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Abstract

Abstract Studies have found a substantial reduction in diarrhea and respiratory morbidity in young children receiving zinc

supplementation. The impact of daily zinc supplementation administered with iron plus folic acid (IFA) in young children on

all-cause hospitalizations and mortality in comparison with IFA alone was evaluated. In a double blind cluster-randomized

controlled trial, 94,359 subjects aged 1–23 mo were administered a daily dose of zinc plus IFA or IFA alone for a duration of

12 mo after enrollment. The intervention group tablet contained 10 mg of elemental zinc, 12.5 mg of iron, and 50 mg of folic

acid. The control group tablets were similar except that they contained a placebo for zinc. Infants aged ,6 mo were

administered half a tablet, and those older received 1 tablet dissolved in breast milk or water. Hospitalizations were

captured by trained study physicians through the surveillance of 8 hospitals. Deaths and hospitalizations were ascertained

through visits to households by study supervisors once every 2 mo. The overall death rates did not differ significantly

between the 2 groups when adjusted for cluster randomization (hazard ratio ¼ 1.02, 95% CI 0.87, 1.19). Zinc and IFA

supplementation compared with IFA alone did not affect adjusted hospitalization rates (overall rate ratio ¼ 1.08, 95% CI

0.98, 1.19; diarrhea-specific rate ratio ¼ 1.15, 95% CI 0.99, 1.34; or pneumonia-specific rate ratio ¼ 1.09, 95% CI 0.94,

1.25). The lack of impact of zinc on mortality and hospitalization rates in this study may have been due to the use of lower

daily zinc dosing than used in some of the morbidity prevention trials or from an interaction between zinc and iron, where

the addition of iron may have adversely affected potential effects of zinc on immune function and morbidity. Future

research should address iron and zinc interaction effects on important functional outcomes. J. Nutr. 137: 112–117, 2007.

Introduction

Zinc deficiency is common in children of developing countries,
including India. Possible causative factors include inadequate
dietary intake, limited bioavailability from cereal-based diets,
low intake of animal foods, and intestinal zinc losses during
repeated diarrheal illnesses (1). Zinc deficiency impairs immu-
nological and nonimmune barriers to infections, particularly
those affecting mucosal surfaces (2–6). Randomized placebo-
controlled trials in developing countries have shown substantial
reduction in diarrhea and respiratory morbidity among young
children receiving daily zinc supplementation (1,7–11). Impor-
tantly, the reduction in morbidity following supplementation
was more for severe than mild infections (11). To facilitate the

formulation of a public health policy to combat zinc deficiency,
it is also necessary to assess the effect of improved zinc intake on
child mortality. We therefore evaluated the impact of daily zinc
supplementation, coadministered with iron plus folic acid (IFA),6

in young children on all-cause hospitalizations and mortality in
comparison with the intake of IFA alone.

The decision to administer zinc with IFA was a pragmatic
one, as the deficiencies of both these micronutrients coexist.
Besides, routine supplementation with IFA is a national program
in India. We believed that if zinc supplementation reduced child
mortality, a practical way to supplement children would be to
administer it along with IFA. We did, however, consider the
possibility that coadministration might reduce the bioavail-
ability of zinc; but by the time the study began, our conclusion,
based on a review of the literature, was that such an effect would
likely be small if supplements were given in a molar ratio close to
1:1, as was done in a current trial (12–16). Formulations that
provide the recommended daily allowance (RDA) of multivita-
mins and 1 RDA of zinc (5 mg for infants and 10 mg for older

6 Abbreviations used: CHW, community health worker; IFA, iron plus folic acid;

RDA, recommended daily allowance.
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children) are commonly available for young children. The value
of this daily zinc dosing is not fully established. Our study,
therefore, was deliberately designed to test an intervention that
would be deliverable under programmatic conditions.

Methods

The study was a double blind randomized controlled trial in which the
unit of randomization was households. The trial was conducted between

February 2002 and August 2003 in low-to-middle socio-economic urban

neighborhoods of north and northwest Delhi in India covering a

population of ;1,900,000 inhabitants and 400,000 households in 25
neighborhoods, typical of the urban low-to-middle income socioeco-

nomic status communities in the city, spread over 80 square kilometers.

This list was provided by the Municipal Corporation of Delhi, which is

responsible for the entire region. Recent data from similar populations in
Delhi indicate that childhood undernutrition, zinc and other micro-

nutrient deficiency, diarrhea, and lower respiratory tract infections are

common in this setting (7,8,10,11,17).

Resident communityhealthworkers (CHW)were recruited;1CHWfor
200 contiguous households to ensure that each CHW would follow-up on

;60 children. A door-to-door survey was conducted by study field in-

vestigators and CHW to identify pregnant women and children aged ,2 y.

Randomization and blinding procedures. Two randomization lists

were computer generated (one for each stratum) by a staff member of the

World Health Organization (WHO). The first list was for households
with only 1 infant aged 30–60 d and with a weight #3.5 kg (Stratum A).

The second list was for households with an infant aged 30 to 60 d and

weighing .3.5 kg and/or any child older than 60 d (Stratum B). The

purpose of the stratified randomization was to ensure that young infants
,2 mo, who were likely to have a low birth weight (weight at 30–60 d

#3.5 kg; Stratum A), were equally distributed between the intervention

and control groups. Infants aged 30–60 d with a weight .3.5 kg and older
children (because it was difficult to assume that their current weight could

identify whether they were low birth weight) were grouped into Stratum

B. Because the unit of randomization was the household rather than the

individual child, a very small number of households with 2 eligible
children (for example, a 1-mo–old weighing #3.5 kg and a 2-y–old child)

could only be grouped into 1 of the strata. We arbitrarily decided to

include such households in Stratum B. Each list had permuted blocks of 16

participants randomly allocated to 16 letter codes. Half of the 16 letter
codes were randomly assigned to the zinc and IFA group and the other half

to the IFA group. This code was only available with the WHO and the

company that prepared and packaged the supplement. The supplements
were packaged in strips with a letter code printed on the back.

Randomization lists containing only serial numbers (that represented

household numbers) and respective letter codes were made available to

the investigators, but they did not know which of the 16 letter codes
represented the 2 study groups.

Households with potential study participants were asked to give

consent for screening their child(ren) for eligibility. Households where

parents consented to participate were assigned a serial number in
sequence of their enrollment. Supplement strips, with the letter code

assigned to that serial number from the appropriate randomization list,

were labeled with the name(s) of the child(ren). All enrolled children

from a household received the supplement with the same letter code.
Ethical clearances were obtained from the Ethics Committee of the

All India Institute of Medical Sciences, the Society for Applied Studies,

and the WHO Review Committee.
Verbal consent was obtained from community leaders and other

opinion makers working in the study neighborhoods. Individual written

consent, or the thumb imprint from those who could not write, was

taken from the caregiver of each enrolled child and a copy of the form
was left with the family.

Enrollment. Twenty supervisors enrolled children through household

visits. Eligible children were aged 1–23 mo, of either sex, local residents,
and unlikely to move away over the next 6 mo. Children were excluded if

they had major congenital anomalies, severe malnutrition, or any serious

condition that affected the ability of the child to consume the supple-

ment. Children with illnesses requiring hospitalization were excluded
temporarily and screened again after recovery.

Families were given child identification cards and asked to call

designated study coordinators and investigators in the case of a problem

pertaining to the child’s participation or to a specific illness.

The supplement. For each enrolled child, a 30-d supply of dispersible

tablets was left in the home and replenished monthly. The intervention

group tablet contained 10 mg of elemental zinc, 12.5 mg of iron, and
50 mg of folic acid. The control group tablets were similar in appearance

and taste except they contained a placebo for zinc. These tablets were

provided by the WHO (Geneva) and prepared by Nutriset. Infants aged
,6 mo were administered half a tablet dissolved in 5 mL expressed

breast milk, and older children received 1 tablet daily in breast milk or

clean water.

Cointerventions. Routine primary health care services, per national
government policy, were available in the area through government

outpatient facilities and a large number of private health care providers.

Postenrollment activities. Community health workers visited house-

holds on alternate days to record the child’s health status (hospitalization

or death), to administer the supplement if not already done so by the

caregiver, and to reinforce continued use of the supplement.
Hospitalizations were captured through 24-h passive surveillance of

8 major hospitals used by the study population by intensively trained

study physicians. These physicians examined the central admission

register every 6 h for all admissions in #3-y–old children. Those
admitted were visited, their addresses ascertained, and after confirming

enrollment status, they were asked to show their study identification

card. Once ensured that the patient was indeed a study participant, the
child was examined. The 8 hospitals were selected prior to study

initiation by identifying those commonly used for children (as deter-

mined by a limited survey and key informant interviews). A hospital-

ization was defined as inpatient admission or a short admission to the
emergency ward for documented dehydration and oral rehydration, or

when the use of oxygen or intravenous fluid therapy was considered

essential. The final diagnosis reflected a consensus between the study

physician and the treating physician.
Additionally, study supervisors visited households once every 2 mo to

ascertain details of hospitalizations and deaths that occurred in the last

2 mo. An inpatient admission was defined as at least a 24-h stay or shorter
if resulting in death. A minimum 24-h stay was considered necessary to

ensure that, through this 2-mo recall process, actual hospitalizations

were reported rather than outpatient visits requiring a long waiting time.

Deaths were identified through CHW and home visits by study
supervisors every 2 mo. Households where a child had died were visited

by a skilled interviewer to fill a previously validated ‘‘verbal autopsy

questionnaire’’ (18) as early as possible after the death was reported.

Trial size. Sample sizes were calculated for 95% CI and 90% power

using data from recent studies in similar sites (8,10,11,19). Based on

these data, the mortality and hospitalization rates in the control

communities were assumed to be 16/1000 child-y and 30/1000 child-y,
respectively. Diarrhea and pneumonia related hospitalization rates were

each assumed to be 12/1000 child-y. It was assumed that the rates of

mortality and hospitalizations across households varied by 650% of
these rates. Approximately 85% of households were assumed to have

only 1 child aged ,2 y and the remaining 15% to have 2 children. Every

child was expected to contribute ;0.78 child-y according to the follow-

up strategy and we further assumed a 10% loss to follow-up. Using a
trial-size formula appropriate for cluster randomization for comparison

of 2 rates (20), we calculated that we needed ;33,000 households per

group to detect a 20% relative reduction in mortality rate, a 15% rela-

tive reduction in hospital admission rate, and a 25% relative reduction in
diarrhea and pneumonia specific hospitalization rates.

The study commenced in February 2002 and, per an a priori trial size,

children were enrolled. During the study, the Data-Safety Monitoring
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Board observed that the mortality rate was lower than assumed but did

not recommend extended enrollment, because to reach the original

objective, an additional 5 y of recruitment would be necessary. The study
was therefore stopped on 31 August 2003.

Anthropometry and zinc and ferritin assays. Weights, lengths, and

blood specimens for estimates of zinc and ferritin were taken in 1000
randomly selected subsamples at baseline and 12 mo postsupplementation.

At enrollment, nonfasting venous blood (5 mL) was drawn in zinc-

free heparinized polypropylene tubes (Sarstedt) by one of the physicians.

The heparinized blood was centrifuged (447 3 g; 10 min) and plasma
transferred to zinc-free polypropylene vials (Eppendorf), which were

stored at 220�C until analysis.

The plasma specimens were analyzed for zinc using a standard flame
furnace atomic absorption spectrophotometer technique (GBC Avanta).

Seronorm (Sero AS) was used as the reference standard in every batch of

20 samples. Immunoenzymatic colorimetric method (DiaMetra) was used

for quantitative determination of ferritin concentration in plasma (21,22).

Measurement of compliance. Fifty percent of randomly selected

households were visited by an independent team to obtain an assessment

of supplement intake in the previous 24 h and the prevalence of side
effects such as vomiting.

Data management. Forms were designed in FoxPro for Windows
(Microsoft) and range and consistency checks built in. Data were double

entered independently by 2 data entry clerks and validation completed

within 72 h after form filling. The validated data were merged in a master

file and 2 backup copies made, 1 of which was kept offsite.

Definitions used for assigning causes of hospitalization. Cause of

hospitalization was classified as diarrhea, pneumonia, and others.

Diarrhea was defined as the passage of 3 or more loose or watery stools
in a 24-h period for 1 or more days. Diarrheal symptoms had to be

present during 1 of the 2 d preceding hospitalization. Dehydration was

classified as severe, some, or none, according to WHO guidelines (23).

Pneumonia was defined as the presence of a cough or difficult breathing
with crepitations or bronchial breathing on auscultation. When a

classification of diarrhea or pneumonia was not made, the hospitaliza-

tion was assigned to the ‘‘other causes’’ category.

Definitions used for assigning causes of death. Computer-defined

algorithms were used to assign the cause of death (18). For diarrhea,

mothers’ report of the illness was used. The assignment of diarrhea as a
cause of death included the presence of acute (#14 d) or persistent

(.14 d) diarrhea or the presence of dysentery, i.e., the presence of visible

blood in 1 or more stools. Pneumonia was defined as the presence of

cough or difficult breathing along with fast breathing or chest indrawing
based on the mother’s report (18).

Analysis. Analyses were by intent to treat and conducted using Stata
software, version 8.2. We included data from all children until the time

they were available for follow-up or completed 12 mo of follow-up. Child-

years of follow-up to censorship were calculated. Differences among

groups were analyzed using chi-square test for prevalence. For outcomes,
we calculated differences in means or proportions and their 95% CI. Cox

proportional hazard models were used to estimate the impact on the

intervention on mortality adjusted for potential confounding baseline

factors. Standard errors of the effect size were adjusted for clustering of the
outcome within households to account for the cluster randomization.

Poisson models using a generalized estimating equation framework were

used to estimate the impact of the intervention on hospitalization rates to
allow for the potential nonindependence of hospital admissions in the

same household. Robust standard errors were estimated.

Results

A total of 577,258 households were surveyed to yield 102,474
children aged 1–23 mo (Fig. 1). Four thousand four hundred and

sixty-seven (4.3%) children could not be screened due to refusal
(4304), severe illness on day of screening (17), or death (146). Of
the 91,718 households screened (with 98,007 children), 1844
households (with 1877 children) were eligible for randomization
to Strata A and 89,874 households (with 96,310 children) to
Strata B. After exclusions, a total of 94,359 children were en-
rolled from 88,940 households (Fig. 1). Of the children enrolled,
647 (0.68%) died, 64 (0.07%) refused further participation, and
another 3470 (3.7%) moved away before completing 12 mo
follow-up. At the time of study termination, 42,048 had com-
pleted the 12-mo follow-up and for 48,130 the follow-up was
ongoing.

The 2 groups were similar for various socio-economic, child
characteristics (Table 1), and baseline biochemical and anthro-
pometry indicators (Table 2). Over a third of children had zinc
concentrations ,60 mg/dL (,9.18 mmol/L). Plasma ferritin
concentrations were similar in the 2 groups. Approximately one-
fourth of children had iron deficiency (hematocrit ,0.33, Table
2). In the subgroup for whom anthropometric measures were
conducted, 49.7 and 50.7% were underweight (weight-for-age
,22 Z score) and 43.6 and 45.3% were stunted (height-for-age
,22 Z score) at baseline in intervention and control groups,
respectively. In the 50% of households visited by an independent
team to assess compliance to supplement administration, over
three-fourths of children (77.5% in the zinc plus IFA group and
79% in the IFA group; difference in proportions 1.5%, 95 CI
0.69, 2.3) had been administered the supplement in the 24 h
prior to the visit either by the caregiver or the CHW. In the
previous 24 h, 2.6 and 2.1% of children in the zinc and IFA and
IFA groups experienced vomiting, respectively (difference in
proportions ¼ 0.5%, 95% CI 0.33, 0.67; P ¼ 0.002).

Plasma zinc concentrations, after 12 mo of supplementation,
were higher in the zinc and IFA group [difference in means ¼
7.9 mg/dL (1.2 mmol/L); 95% CI 6.0, 9.8 mg/dL (0.92, 1.49 mmol/L),
P , 0.0001]; the proportion of deficiency was also lower
(difference in proportions ¼ 210%; 95% CI –15.6, –4.4;

Figure 1 Trial profile.
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P ¼ 0.0005, Table 3). Only 7.7 and 7.3% of children had low
hematocrit (24) in the zinc and IFA and IFA alone groups,
respectively.

There were a total of 980 hospitalizations identified through
the passive surveillance of hospitals in the zinc and IFA and 916
in the IFA alone group. Zinc and IFA supplementation, com-
pared with IFA supplementation, had no impact on overall
hospitalization rates adjusted for cluster randomization (rate
ratio ¼ 1.08, 95% CI 0.98, 1.19). The diarrhea-specific
(rate ratio ¼ 1.15, 95% CI 0.99, 1.34) and pneumonia-specific
(rate ratio¼ 1.09, 95% CI 0.94, 1.25) hospitalization rates were
also similar in the 2 groups. The CI around the effect sizes pre-
clude the possibility of a clinically meaningful effect (Table 4).

Through supervisor home-visit assessments made every 2 mo,
there were a total of 1752 hospitalizations in the zinc and
IFA group and 1768 hospitalizations in the IFA group. In this
assessment too, hospitalization rates per 1000 child-y were
similar (44.8 in the zinc and IFA and 45.0 in the IFA group; the

rate ratio adjusted for cluster randomization ¼ 0.99, 95% CI
0.93, 1.06).

There were 326 deaths in the zinc and IFA and 321 deaths
in the IFA group. The overall death rates adjusted for cluster
randomization did not differ between the 2 groups (hazard
ratio ¼ 1.02, 95% CI 0.87, 1.19). In the zinc and IFA group, the
cause-specific death rate for pneumonia seemed to be lower, but
an overall test did not indicate that the distribution for causes of
death differed between the 2 groups (P ¼ 0.281, Table 5).

Discussion

Zinc deficiency is common in this population. Zinc, when sup-
plemented with IFA, had no significant effect on overall mortality
and hospitalization rates. Whereas zinc supplementation trials
(without coadministration of other micronutrients) have consis-
tently shown that reduced morbidity is due to diarrhea and
pneumonia, these results are somewhat unexpected (1,7–11).
There are several possible explanations for these findings. One
possibility is that compliance rates may not have been high
enough; however, the rates reported in our study were .70%.
That compliance may not be a major factor is also indicated by
the fact that only 7% children at the end of the study had low
hematocrit in a population where iron deficiency anemia is

TABLE 2 Baseline biochemical and anthropometric indicators

in a subsample of enrolled children1

Characteristics Zn and IFA IFA

Subjects, n 738 741

Plasma zinc,2 mg/dL 64.0 6 13.3 64.2 6 11.3

Plasma zinc ,60 mg/dL, n (%) 265 (35.9) 264 (35.6)

Subjects, n 676 666

Plasma ferritin,2 ng/mL 86.8 6 126.0 86.0 6 124.4

Subjects, n 753 753

Hematocrit 0.348 6 0.046 0.349 6 0.045

Hematocrit ,0.33, n (%) 212 (28.1) 193 (25.6)

Subjects, n 879 869

Weight for age ,22 Z scores, n (%) 437 (49.7) 441 (50.7)

Height for age ,22 Z scores, n (%) 383 (43.6) 394 (45.3)

1 Values are means 6 SD unless indicated otherwise.
2 SI unit factor conversion: zinc (mmol/L) ¼ 0.153; ferritin (pmol/L) ¼ 2.247.

TABLE 3 Effect of zinc and IFA supplementation compared with IFA alone on zinc, hematocrit,

and ferritin plasma concentrations 12 mo after supplementation1

Zinc and IFA IFA
Difference in means/
proportions, 95% CI

Subjects, n 551 545

Plasma zinc,2 mg/dL 70.7 6 20.3 62.8 6 10.9 7.9 (6.0, 9.8)*

Plasma zinc ,60 mg/dL, n (%) 162 (29.4) 215 (39.4) 210 (215.6, 24.4)*

Subjects, n 555 547

Hematocrit 0.370 6 0.03 0.371 6 0.03 20.001 (20.004, 0.003)

Hematocrit ,0.33, n (%) 43 (7.7) 40 (7.3) 0.4 (22.7, 3.5)

Subjects, n 436 412

Plasma ferritin,2 ng/mL 55.0 6 67.7 57.2 6 66.3 22.2 (211.2, 6.8)

Plasma ferritin ,20 ng/mL, n (%) 178 (40.8) 152 (36.9) 3.9 (22.6, 10.4)

Plasma ferritin ,12 ng/mL, n (%) 130 (29.8) 112 (27.2) 2.6 (23.4, 8.7)

1 Values are means 6 SD unless indicated otherwise.
2 SI unit factor conversion: zinc (mmol/L) ¼ 0.153; ferritin (pmol/L) ¼ 2.247.

* P , 0.001.

TABLE 1 Baseline socio-economic and child characteristics

of enrolled children1

Characteristics Zn and IFA IFA

Subjects, n 47,110 47,249

Total family members, n 5.93 6 2.62 5.94 6 2.63

Mothers' schooling, y 4.86 6 4.91 4.87 6 4.91

Fathers' schooling, y 7.59 6 4.54 7.59 6 4.53

Families with, n (%)

Piped water supply or ownership of hand pump 39,639 (84.1) 39,758 (84.1)

Toilet ownership 34,164 (72.5) 34,228 (72.4)

Age at enrollment, mo 11.77 6 6.71 11.68 6 6.69

Males, n (%) 24,679 (52.4) 25,049 (53.0)

Children born in hospitals, n (%) 19,777 (42.0) 19,946 (42.2)

Birth weight reported by mother,2 kg 2.69 6 0.613 2.68 6 0.622

Currently breast-fed, n (%) 37,870 (80.4) 38,150 (80.7)

Morbidity reported in the previous 24 h, n (%)

Diarrhea 3883 (8.2) 4010 (8.5)

Pneumonia 809 (1.7) 811 (1.7)

Fever 2747 (5.8) 2749 (5.8)

Families who experienced $1 child deaths, n (%) 3990 (8.5) 3861 (8.2)

1 Values are means 6 SD, n ¼ 94359, or n (%).
2 Zinc and IFA, n ¼ 8730, IFA alone, n ¼ 8810.
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expected to be very common (25). The alternate-day visits by
community health workers were also intended to minimize this
possibility.

Interactions between zinc and iron as a possible explanation
for the study findings deserve consideration. An earlier review by
Lonnerdal (26) suggested that excess iron affects zinc uptake
when iron and zinc are administered together in a water solu-
tion, and during a fasting state, but not when consumed with
meals, and this effect also increases the relative amount of iron in
the combination. Recently, Walker et al. (27) reviewed random-
ized trials assessing the effects of iron and zinc supplementation

on iron and zinc status. In the several studies that have assessed
the effects of iron-zinc combinations on zinc status and on
morbidity, there were no adverse effects of adding iron to zinc
supplementation on plasma zinc concentrations; but iron and
zinc were given nearly in equivalent ratios. The authors, how-
ever, concluded that the effects on morbidity have not been well
evaluated (27). Overall, the available data do not allow for a
firm conclusion as to whether, when combined supplements are
used, iron adversely affects the absorption or utilization of zinc
and its favorable effects on morbidity and physical growth, as
reported in many studies based in developing countries, such as
India, when it was administered alone without other nutrients
(26,27).

Therefore, the possibility that adding iron to zinc supple-
ments may have adversely affected the potential effects of zinc
on immune function and morbidity in the current study cannot
be excluded as a possible explanation for the lack of effect of the
combined supplement on the overall severe morbidity and mor-
tality in our study.

The optimal daily supplement doses deserve consideration. In
the pooled analysis of zinc preventive trials, 4 trials used a 20 mg
daily dose, 5 trials used a 10 mg daily dose, and 1 trial used a
5 mg dose on infants who were small for their gestational age.
There were no differences in the effect by dose (9). It is still
unclear whether the decreased morbidity with zinc supplemen-
tation in children of developing countries results entirely from
the correction of the deficiency or whether it also reflects other
direct effects of zinc. We chose this dose because a meta-analysis
did not find differences in effect by dose (9), and many public
health experts do not support the use of a dose larger than the
RDA to be used on a long-term basis because of the risk of
toxicity. Also, the safety of administering higher doses of zinc for
long periods of time has not been fully established.

The prevalence of iron deficiency anemia was similar in the 2
groups at the end of the study, and the rates in both were far
lower than previous reports (25) of this population at this age.
This suggests that coadministration of zinc and iron in the
relative dosing used in this study did not substantially reduce the
effect of zinc on iron status.

In conclusion, we found that, in a setting where zinc defi-
ciency is common and zinc supplementation has been clearly
shown to reduce diarrhea and pneumonia morbidity, the
combined supplementation of iron and zinc is unlikely to result
in a substantial reduction in overall mortality and hospitaliza-
tion rates. This study does not resolve whether the lack of benefit
on these outcomes is the result of an adverse effect of iron on
zinc absorption or utilization. Recently completed studies in
Tanzania and Nepal, where the mortality impact of zinc was
assessed without added iron, are likely to provide greater clarity
on this issue. Iron and zinc deficiency are common in developing
countries, and identifying common strategies to address these
deficiencies is of great interest. Future research should address
iron and zinc interaction effects on important functional
outcomes to facilitate formulation of a scientific and evidence-
based public health policy.
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TABLE 4 Effect of zinc and IFA supplementation compared

with IFA alone on all-cause and cause-specific

hospitalization rates

Zn and IFA IFA

Rate ratio for cluster
randomization,1

95% CI

n

Total child-y of follow-up 39,103 39,243

All-cause hospitalizations 980 916

Admissions/1000 child-y 25 23 1.08 (0.98, 1.19)

Hospitalizations due to diarrhea

irrespective of associated causes

384 335

Admissions/1000 child-y 9.82 8.53 1.15 (0.99, 1.34)

Hospitalizations due to pneumonia

irrespective of associated causes

456 424

Admissions/1000 child-y 11.66 10.8 1.09 (0.94, 1.25)

Hospitalizations due to other causes

excluding pneumonia and diarrhea

217 233

Admissions/1000 child-y 5.45 5.94 0.93 (0.77, 1.13)

1 Additional adjustment for potential confounders included sex, mother’s years of

schooling, birth in hospital, breast-feeding status; previous child death in the family did

not change effect size or CI.

TABLE 5 Effect of zinc and IFA supplementation compared

with IFA alone on all-cause and cause-specific

mortality rates

Zn and IFA IFA

Hazard ratio
for cluster

randomization,1

95% CI

Total child y of follow-up 39,103 39,243

Number of deaths 326 321

Mortality rate 8.3 8.2 1.02 (0.87,1.19)

Cause-specific mortality2 — —

Number of diarrhea-related deaths3 73 70

Mortality rate for diarrhea related

deaths

1.86 1.78

Number of pneumonia-related deaths3 85 117

Mortality rate for pneumonia-related

deaths

2.17 2.98

Number of deaths due to other causes3 188 176

Mortality rate for other causes 4.80 4.48

1 Additional adjustment for potential confounders included sex, mother’s years of

schooling, birth in hospital, breast-feeding status; previous child death in the family did

not change effect size or CI.
2 The distribution of causes of death did not differ among groups. Statistical compari-

sons of cause-specific mortality rates, therefore, were not made.
3 Irrespective of associated cause(s).
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