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Abstract. Natural selection causes gene frequency changes in a large population leading .
to genetic evolution over evolutionary time scales. Such gene frequency changes, however,
involve an optimizing principle. According to Kimura, such changes, over a short interval
of time, occur in a manner such that the increase in population fitness is maximum for a
given distance between parent and daughter generation gene frequencies. But according to
Ewens, of all gene frequency changes, including those that lead to the same partial increase
in mean fitness as the natural selection gene frequency changes, the natural selection values
minimize the generalized distance measure between parent and daughter generation gene
frequency values. These two optimality principles happen to be mirror images of each other.
However, the optimality principles are restricted to the case where the increase in mean
fitness is to the first order in natural selection gene f{requency changes. I show in this paper
that, instead of linear approximation to the increase in mean fitness, the treatment can be
fairly general, and the exact increase in mean fitness can be considered so as to include the
dominance effects of the genes.

Keywords. Natural selection; evolution; Fisher’s fundamental theorem; extremum principle;
" population fitness.

1. Introduction

In the genetical theory of natural selection, Fisher’s fundamental theorem of natural
“selection plays a pivotal role. However, the interpretation of the theorem, differently
by different people, has raised issues basic to population genetics theory. Recently,
Ewens (1989, 1992), following Price (1972), interpreted it as relating to what he calls
partial increase in mean population fitness and advocated an optimality principle
based on this concept. According to him, of all gene frequency changes, including
those that lead to the same partial increase in mean fitness as the natural selection
gene frequency changes, the natural selection values minimize a generalized distance
measure between parent and daughter generation gene frequency values. Before
Ewens’s formulation, the only optimality principle available in the literature was that '
of Kimura (1958), in the form of a theorem applicable to the continuous. case. This
theorem states that during a short time interval natural selection causes gene frequency
changes in such a manner that the increase in mean population fitness is maximum
under the restriction that the generalized distance measure (in Ewens’s terminology)
between parent and daughter generation gene frequencies is a fixed quantity. Edwards
(1974) re-examined Kimura’s maximum principle and concluded that it reflects a
feature of mathematical structure that does not add to or clarify our understanding
of the natural selection process. However, towards the end of his paper, he made an
important point concerning the minimum principle, where the roles of mean fitness
and distance measure are reversed, i.e. of all gene frequency changes, including those
that lead to the same increase in mean fitness as the natural selection gene frequency
changes, the natural selection values minimize the generalized distance between parent
and daughter generation gene frequency values. In other words, the two principles—
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the maximum and the minimum—are mirror images of each other, as they should be
in any optimization procedure.

In the discussion of Kimura and Edwards the optimality principle is restricted to
the case where the increase in mean fitness is to the first order in natural selection
gene frequency changes. On the other hand, Ewens’s treatment of the problem is
perfectly general in that it relates to any system of mating—random or non-random—,
and covers an arbitrary number of loci with an arbitrary number of alleles at each
locus, arbitrary fitness values, and arbitrary recombination patterns between loci. But
~ he also considers the increase in mean fitness to the first order in natural selection
gene frequency changes by using the concept of partial increase in mean fitness.
In this paper I show that the optimality principle—whether the maximum or the
minimum-—does not necessarily require us to restrict the treatment to what amounts
to a linear approximation to the increase in mean population fitness. Instead, the
treatment can be a fairly general one, in which the exact increase in mean fitness can
be considered, so as to include the dominance effects of the genes. However, in this
paper [ restrict the treatment to the random mating case and consider first a single
locus with two alleles and then the case of an arbitrary number of alleles at the locus.
The case of non-random-mating populations will be dealt with in a subsequent
communication. Since the genetic distance measure is crucial to the argument
developed in this paper. I shall first deal with it briefly.

2. Genetic distance

The genetic distance measure is a statistical tool that allows information on allelic
frequencies at one or several loci to be combined into a single index for comparison
between populations. There are broadly two types of genetic distance measures, those
used for population classification and those employed for evolutionary studies. It is
- the former category we are concerned with. Mahalanobis’s (1936) D? statistic comes
under this category and is the most commonly used distance measure for a set of
correlated quantitative characters.

Let X; and y; be the means of the ith characters in the two populations X and Y
respectively. Assume that the variances (V) and covariances (V .) of the characters
are the same in the two populations. These can be represented in the form of a .
variance—covariance matrix V. Then Mahalanobis’s D? is defined as

k k
D? = Z Z VY — }—)i)(j”;j - J—}j)a
i=1j=1
where V¥ is the element in the ith row and jth column of the inverse matrix V=
Steinberg et al. (1967) modified it for gene frequency data. Considering m — 1 alleles
at a locus, the elements of covariance matrix ¥ of order (m — 1) x (m — 1) are
V,=z,(1—2z)

V.‘j: —Zizj (i #]):

where z; = (x; + y;)/2, and x; and y; are frequencies of the ith allele in populations X
and Y respectively. It can be shown then that D? is related to the y? used for testing
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allele frequency differences between two populations. We can therefore write D? as
m
E: 'x __y‘Z/Z
This is identical with Sanghvi’s (1953) distance. For equal sample sizes in the two

populations, the y? is 2nX?, in which, if we write (x; — y;) = (Ay;) and consider terms
up to (Ay;)*, we can approximate X2 as

i (Byify) T+ (Ay)/2 + Byl +..]

(Ay,)z/yl

Iltng

In vector notation, this is expressed as (Ay)" Y~ *(Ay), where (Ay)* =(Ay,,...,Ap,,)
and Y =diag(y,, ¥;,..., Vm). This is a quadratic form in (Ay), the changes in the gene
frequencies over one generation for the set of alleles with the constraint (Ay)Te=0,
where e is an m x 1 vector of units. Such a quadratic form is quite general as well
as amenable to the type of optimization problem considered in this paper.

3. One locus with two alleles

To fix our approach conceptually it is better to start with the simplest case of two
alleles A; and A, at the locus, with frequencies p, and p, (p; + p, == 1), in a random
mating population. Let the relative fitnesses of the three genotypes AjA, AlA, and
A, A, be, respectively, W, ,, W , and W,,, with W,, = W, ,. The average fitness of

11 220
such a population, denoted by W is then

W: pf W11 + 2p1p2 W12 +p§ W22

=Dy W11 +Pa W22+2p1p2d12, (1)
where
d12=[W12_(W11+ sz)/2] : 2

expresses the degree of dominance on the arithmetic scale. We may also note that
the marginal fitnesses of alleles A, and A, are given by

wy=p Wi +p, W,

wy=p, Wy +0; Wi A3)
so that W can also be expressed as

W =piw, +pyw,. @

As we see later, these forms are easily generalized to k alleles. The total genetic
variance in fitness, o7, is given by

ok =pH( W, — W) +2p,py(W,, — W) + p2(W,, — W)
=(PEW2 +2p,p, W2, +p2 W2,)— (W) (5)
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The variation in the marginal fitnesses of the alleles, o2, is
o2 =p (w, — W)+ p'z(w2 — W)?
=(pyw} + paw3) — (W) (6)
The change in gene frequency of A, after selection and random mating is given by
Apy=py(w, — W)/W. .

The change in mean fitness after one round of random mating can be determined
by expressing the mean fitness around its previous value by Taylor’s expansion as

W= W, + (dW/dp,)(Ap,) +(d* W/dp?)(Ap, /2)*
as higher-order terms would be zero. We have

(dW/dp,) = (W, — W,,)+2(1—2p,)d,,,
(d2 W/dpf)= ‘"4d12

This gives
AW = a(Ap,) + b(Ap, ), : ®)
where
a=(Wll_ W22)+2(p2_p1)d12> (9)
b=d,,. (10)

We see that AW has a linear approximation
AW* =a(Ap,)
—202 /W (1)
However, if we do not make this approximation, we can express AW exactly as
AW = (202 /W) — 2p* p(w, — w,o)2d,, (W)
=203 /W)[1 = p1pad,,/W]. (12)

If we put 0% = 202, we get the same expression as the one given by Li (1967). However,
it may be noted that when there is no dominance in fitness on the arithmetic scale,
ie.d , =0, we get, from equation (10), b = 0, which converts the linear approximation
to the increase in mean fitness into an exact one.

The divergence in gene frequency of the two alleles between parent and offspring
generations can be expressed in terms of a genetic distance squared as discussed in
section 2 as

D* = (Ap,)*/p, + (Ap2)*/py
= (Ap)?/C, (13)

C=p.pa. (14)

‘where
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We first maximize equation (8) for variations in Ap, subject to the constraint that
D? given by equation (13) is some fixed quantity A. This is the optimization given by
Kimura (1958). Lagrange’s multiplier technique gives

Q = a(Apy) + b(Ap,)* — ul(Ap,Y/C — ]
Differentiating with respect to Ap, and equating to zero gives

Apy = a/[2(/C — b)]. (15)
Substituting from equatiqn (15) in equation (13) for Ap, gives

A=a*[[4(y/C —b)*], ' (16)
which gives '

p=[bC +(a/2)(C/N)!*]. : (17
Thisyleads finally to

Ap, = (AC)'2, . (18)

It may be noted that this result is independent of whether b =0 or not. Hence, in
this optimality principle, maximization of either the linear approximation to the
increase in mean fitness (AW*) or the exact increase in mean fitness (AW), subject
to equation (13), will yield identical results. If equation (18) is to give the same Ap,
as that given by equation (7), we must have

A= a2 (W)~ ‘ (19)

If we replace 262, by o%, the additive genetic variance, we get the same result as the
one given by Kimura (1958).

We next minimize equation (13) for variation in Ap, subject to the constraint that
AW given by equation (8) is some fixed quantity A*. We get, using Lagrange’s multiplier
technique, '

Q =(Ap,)*/C — p*[a(Ap,) + b(Ap,)* — A*].
Differentiating with respect to Ap, and equating to zero, we get
(Ap,)* = p*aC/l2(1 —bCp¥)]. - (20)

Substituting from equation (20) in equation (8) for Ap, gives a quadratic equation
in p*:

BC2(a? + 4% b)*? — 2C(a® + 41*b)p* + 42% = 0,
which gives

u* = [1 — af(a® + 43*B)Y21bC. 21)
This leads finally to

(Apy)* = (a/2b)[(1 + 4A*bja?)!'? — 1]. | | (22)
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Unlike the previous case, here the result depends on whether b is zero or not. If we
take b not equal to zero, and if equation (22) is to give the same Ap, as that given
by equation (7), we must have

= Qo2 W)L =pipad /W) (23)

But if b =0, then minimization of equation (13) subject to equation (8) gives 1* as
(262/ W). In case dominance is zero, i.e. d,, =0, we have b =0, and we again get this
result.

In fact, the most general relation between A and A* is obtained by equating the
two (Ap,)s given by equations (18) and (22). This is

A* = (bC)A + [a(C)12](A)M2. , (24)

Apparently, the choice of A given by equation (19) coupled with whether b is zero or
not determines A* as (262 /W) or that given by equation (23) respectively.

4. One locus with & alleles

I now consider k alleles A, A,,..., A, at the locus, with frequencies p,,p,,...,p;
(Zp; = 1), in a random-mating populatxon Let the relative fitnesses of the k(k + 1)/2
genotypes be expressed in the form of a symmetric matrix W of order k x k, with i,
Jjth element W,;, the relative fitness of genotype A,A; (i,j=1,2,...,k and W= W)
Also let the gene frequencies of the k alleles be expressed in the form of ak x 1
column vector p. Further, let the marginal fitnesses of the alleles A; be denoted by
w;, where w;=3%_ p. W, i=1,2,...,k and let the set of k mdrgmal fitnesses be

13

expressed in the form of a k x 1 column vector w. In matrix notation,

w= Wp
= WPe, (25)
where
P =diag(p(,pss...,Px) : (26)

and eis a k x 1 column vector of units. The average fitness of the population can be
expressed in several ways. As a generalization of equation (1), this is

W= ZiplW +22;<1p1p1d (27)

ij?
where

dy=[W,—(W,+ W)/2], i<j=12,..,k (28)

is the degree of dominance in fitness for the pair of alleles A; and A;. In matrix
notation the average fitness can be written in several ways:

- =€TP WPe. (29)
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The total genetic variance in fitness now takes the form
= Z;Z;pipy( W,— Wy
= 5,5 W — (W), (30)
whereas the variance in the marginal fitnesses of the alleles is
U,ZV = Zipi(wi — W)
= Spw? — (W)>. | (31)
Arranging the genotypes in the form of a two-way analysis-of-variance (ANOVA)

table, with rows and columns contributing identical variances o2, gives the remainder
variance

2,2 .2
Or =0y 207,

=200 [ W; —w;— w;+ w)?

= Ziszipj[{dij - ; Pidy — % pkdjk} + 2k2<:l PkPld“}- (32)

The remainder variance is thus entirely in terms of the pair-wise degrees of dominance
in fitness, i.e. the d,;s. The partitioning of ¢}, into the two components 267 and o}
is thus analogous to the case of two alleles.

The change in the gene frequency of A, after selection and random mating is given by

Api=piwi— W)W, i=1,2,... .k (33)
with ¥;Ap; = 0. This can be expressed in vector notation as
(Ap)=(W)"'P(w— We), (34
with
(Ap)Te=0, 35) -
where (Ap) is a k x 1 column vector of Ap;s. ‘
The change in mean fitness after one round of random mating can be determined,

following Li (1978), by expressing the mean fitness around its previous value by
Taylor’s expansion of a function of several variables. That is

W = I;f/() + Z (APi)(aW/aPi)"’f‘ (1/2)2 Z (APi)(APj)(aZ W/apiapj)

as higher-order terms would be zero. We then have

oWjop, = 2w,
o* Wiop? = 2W,

o* W/apiapj 2VVU J=12,..k

i=12,...,k

I
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This gives
AW =23 (Bp)wi+ Y (Ap): W, + 3.3 (Ap)(Ap)) W,
i i iwj

=2(Ap)"w + (Ap)" W(Ap). (36)

In view of equations (28), (31) and (33), AW can also be expressed as
AWZZZP;’(WF‘ W)Wi/W‘i'ZZPin W;j(W W)(W - )/( W)
i toJ

(202/W)+ZZP.P/1 (Wi — W)(w;— W)WY (37

If D is a matrix defined as below, noting that d,=0fori=12,...,k,

0 4, dyy ‘
D=jd, 0 .. d,|, (33)

dkl de 0

-the matrix form of equation (37) is
AW=2(Ap)"w + (Ap)* D(Ap). ' , (39

Thus we see that AW has the same linear approximation as in the two-allele case
given by equation (11). This approximation also becomes an exact expression for AW
if there is no dominance in fitness on the arithmetic scale for all the pairs of alleles,
le. d;=0 for all i #j. But when there is dominance, the exact expression for AW
depends on o2 as well as the d, ;8 and we do not have the simple form of equation (12)
of the two-allele case.

The divergence in gene frequencies of the k alleles between parent and offspring
generations can be expressed, as before, in terms of the genetic distance squared as

k
D? Z (Ap:)/p:
= (Ap)" P~ (Ap), ‘ (40)
which is a quadratic form with matrix P!,
Now we first maximize equation (36) for variation in (Ap) subject to the condition

in equation (35) and the constraint that D* given by equation (40) is some fixed -
quantity 1. Lagrange’s multiplier technique gives

Q=2(Ap)"w + (Ap)" W(Ap) — 1, [(Ap)" P~ (Ap) — A1 — u, [(Ap)Tel.
Vector differentiation with respect to (Ap) and equating to zero gives

(Ap)=(, P~ = W)~ (w — (15 /2)e)
= (i — PW) L [PWP — (1,/2) P]e. (41)
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Substifuting from equation (41) in equation (35) for (Ap), we get

e'[PWP — (1, /2) PY(u, [ — WP) te=0.
This shows that we must have

e"[PWP — (u,/2)P]=0".
Post-multiplying by e and using equation (29) gives

4y =27 | @)
Substituting this value of u, in equation (41), we get

(Ap) = (u, I — PW) L P(w — We). (43)
Substituting from equation (43) into equation (40) for (Ap) leads to

WT — WeN P(u, I — WP) ' P~ (u, I — PW) ' P(w— We)=1
or B . ~
W' — Wer) (I — WP) 2P(w— We)=A.

This is satisfied if

(I = PW) "2 = Al/[(w— We)'P(w— We)]=Al/al,
giving
I =@A"?a,)I+ PW. (44)

Using equation (44) in equation (43), we get the optimum Ap;s that maximize the
increase in mean fitness, subject to the two conditions, as - '

(Ap)=(A"?a ) (w— We). 45)

This optimum solution has been obtained by taking the exact form of the mean
fitness given by equation (36). If we maximize the linear approximation to the increase
in mean fitness [the first term, 2(Ap)*w, in equation (36)], subject to the same two
conditions given by equations (35) and (40), as Kimura (1958) did, we still get the
same result for optimum (Ap) as in equation (45). So this result is independent of the
presence or absence of dominance effects, i.e. the d,s.

If equation (45) is to give the same changes in allelic frequencies in one generation
as natural selection gene frequency changes given by equation (34), we must have

A=02 (W), (46)

which is the same result as that obtained by Kimura (1958), if we replace 202 by 7.
The maximum principle in the genetical theory of natural selection can therefore be
stated as follows:

Of all the per-generation gene frequency changes, including those that lead to the same
genetic distance [a2 /(W)*] between parent and daughter generation gene frequency
values as the natural selection gene frequency changes, the natural selection values
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maximize the increase in mean fitness of the population (AW), irrespective of the
presence or absence of dominance in fitness values.

We next minimize equation (40) for variation in (Ap) subject to the condition in
equation (35) and the constraint that Angven by equation (36) is some fixed quantity
A*. We get, using Lagrange’s multiplier technique,

Q* =(Ap)" P (Ap) — 0, [2(Ap)"w + (Ap)" W(Ap) — 2*] — n,[(Ap)Tel.
Vector differentiation with respect to (Ap) and equating to zero gives
A== m PW) PLnw + (12/2)e]. @7)
Substituting from equation (47) in equation (35) for (Ap), we get
[nowh +(n,/2)e" JP(I —n, WP) " le=0.
This gives “
na=m W, . | (48)
Substituting this value of , in equation (47), we get
(AP =0y — 0y PW)" P — We) (49)

Substltutmg from equation (49) into equation (36) for (Ap), we get the quadratic in
G given by

BG?+ AG — J* =0, (50)

where G, 4 and B are scalars with

Gl =n,(I-n,WP)™1, ‘ (51)
A=2w~— We)"Pw=202,. (52)
B=(w— We)"PWP(w— We). , (53)

The solution is

G=(A2B)[(1 +4BA*/A*)}? —1]. | (54)
This gives the optimum value of (Ap) as |
| (Ap)=(A/2B)[(1 + 4BY*/ A2 — 1]P(w — We). C 55)

If equation (55) is to give the same changes in allelic frequencies in one generation
as the natural selection gene frequency changes given by equation (34), we must have

A= (W) ' A[1 + BAW)]. _ ' (56)

It is easy to verify that this is the same as equation (37).
When there is no dominance ‘or when we take the linear approximation to AW,
the above procedure leads to the optimum value of (Ap) as

(Ap)y* = (A*/202)P(w — We). : (57)
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Comparing with equation (34), we find that A* has to be
A = (202 /W), (58)

which is what we got in the two-allele case, as well as the same as that given by Ewens
(1992) when we replace 202 by o%. The minimum principle in the genetical theory of
natural selection can therefore be stated as follows:

Of all the per-generation gene frequency changes, including those that lead to the same
increase in the mean fitness of the population ( AW) as the natural selection gene
frequency changes, the natural selection values minimize the genetic distance between
parent and daughter generation gene frequency values. '

When there is no dominance or when the linear approximation to the increase in
mean fitness is considered, the natural selection values minimizing the genetic distance
are such that the rate of increase in mean fitness of the population is (201/171/).

The most general relation between A and A* is obtained by equating the two (Ap)s
given by equations (45) and (55). This gives

A* = (Bfo2)A+(A/5,) (1) {59)

This is useful for determining the constraint in the minimum principle and clearly
depends on whether B is zero or not, or, in other words, whether dominance is absent
or present respectively. In the latter case, the linear approximation to AW is taken,
which Ewens (1992) interprets as partial increase in mean fitness. In this paper,
however, the minimum principle is more general as it takes into account the dominance
effects.

To express A in terms of A*, we substitute the value of A* from equation {(56) in

"the quadratic solution of A obtained from equation (59). This gives

A= %)W) (60)

irrespective of whether B is zero or not. So, in the maximum principle, the constraint
is always the relation in equation (60) whether dominance effects are present or not.
This is similar to the constraint adopted by Kimura (1958), who used it, without
giving any reasons for doing it, for maximization of the linear approximation to the
increase in mean fitness. It is apparent from the foregoing that the same constraint
can be used for maximization of the exact increase in mean fitness as well.

5. Discussion

1t seems that without concerning ourselves too much with what Fisher (1930, 1941)
meant in his discussion of the fundamental theorem of natural selection, the fact is
that natural selection causes per-generation gene frequency changes in a prescribed
manner that can be stated in two ways. Firstly, of all the per-generation gene frequency
changes, including those that lead to the same genetic distance [o2 (W)*] between
parent and daughter generation gene frequency values as the natural selection gene
frequency changes, the natural selection values maximize the increase in mean fitness
irrespective of the presence or absence of dominance in fitness values. Apparently,
this is because genetic distance is independent of dominance effects. Secondly, of all
the per-generation gene frequency changes, including those that lead to the same
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increase in mean fitness of the population (AW) as the natural selection gene frequency
changes, the natural selection values minimize the genetic distance between parent
and daughter generation gene frequency values. However, the rate of increase in mean
fitness of the population fixed for this optimization would depend on the presence
or absence of dominance. The former case, termed maximum principle, is therefore
more appealing. The optimality principle of Ewens (1992), which is in fact a minimum
principle requiring the concept of partial increase in mean fitness to avoid dominance
effects, is thus not necessary. It can very well hold with total increase in mean fitness,

In the description adopted in this paper, I have not invoked the notion of the
average effect of gene substitution, which requires use of the least-squares principle.
This principle is also some sort of an optimizing principle in that it minimizes the
dominance deviations in the fitness values of the concerned genotypes. When there
are no such deviations because of absence of dominance effects, the least-squares fit is
perfect, and Ewens (1989, 1992) interprets it as the case of partial increase in mean
fitness. For instance, in the one-locus case, if we regress the fitnesses of genotypes on
the number of A, alleles in the genotypes, the regression sum of squares is found to
be 202, which is defined as the additive genetic variance in fitness (o%)—one of the
two components of total variance o2, —in the literature. However, such a partitioning
of variation implies choice of the best-fitting regression line by the method of least
squares and hence indirectly implies an optimality principle. We may note that the
regression coefficient (f) of the genotypic fitnesses on the number of A, genes present,
interpreted as the average effect of gene substitution, is

ﬁzpl(Wll - W12) +p2(W21 - WZZ)
=(W,,— Wy,)—2pid,,
= (W — w,),

and o} is then 2p, p, %

It can be seen, however, without fitting any regression, that of,,, the total variance
in fitness, is the sum of variation in the marginal fitnesses—row-wise and column-
wise—plus a remainder term in the two-way ANOVA table. Because of symmetry,
row and column contributions are each equal to o2, so that the remainder sum of
squares is ‘

2.2 A2
O = Op — 20,
422 g2
=4p1p3ds,.

This is exactly the same as the dominance variance in fitness if we adopt the regression
approach but in the sense that choice of the best-fitting regression line implies minimizing
the variance due to dominance deviations. In this paper, I have not invoked this
optimality principle, and have treated simply, on the basis of the arithmetic of
ANOVA, the partitioning of ¢7, into 262 and oy, which would hold for any given
set of Ws and p,. ' ,

The interpretation on the basis of least squares is, however, necessary for Fisher’s
theorem in that it requires interpreting additive genetic variance in fitness. This can
be done in terms of changes in the genotypic frequencies between parent and daughter
generations when the fitnesses of genotypes are expressed in terms of their least-
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squares estimates. This is what Ewens (1989) does, and later uses to develop the
optimizing principle of natural selection in evolutionary population gcnetlcs Since
dominance effects are made zero by the concept of partial increase in mean fitness,
the treatment can easily be extended to the case of several loci as well as to any
arbitrary mating system. As soon as dominance effects are included, the generalization
to several loci and the treatment for a non-random mating system can become
complex.
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