristic root )\STC) given by (40), the system of
linear equations :

A el C ' '
5 p(lj Y x, = MO i£1,2,...,2N (47)

r r 1r
1 !

admits a non-trivial solution x,. = (x7,.. 'X(ZN)r) known as the right-hand eigen-

vector for X(I_C). It is, therefore, always possible to find constants ag,ay,...a
(not all of them zero) such that

r

r .
xjr = Z avj(V) (48)

v=0

is a solution of (47). Substituting (48) in (47)' and using (42), we get
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S a [(Zva pﬁ-v]—-«——ﬁ—i—“ NG Za i=1,2,...,2N (49)
v=0

Since coefflctents of a, on the both sides of (49) are polynomtals of degree v in i,
it is possible to write

Py

8

C

M«

| s;vi(s) (50)

[}

where Cs,v's are independent of i. Substituting (50) in (49) and equating the coefa
ficients of i(t) for t=0,1,...,r, we get,

MCa <2 (2N 1) o/ @N) ¢ S a J@N-vIC, +ve, (V_l)](ZN) /@N),
v=t+l
(t=0,1,...,1) 51

If we take t= r in (51) and use (40) as well as (50), it is found that (51) is satisfied.-
for v=r and arbitrary a,. We can then put a,=1 in (51) for t=(r-1) giving a,_y.
This procedure allows us to.calculate a,.2,--+,2a] and ay in succession, giving
thereby the j-th element of the right-hand eigen-vector corresponding to )\(C

given by (48).

Using the above procedure of obtaining the eigen~vectors for r=1,2 and 3,
we find that for the three eigen«roots,

(C)

A 1 = (1-1/2N) |
Xéc)a (1-1/2N)(1-2/2N) _ ' (52)
A (C)

370 = (1-1/2N)(1-2/2N)(1-3/2N)

the vectors are, respectively, given by

ijl = (I'Pj)

X5 = (1-py)(1-2p;)
%j3 = (1-py)[@N-1)/(10N-6)-p, (1-p;)] (53)
with j=1,2,...,2N, These results can be compared with the corresponding

results of the unconditional case detailed in Narain and Robertson {(1969). Al-
though the roots are the same, the elements of the vectors are now (l/p ) célt)hose
in the unconditional case. Alternatively, since )\ 7 is an eigenvalué of Q

with the associated right eigen-vector, Xpy We have
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r=1,2,...,2N=-1

QD) x, =N 'Dyx s : r=1,2,,..,2N-1

This shows that )\( ) is also an eigenvalue of Q with the associated right-eigen-
vector z,.= Dy Xy, SO that by definition of D, the j-th element of x, is 2N/j times
as large as the J -th element of z,. i.e. those corresponding to the unconditional

case.

EFFECT OF LINKAGE ON THE MEAN AND VARIANCE OF TIME UNTIL
FIXATION OF A GAMETE IN SELFED POPULATIONS

~ The effect of linkage on the probability of fixation of a gamete in populations
practising self-fertilization was studied in Narain (1971a) which can be consulted
for details. The case of self-fertilization corresponds to the situation when N=1.
The population is sub-divided into lines from each of which two gametes are
chosen to form one mature individual only. With two linked loci each with two
alleles A-a and B-b respectwely with recomblnatl.on probablhtylr, with s= l-r,
and assuming no mutation, there are 10 states of the system corresponding to 10
types of lines out of which four homozygous ones represent absorbing states and
the remaining six are trasient states. Amongst the transient states, the two
correspounding to two double heterozygotes, AB/ab (coupling) and Ab/aB (repul-
sion) are important from the point of view of linkage, the remaining four involving
single heterozygotes only. Taking the P.matrix of the process and the UAB vecw
tor of the probabilities of fixation of gamete AB from Narain (1971a), t
pl€1) matrix for the process, conditional to absorption in AB/AB, has the form

(C11) PXCB)

(54)
I‘ -4
where

_;_»‘A?B)' = (1/2,1/2,0,0,s5(1421)/2, r(1+21)/4) " (55)

1/2 0 0o 0 o0 0

1/2 0o 0 0 0
plc1l) 0 0 0 0 0 0 .
B o 0 0o 0 o0 0 (56)

l rs(1+2r)/2 rs(1+2r)/2 0 0 52/2 r3

| s(1+2r)/4 s(i42r)/4 o 0 /4 s%/2]

The ordering of the states being AB/Ab, AB/aB, Ab/ab, aB/ab, AB/ab and Ab/aB.
With the help of the results given in Narain (1971a) and using (31) & (33), the vec-
tors of mean as well as second moment about origin of time antil fixation of AB
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are respectiyelvy given by -

B(Tap) = [2,2,0,0,af) af)) &0
E(I5y) = [6,6,0,0,ﬁf§%,5gl)3] o 8

where uEAC]%', ﬁ‘(AC% corresponding to the situation whez;e.the population is initially
in the coupling phase, are given by

alg) = (142r)(1+4rs) /(142 vs) + (1-21) /(142 ) (59)
{Sx}; = (1421)(3+26r5424r252) /(142 r5)% + (1-21) (3-21) /(142 1) (60)

(x)

and GAB’ ﬁgé corresponding to the situation when the population is initially in
the repulsion phase; are given hy

alrl = (142r)(1+4rs) /20 (1421s) - (1-21) /21 (1421) (61)
pg}; = (1421)(3+26rs+24125%) /20 (142rs)? - (1-21)(3-21)/2r(1421)2 (62)

In a similar manner, we get the corresponding vectors for moments of time until
fixation of Ab, aB and ab. It is found that when the population is initially in the
coupling phase, the means dand second moments about origin of time until fixation
of Ab as well as aB are the same as that given by (61) and (62) respectively where-
as when the initial population is in repulsion phase, these are correspondingly
given by (59) and (60). These results for the time until fixation of ab are exactly
the same as that until fixation of AB given by (59) to (62). In each case, the
variance of time untilVfixation is calculated by subtracting the square of a from B.

It is interesting to note that mean and variance of time until homozygosity
can further be obtained by multiplying the mean and variance of time until fixation
of a gamete by the corresponding probability of fixation and adding over the four
possible cases. For the situation when the initial population is in the coupling
phase, these are given by~ T ’ ' '

£(r) = ol ale) + ule) ale) 4 uld) old) 4 ul) al)=2(144rs)/(1421s)

AB “AB aB (63y
vartey - o5 o) 05 B 015l 01 o)
= 2(1410rs-8r°s%) /(142 rs)’ (64)

where Ujfg = Ua‘];)= 1/2(142r) and U‘(AC) = Uﬁfg = r/(1+2r) [Narain (1971a)]. Be-

cause of symmetry, (63) and (64) holc‘[)fOL' the repulsion phase also. The values
of E(T) and Var(T) obtained here are exactly the same as those obtained by Puri
{1968) who obtained them directly without working out the time until fixation of a

particular gamete.
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The effect of the recombination fraction’ r on the mean and the standard
deviation of time until fixation was numerically studied with the help of expres-
sions (59) to (62). The results for the case when the initial population is in
coupling phase are presented in Table 1. For the case when the iunitial popula-
tion is in.repulsion phase, the results are obtainable from the Table by inter-
chahging either A and a or B and b.

Table 1: Mean and standard deviation of time (number of generations) until
fixation of a gamete for the initial population with heterozygotes
in couplmg phase.

AB or ab Ab or aB
r o Mean s. d. Mean s.d.
0.0000 2.0000 1.4142 4. 0000 2.0000
0. 0625 2.0208 1.4337 3.7244 0 1.8622
0:1250 . 2.0743 1.4753 3.4913 1.7682
0.1875 2.1506 ‘ 1.5213 3.3103 1.7078
0.2500 2.2424 1.5635 3.1516 1.6709
0.3125 2.3441 1.5959 3.0120 1.6486
0.3750 2.4513 - - 1.,6187 2:8873 - 146382
0.4375 2.5602 , 1.6306 2.7734 1.6354
0.5000 2. 6666 1. 6329 2. 6666 1. 6329

It is found that when the initial population is in coupling phase, the effect of

linkage is to decrease the average and standard deviation of the number of gene-
rations until fixation for a coupled gamete (AB or ab) but to increase the same

for a repulsed gamete (Ab or aB). It may be noted that when we consider inde-
pendently segregating loci(r = 0.50)and fixation of coupled gametes with initial
population. in coupling phase:(or of repulsed gametes with initial population in
repulsion phase), the average time to fixation is about 1,33 times that for com-
pletely linked loci whereas the chance of fixation is half of its value for the
completely linked case. As expected, with independent segregation, the average
time to fixation of corresponding repulsed (or coupled)gamests, the chance of
fixation being the same viz.0,25 in all the four cases. But for every tight link~
age (r approaching zero) average time to fixation of a repulsed gamete with initial
population in coupling phase {or of a coupled gamete with initial population in...
repulsion phase) tends to a limiting value of 4 with chance of its fixation becoming
very very small. As regards variability in time to fixation, & characteristic
feature, true for all situations, is that a larger mean is accompanied by a larger
standard deviation.

SUMMARY

A theory of the stochastic change in the frequency of a2 gene in finite popula-

tions conditional to its eventual fixation has been developed employing a Condi-~
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ditional Markov Chain. The probability generating fanction of the distribution of
time until fixation of a particular allele as well as the eigen-roots and eigen-
vectors of the conditional process with binomial Eransition probabilities have

been studied.. The theory has been applied to investigate the effect of linkage on
the mean and standard deviation of time until fixation of a'gamete in populations
practising self-fertilization. It has beén found that linkage decreases or in-
creases the average and standard deviation of time to fixation of a coupled gamete
according as the initial population consists of a coupling or i'epillsion heterozygote
respectively. '
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