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A set of postulates is formulated which leads to the relativistic wave equations of present quantum me-
chanics. The mathematical difference between the usual non-linear interaction terms and terms which in-
troduce essential non-linearities in the equations is discussed. It is proved that every particle must possess
an antiparticle unless at least one of the basic postulates is discarded. The connection between the rest mass
of the particle, the minimal equation of the a-matrices, and the general commutation relations of the a-
matrices is derived and discussed. It is proved that for a particle of spin % there is only one possible wave
equation, while for a particle of spin 1 there are others besides the usual scalar and vector equations. One such

example is given.

I. INTRODUCTION

XPERIENCE has shown that the attempt to de-

4 rive the laws of nature by pure thought and
epistemological reasoning has neither met with much
success, nor proved particularly fruitful in stimulating
a growth of our knowledge of nature. On the other hand,
as a result of the development of physics since the time
of Newton, it has come to be recognized that the varied
and multifold results of observation can only be unified
into a coherent and related scheme by laying down as
the laws of nature certain mathematical statements
which may not be capable of direct verification, but
the deductions from which can be compared with ex-
periment. The aim of theoretical physics must therefore
be to find a complete set of mutually consistent mathe-
matical postulates or axioms from which the properties
of nature, meaning thereby the result of every con-
ceivable experiment, can be deduced in the form of a
series of theorems. It is, however, necessary in order
to achieve the last step of comparing the mathematical
statements of the theorems with the results of observa-
tion, that the basic mathematical postulates must be
supplemented by a set of prescriptions about the in-
terpretation of the mathematical formalism. It is clearly
not sufficient that the postulates should be consistent,
and their correctness from the point of view of physics
can only be demonstrated by an agreement between
the deductions and the results of experiment.

Present relativistic quantum theory has évolved out
of a generalization of the classical Hamilton-Jacobi
formulation of Newtonian mechanics to include the
indeterminacy principle on the one hand, and the prin-
ciple of special relativity on the other. It is well known
that the resulting theory is not a completely consistent
scheme, since it leads to inconsistencies such as an
infinite self-energy for every elementary particle. It
has nevertheless had remarkable success in describing
a very wide range of phenomena in nature, and in pre-

* This paper is based on a report prepared by the author for
the Solvay Conference, 1948. It contains certain new results

besides many well-known theorems which are proved here to be
of wider validity than might have been thought.

dicting the existence of the positron and of the processes
of pair creation and annihilation. It is therefore of
interest, notwithstanding the self-energy difficulties,
to inquire what relativistic wave equations can be set
up within the frame work of the existing scheme. Such
an investigation is necessary inasmuch as it may provide
a description, within the limits of the present theory, of
some of the new elementary particles that are now
being discovered. It would indeed be remarkable if
these new particles were all described by the Dirac
equation, or in addition by the two known relativistic
equations for particles of spin 0 and 1, and if this should
turn out to be true, one would have to find some ex-
planation of why other and more complicated wave
equations for the elementary particles do not play a
role in the description of nature. The aim of this paper
is to attempt to formulate, necessarily briefly, the postu-
lates which appear to underly the present scheme of
relativistic quantum theory and to summarize the
different work on relativistic wave equations for the
elementary particles which has been done within the
framework of these postulates.

It is clearly impossible within the scope of a short
paper to adhere strictly to a program of the type de-
scribed in the first paragraph, and one is compelled,
even at the expense of a certain apparent loss in logical
rigor, to state the fundamental postulates in words
which already carry an implication about the inter-
pretation of the formalism. The justification for this
procedure is not only that it touches what is of greatest
interest to the physicist, but rather that it goes directly
to the root of the matter, and it is not difficult to see
how the postulates given below can be replaced by a
set of purely mathematical definitions and postulates
on the one hand, and a set of prescriptions identifying
the mathematical symbols or expressions with physical
quantities on the other.

II. THE BASIC POSTULATES AND GENERAL THEORY

One may take as the first postulate underlying the
theory, the demand of relativistic invariance:
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Postulate 1. The predictions of the theory with regard to
the result of any possible observation shall be in accordance
with the requirements of the principle of special relativity.

This postulate does not by itself require that the
properties of Cartesian space-time shall hold in regions
of space which are of nuclear or sub-nuclear dimensions.
It only expresses the fact that all observations, even of
atomic phenomena, are ultimately made with the help
of macroscopic measuring instruments, and for these
there is considerable experimental evidence that the
principle of special relativity must hold. In practice,
however, one usually takes postulate 1 in the more
restrictive form! of Postulate 1'. The mathematical for-
malism shall be covariant throughout for all transforma-
tions of the orthochronous® Lorents group.

The full Lorentz group £ is the set of all real transforma-
tions which leaves invariant the real quadratic form
(@ — (a2 (= (a9,
and consists of four disconnected pieces. If this expression is
" equal to a*>0, then either 20> |a| or x°< — | ¢| and the trans-
formations of the full Lorentz group must therefore fall into
two disconnected pieces, one consisting of all transformations
which preserve the sign of % which we name the orthochron-
ous transformations, and the other of all those which reverse
the sign of 29 called here the antichronous transformations.
It is easy to see that the former piece forms a sub-group £
of the full Lorentz group which it is convenient to call the
orthochronous Lorentz group. A different division of the
group into two parts is obtained as a result of the well-known
fact that the determinant of any transformation of the full
Lorentz group is equal to =1, so that all those transforma-
tions whose determinant is +1 and those whose determinant
is —1 belong to two disconnected pieces. The former forms a
sub-group known as the proper Lorentz group £,. This split-
ting into two pieces according to the sign of the determinant
can be applied to each of the two pieces consisting of the ortho-
chronous and antichronous transformations only. We thus
get four disconnected pieces in all, of which one consisting of
the set of all transformations of determinant 41 which pre-
serve the sign of the time component x0 of a time like vector
forms a sub-group by itself. This sub-group we call the ortho-
chronous proper Lorentz group £..1.

Since a change from one system to another in which
the direction of the time axis is reversed does not appear
to be possible in nature, it is sufficient and necessary
to demand that the formalism shall be covariant for
the orthochronous Lorentz group £ only.

The second postulate concerns the existence of @ wave
function from which all properties of the physical system
can be deduced. It may be formulated as

Postulate 2. A function ¢, called the wave function,
whose value is defined at all points of a space-like surface,
exists such that it provides the maximum possible amount
of information which can be obtained by observation about
the state of the physical system.

In this connection it should be noted that the wave
function may have several components Y1, ¥, * ¥,
each component being a function defined at all points

1 This presupposes that certain obvious definitions of space-

time consistent with postulate 1 have been made.
2 From the Greek words épfés, upright, and xpévos, time.
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of the same space-like surface. In this case ¢ is to be
regarded as a matrix of one column and »-rows, the
element in the oth row being ¥,. In postulating that the
values of the wave function can be given at all points
of a space-like surface, we may be assuming more than
can possibly be determined by observation, and later
developments may show that it is necessary to abandon
this postulate. However, it is difficult to reject the
postulate as definitely incorrect at this stage, since our
general approach only requires that the deductions
from the basic postulates should be in agreement with
observation. The wave function itself may simply be
a mathematical tool with the help of which the funda-
mental laws can be formulated.

The aim of predicting the future state of a system
from its present state then leads directly to:

Postulate 3. The fundamental laws of nature are such
that given the values of the wave function ¥ at all points
of a space-like surface, it is possible to calculate its values
at all points of a later space-like surface.

It should be noted that this postulate is somewhat
wider than the usual one implying the existence of a
differential equation in space-time. However, for the
present, we replace postulate 3 by a more limited one
which embodies in it the idea of near action, namely,
that the change with time in the value of the wave
function at any point of a space-like surface shall de-
pend only on its values in the immediate neighborhood.
In mathematical language, we replace postulate 3 by?

Postulate 3'. The fundamental equations of physics are
partial differential equations which allow one to calculate
the values of the wave function on a later space-like surface
when they are given on an earlier space-like surface.

It then follows from the first two postulates that the
equations cannot contain higher derivatives of the
wave function than the first. For if they contained
higher derivatives of the wave function with respect
to the time than the first, then it would not be possible
to calculate the wave function on a later space-like
surface unless at least its first-order time-like derivative
on the earlier surface were given. But this would imply
the ability to determine more about the state of the
system on the original surface than is contained in
the wave function, contrary to the second postulate.
The first postulate next requires that no derivatives of
the wave function with respect to the space-coordinates
of order higher than the first should occur in the wave
equations, since space and time have to be on the same
footing. Later experience may require us to abandon
postulate 3’ for the more general postulate 3.

The result of every observation is by its very nature
a real quantity, whereas no such requirement has been
made of the wave-function ¢. In order to obtain an
expression which is always real from a complex quan-
tity, one has to make use of its complex conjugate .

3 This postulate again presupposes that the wave function is

continuous and differentiable throughout space-time, except per-
haps on a finite number of points, lines, or surfaces.
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One should therefore expect ¢ as well as its complex
conjugate ¥ to play a part in the formulation of the
basic laws.

One must now formulate some statement embodying
the observation that space-time, at least for all but
galactic distances, is homogeneous and isotropic. By
this we mean that all points of space-time are equiva-
lent except insofar as this equivalence is destroyed by
the presence of physical entities. Likewise, one must
postulate that all directions in space-time which can be
transformed into each other in accordance with postu-
late 1’ are equivalent. In mathematical language this
becomes

Postulate 4. Besides the wave function ¢, its complex
conjugate, and their derivatives, no functions varying with
the coordinates and no constants dependent on the choice
of the frame of reference shall enter in the equations of
motion. Equivalently, the equations of motion shall only
contain universal constants besides the wave function ¥, its
complex conjugate and their derivatives.

Next we take as

Postulate 5. The equations of motion can be derived by
the variation of a Lagrangian which is the integral over a
Sfour-dimensional space-time volume of o real Lagrange
function, which s itself a function of the components of
the wave function ¥, their complex conjugates, and their
derivatives with respect to the coordinates.

In obtaining the variation of the Lagrangian a certain
nuance has to be observed. We consider every component ¥,
of ¢ to be defined by the relation ¢, =1u,+417v, where %, and
v, are two independent real functions of the coordinates.
Similarly, we define ¥,=u,—1%v,. One then calculates the
variation of the Lagrangian for arbitrary and independent
variations of #, and v, at each point, and equates this to zero
to obtain the equations of motion. It is easy to see that this
procedure leads to the same equations as one would obtain
by varying ¥, and ¥, as if they were independent functions.
It then follows from these equations that #, and v, can be
treated as the real and imaginary parts of one analytic func-
tion y,. This is the rigorous formulation of the usual pro-
cedure adopted by physicists of varying ¥ and ¥ in the
Lagrangian as if they were unconnected functions.

We next make a postulate which appears to be neces-
sary if we are to obtain the present scheme of quantum
mechanics and not something more general. Moreover,
it provides the foundation upon which the usual
methods of perturbation theory in quantum mechanics
can be based.

Postulate 6. The Lagrange function is a rational in-
tegral function of the components of the wave function ,
¥ and their derivatives with respect to the coordinales.

This postulate requires that the Lagrange function
be a sum of terms, each of which is a product of positive
integral powers of the components of ¥, ¥, and their
derivatives. Each such term may be multiplied by
some universal constant. We note in this connection
that derivatives of ¢ or ¥ of higher order than the first
cannot appear in the Lagrange function since otherwise
the equations obtained by a variation of the Lagrangian
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would be of higher order than the first, contrary to
postulate 2. Similarly, while a term can be of any in-
tegral degree? in ¥, it must be only of zero or first de-
gree in the derivatives of ¥ since otherwise the equations
would again be of order higher than the first, contrary
to postulate 2.

Since there is only one Lagrangian from which the
equations of motion have to be deduced, it follows from
postulate 1’ that this Lagrangian must be an invariant,
and in consequence, every term of the Lagrange func-
tion of which it is an integral must itself be an in-
variant. We therefore start to build the Lagrange func-
tion by first finding all possible terms of first degree in
¢ which are invariant, then all the possible invariant
terms of second degree, then of the third degree, and
SO on.

Let @ and @’ be two Lorentz frames of reference re-
lated to each other by the corresponding relation be-
tween the coordinates #* and «'%, respectively, of the
same point,

(1a)

where a Latin index stands for 0, 1, 2, or 3, and ¢;* are
the elements of a matrix of the Lorentz group defined by

(1b)

the metric tensor being assumed to have the form
goo=—gn=—gn=—gs3=1, gx;=0 for k+1° Then, ac-
cording to postulate 1’ the values, in the two systems,
of the wave functions ¥ and ¢’ at the same point must
be connected by a linear relation of the type

V'=Ty, 2

where 7 is a »X»-matrix. As is well known, for every
transformation ¢;* in (1) there is a corresponding matrix
T in (2), and the set of matrices T forms a representa-
tion ® of the Lorentz group. An irreducible repre-
sentation of the orthochronous Lorentz group is char-
acterized by two numbers # and m such that » >m >0,
and both are integers or both half-odd integers. For
integral n, m the representation gives the transforma-
tions of a tensor of rank #-4m that is, having n+m
tensor indices (or 2 dotted plus undotted spinor in-
dices) and maximum symmetry properties, while for
half-odd integral #, m, it corresponds to a spinor of rank
2n, (that is one having 2 dotted plus undotted spinor
indices) and maximum symmetry properties. Denote
this representation by ®(n,m). The representation ® is
either one of these or it is reducible, in which case by a

xh= 10t

trkts lgrs = gk l,

4“The-degree & in ¥ of a term is, as usual, defined as: If in
this term every component of ¢, ¥, 9y/dx¥, and 8y/d* is replaced
by A times itself, A being any real number, then the term is changed
to \° times its original value. Similarly, “the degree of a term in
the derivatives of ¥ is defined as the number § in the factor A\®
by which the term is multiplied if every component of dy/dx* and
0y/dx* is replaced by \ times itself, the components of the wave
functions ¢ and y being unchanged.

$ Summation from 0 to 3 is understood over every repeated
Latin index appearing both above and below in the same formula,
but not over repeated indices appearing only above or only below.
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well-known theorem it must be fully reducible and ex-
pressible as a direct sum of such irreducible repre-

sentations :
R= (R(n,m) + &(n,7m/) +- (3)

We take R to be already in its fully reduced form (3).

Suppose now that ® contains the representation
®(0,0), that is, that one of the components of ¥, say ¥,
is an invariant. Then this component of ¥ remains un-
changed by any transformation 7" and in consequence
the matrix I' of one row and »-column having 1 in the
oth column and zeros everywhere else has the property
that I'Y is an invariant. It follows that even when y is
not in its fully reduced form, a matrix I' of one row and
v-columns must exist such that I'y is an invariant, T
having the same invariant matrix form in all systems
(though not the form just given). If the representation
®(0,0) appears p-times in ®, then there are u-inde-
pendent matrices I'(py, I'¢e), -+ -I'( such that I'oy,
Ty, « - -Twy, are all independent invariants.

Next suppose that ®; contains the representation
®(1,0), that is, four components transforming equiva-
lently to a four-vector. Then, by a similar reasoning, it
can be proved that four matrices I'* of one row and
v-columns and having the same matrix form in all
systems exist such that the four quantities I'% trans-
form like a four-vector. Similar statements are true for
every irreducible representation in (3). For example, if
® contains the representation ®(1,1), then six matrices
T'*'=—T" of one row and »-columns exist such that
I'*4 form the six components of a skew-symmetric
tensor of second rank.

It is convenient at this stage to introduce the nota-
tion 9;=0/dx*, pr=—1id;, where the factor 7 has
simply been introduced for convenience. We adopt the
convention of understanding px to mean 79, operating
on any function to the left of ps.

Returning to the Lagrange function, we note that the only
terms of first degree which can be contained in it are of type
cI‘\p+cI‘xp, ¢ being some arbitrary universal constant. But
the variation of such terms only lead to the addition of a
constant in certain of the equations of motion, and by them-
selves lead to nothing interesting. Linear terms of the type
T*d;y in the Lagrange function can be ignored, since bemg
perfect differentials their integrals can be transformed im-
mediately into surface integrals and contribute nothing to
the equations of motion.

We construct next the quadratic terms in ¢ in the
Lagrange function. These can be divided into three
classes, the first class consisting of all terms of the type
VoW, OF Yoy, OF YsPib,, the second class of all terms
of the type Yo, or Y.pif,, and the third class of all
terms of the type ¥.¥, or ¥,pwb,.

First consider only terms of the first class. Any sum
of terms of the type ¥+, can always be written in the

form Yty where v is a X »-matrix.® Since the Lagrange

8 A dagger affixed to a matrix denotes its Hermitian conjugate,

thus ¢f. A curl on top of a matrix denotes its transposed, thus .
A bar over a matrix denotes its complex conjugate.
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function must be real, Y1y is either always real, in
which case v is Hermitian, or if not, we must add its
complex conjugate Y'y¢ to the function. But vy
=yt so that in effect we have in the Lagrange func-
tion ¢f(y+v"¢. We then simply write v in place of the
Hermitian matrix y++v1. Thus, the matrix ¥ must be
Hermitian. Moreover, in accordance with postulate 1’
this expression must be an invariant for all transforma-
tions of the type (2). Hence, the matrix vy must satisfy

TWT=~ 4)

for every transformation of ®. Next consider terms of
the type ¥.pu,. All such terms can be written in the
form yiy*pi, where the v* are four v»Xw-matrices.
These matrices must be Hermitian again. For

Yiviph = pr (i) ¥ iy iy (5a)

In order to ensure that the.Lagrange function is real
we must add the complex conjugate, namely,

— oY) YDy (Sb)

But ¢tpryy=yiv*tpp. Thus, in effect one again has
Yi(y*+v ) pp in the Lagrange function. The y* are
therefore necessarily Hermitian matrices again. In this
case, Yiy® is a real number and therefore the first
terms in (5a) and (Sb) cancel each other. They would
in any case contribute nothing to the equations of
motion as they are perfect differentials. Moreover,
terms of the type Yiv*pup and Yipiy*y are equivalent
as far as the variation principle is concerned. Thus, all
terms of the first class can be written in the form

Vi Py, (6)

where v and the four v* are Hermitian matrices. It
can be shown now that all quadratic terms in ¥, including
those of the second and third class, can be written in the

form (6).

Consider the quadratic terms of the type Yotibp in the
Lagrange function. All such terms can be written in the form
I o, where it can be shown by an argument smnlar to that
used above that #* must be skew-symmetric: *= —qF. To this
term must be added its conjugate complex Jn*pp. Writing
Y=u-+1iv where # and v are two real column matrices of
y-rows each, and introducing a new one-column matrix
¢=u+ v with 2»-rows it is easy to see that

I prb -t ot =1  prop

k_( wit iy

C=Nitk =¥ — ()

is a 2vX 2v Hermitian matrix. It follows that all terms of the
type considered can be written in the form of the first term in
(6) where now the components of the matrix ¢ are all real
instead of complex. All such terms can therefore be included
in an expression of the type (6) where some of the components
of ¢ are purely real, and it therefore constitutes a particular
case of the more general expression (6). The same holds for

all terms of the type ymy~+¥ny¥ which can be written in the
form ¢l¢e.

where
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Postulate 1’ regarding relativistic invariance now
requires that under any transformation of the type (1)
and (2) the v* should transform as:

Tiy*T =ty @)

Just as in the case of the I's, there may be several
linearly independent matrices yqy, v, - -+ satisfying
(4), and therefore as many linearly independent terms
of the type Yy multiplied by arbitrary universal
constants can be introduced in the Lagrange function.
The v in (6) is to be understood as a sum of all these,
the universal constants being absorbed therein. A
similar remark applies to the v* in (6).

The v and v* in (6) are arbitrary to the extent of
equivalence. If ¢ be any non-singular »X »-matrix, then
the similarity transformation

V'=ay (8a)
transforms the 4’s to the equivalent forms
v'=alva, y'*=alve, (8b)

and in consequence of (4) and (7) the matrices of the
representation ® are transformed to the equivalent
form

T'=a"Ta. (8¢c)

The matrices v, v* may form an irreducible set under trans-
formations of the type (8). In that case the only arbitrariness
that still remains, but for equivalence transformations of the
type (8), is that v may be multiplied by an arbitrary real
factor x. It is convenient to choose such a factor to have the
same dimensions as p, that is, of a reciprocal length, so that
the matrices v and v* may be treated as of the same dimen-
sions, or rather, as dimensionless quantities. An arbitrary real
factor ¢ mulitplying the four v* would be trivial since it could
be removed by replacing ¢ by V|c|¢, and this would simply
result in a change of the factor multiplying v. The v* cannot
be multiplied by different factors since they are connected by
relations of the type (7).

If the set of matrices v* and v is reducible, then it must be
fully reducible under transformations of the type (8), that is,
expressible as a direct sum of irreducible sets. This simply
follows from the fact that the 4’s are Hermitian matrices.
In that case (6) breaks up into a sum of a number of expres-
sions of the same type, each involving a separate set ¥y,
Y(2), -+ of the components of y. However, such a decom-
position is not of significance unless the representation ® is
likewise decomposed in a corresponding way, for otherwise
it would not be relativistically invariant. Thus, the physically
significant reduction is when the matrices v as well as the
representation ® decompose into a direct sum of irreducible
sets, corresponding to the existence of a number of inde-
pendent types of physical entities. The interesting question
however remains open as to whether five matrices ¥ and v
satisfying (4) and (7) are always such that whenever they de-
compose into a direct sum of irreducible sets, the representa-
tion B can be simultaneously decomposed to correspond.
We shall assume that the v’s occurring in (6) are in fact of
this type, so that they can be considered as the direct sum of
irreducible sets each independent of the other.

We can now establish

Theorem 1. A non-singular Hermitian vXv-matrix D
always exists such that
TtDT=D 9
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for every matrix T representing a transformation of the
orthochronous Lorentz group £'.

To see this we make a transformation of the type
(8) so that the representation ® appears in the fully
reduced form (3), each representation on the right of
(3) being irreducible. Now it is well known that for
every irreducible representation ®(n,m) of the otho-
chronous Lorentz group, a non-singular Hermitian
matrix D(n,m) exists which has the property T'f(n,m)
X D(n,m)T(n,m)=D(n,m) where T(n,m) is the matrix
corresponding to 7 in this representation.” This matrix
D(n,m) is uniquely defined but for multiplication by an
arbitrary number. The matrix D in (9) is just a direct
sum of all such matrices D(n,m) and is arbitrary only
to the extent that each one of its sub-matrices can be
multiplied by an arbitrary numerical factor c,

D=cD(nm)+c'Dn'm)+ ---. (10)

Thus, whenever the representation ® is brought to its
fully reduced form (3), so also is D brought to the corre-
sponding form (10). The matrix D, being non-singular,
has an inverse.
We can now define five new matrices a* and 8 through
the relations
(1)

v*=Da¥, y=Dp

and obtain from (6)
Theorem 2. The most general quadratic terms in ¢ in
the Lagrange function can be written in the form

YiID(o*pit-Ba)d, (12)
where the five matrices oF and B transform according to
T T=1t*a!, TB8T=4, (13)

and D is a non-singular Hermitian matrix transforming
according to (9).

Equation (13) follows from (4), (7), and (9). Further,
the Hermiticity of 4%, v, and D leads to the relations

a*tD=Da*, BtD=Dg. (14)

The advantage of working with the o’s and B3 instead
of the v’s is that for any product of the &’s and S, say
aklgk2. . . we have the relation

T-lakighs. - - T= (T-amT) (T T).- - -

==tllk1tlgk2- coaligle. . °

(15)

whereas no such relation holds for the v’s since 7't and
not 7! appears on the left of (4) and (7). The &’s and
B and their sums and products form a relativistically in-
variant algebra which is easier to study than the algebra
generated by the +4’s which is not relativistically in-
variant, although the 4’s themselves are in the sense of
Egs. (4) and (7).

7 The existence of this matrix D(n,m) corresponds to the fact
that by contracting the indices of a spinor with those of the con-
jugate complex spinor one can form a real absolute invariant of
the orthochronous Lorentz group £°. It is important to note

that D(n,m) can be, and has to be, so chosen that (9) holds also
for the orthochronous improper transformations.
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Any representation ® of the orthochronous Lorentz
group £ is determined completely by its nucleus con-
sisting of the six infinitesimal transformations I*! skew-
symmetric in the indices % and /, and the matrix R,
representing the transformation which reverses the
directions of the three-space axes. The six I’s satisfy
the well-known commutation relations

[I’ii’lkl] —_ — glk[]l_*_g’bl]]k__’_g]k]ll_ gillik’
where [a,b] denotes ab—ba. Conversely, any six matri-
ces satisfying (16) and

TFIR,=R,I*, I%R,=—R,I%,

determine a representation of the orthochronous Lorentz
group. The relations (17) are but a special case of

T 4T =14, T, (18)
T being any matrix of the representation. As is well

known, the o’s, 8, and I’s satisfy the commutation
relations

(16)

k=123,

[ad I¥]= gikql— gtk (19a)
[B,1%]=0,
which follow from (13). Also,
[ﬂ)R3]=07 [OLO,.R3]=O,
a*Ry+ Ria*=0, k=1,2,3. (19b)

The general structure of the o’s has been given by
me in an earlier paper.® We first consider the repre-
sentation ® brought to its fully reduced form (3), and
write the corresponding sub-matrices of o* in the obvi-
ous notation (#,m|a*|n’;m’). Then it has been
shown in the paper quoted that every sub-matrix
(n,m|c®|n';m") must be zero unless #'=n=1, m'=m, or
n'=mn, m'=m=1, the usual condition #»’ 2m’ >0 being
always fulfilled. An exception occurs in the case m=1%,
the sub-matrix (1,%]|a*|#,3) being not necessarily zero,
A consequence of (14) is that

(n';m' || n,m) =D~ (' ;m") (' ;m | @t | ,m) D (n,m)
=D (n';m')(n,m|*[n';m")D(n,m) (20)

showing that (w',m’|a*|n,m) is zero if and only if
(n,m|a*|n’,;m’) vanishes.

The matrix 8 commutes with every matrix of ® and
hence whenever ® is in its fully reduced form (3),
(n',m'|B|n,m)=0 unless n'=n, m'=m. These non-
vanishing sub-matrices of 8 must be arbitrary multiples
of the unit matrix since the representations ®(#n,m) are
irreducible. 8 can therefore always be brought to the
diagonal form when @& is in the form (3).1° These arbi-

8 H. J. Bhabha, Rev. Mod. 17, 200 (1945).

9 This relation corresponds to (66) and (67) of the above-
mentioned paper or to (30) of the present paper.

10 If the same representation ®R(n,m) occurs more than once in
the reduction (3), then all the non-vanishing sub-matrices of 8
need not be the diagonal ones. However, even in this case it can
be shown that by a suitable transformation 8 can be brought to
a form in which its only non-vanishing sub-matrices are on the
diagonal, at the same time preserving the fully reduced form of
® and of the corresponding form (10) of D.

an
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trary multiplying factors can all be absorbed into D
since D is arbitrary to this extent, so that by a suitable
choice of D we can always arrange that 52=4."

Theorem 3. A transformation exists which turns 8 into
an idem potent matrix satisfying 32=p. Its only eigen-
values are 0 or 1. If it is non-singular, it is the unit
matrix.

As in the case of the v’s, the only form of reducibility
which is of interest is when the o’s, I’s, and R, form a
reducible set. I think it likely that such a set is always
fully reducible, if it is reducible, but the statement
remains to be proved. In any case, we shall asume that
for the equations of interest in physics, this statement
is true, so that the quadratic terms in (12) become the
sum of a number of independent parts. We label quan-
tities connected with each such part by a Greek index
in brackets, thus: a, Y, etc.

It follows from the three preceding paragraphs that
for an irreducible expression of the type (12) all the
representations ®(n,m) occurring in ® have only in-
tegral values of #,m or only half-odd integral values.
We say the former describes a particle of integral spin,
the latter a particle of half-odd-integral spin.

Even if the whole set of 11 matrices is irreducible,
it does not follow that the &’s by themselves form an
irreducible set. Indeed, examples can be given in which
it is not so, though in the equations which have been
studies so far the a’s do form an irreducible set. When
the o’s form an irreducible set it is possible to express
every matrix of the same degree as a polynomial in
them, and this is true in particular for the I’s and R,.
The transformation properties of products of the o’s
as given by (15) and of the I’s as given by (18) then
requires that the connection should take the form!!

]kl=2(a'---a’°--jal‘"a'—), (21)

where the dots stand for an unspecified number of o’s,
the index of each such « being contracted with that of
another in the same term. The minus sign in the bracket
indicates that a similar term with % and / interchanged
is to be subtracted. The summation is over all terms of
this type multiplied by numerical coefficients. This
statement remains true when the o’s generate a semi-
simple algebra, as is the case when they are the direct
sum of irreducible sets of matrices.

The variation with respect to ¥ of the integral of
(12) over a four-dimensional volume leads to the
equation

(eFprt-Bx =0, (22)

where the matrix D has been eliminated by multiplica-
tion with D! from the left. The equation for ¢! is ob-
tained by taking the variation with respect to ¢ and is
the Hermitian conjugate of (22). It is also the adjoint
of the equation for ¢.

It can be deduced from (22) and its Hermitian con-

11 Harish-Chandra, Phys. Rev. 71, 793 (1947).
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jugate that the real four-vector

sk=yiDa*y (23)
satisfies the conservation equation
drst=0 (24)

and can therefore be interpreted as the charge-current
vector of the system. Similarly, it can be deduced from
the dependence of the variation of the Lagrangian on
variations of the boundary of the region of integration
that the tensor

Trl=ytDa'pty (25)
satisfies the conservation equation
9,T%'=0. (26)

It can therefore be interpreted as the energy-momentum
tensor of the field. It has been shown by Pauli'®®® that
it can be made symmetric in £ and / by using the prop-
erties of the angular momentum tensor of the field.

III. INTERACTION TERMS

Next consider the cubic terms in ¢ in the Lagrange
function. The simplest way of constructing these is to
take a vector quadratic in ¢ of the type (23) belonging
to an irreducible part of (12), say ¥y, where the
lower index (u) denotes the sub-matrices of ¥* corre-
sponding to the irreducible part, and contract it with
one of the vectors linear in ¥ mentioned at the begin-
ning of Section II which picks out components of ¥
belonging to another independent part of (12). Thus,

ey w ) (T o), (27a)

where e is an arbitrary universal constant, is a term of
the third degree in ¥ which may be added to the La-
grange function. If it is not real, then its complex con-
jugate must be likewise added. The effect of a term of
this sort is that the sets of components of ¥ namely
V) and ¥ () which were determined separately and in-
dependently of each other by two distinct sets of equa-
tions as far as the quadratic terms in (12) are con-
cerned, now become connected and influence each other.
Thus, all terms of the third or higher degree may be
referred to as interaction terms. The interaction of
electrons with the electromagnetic field is of this type.

If there are two independent parts in (12) with the
same transformation properties, then we could mani-
festly combine the part ¢, of the wave function cor-
responding to one, with the part ¥, of the other to
form a vector ¥y, and contract this with a linear
vector belonging to a third part, say, I'(»%, thus
getting a term

(‘:M'Y(uv)k‘l‘) (F () k‘/’) . (27b)

A term of this type involves the interaction of three

12 W. Pauli, Rev. Mod. Phys. 13, 203 (1941).
3 H. J. Bhabha, Proc. Ind. Acad. Sci. A21, 241 (1945).
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different physical entities. The usual interaction of
mesons with the proton and neutron is of this type.

Interaction terms of the fourth degree between two
different entities are always possible, for one can always
add to the Lagrange function the invariant

Wy ) @y ). (28)

It may be possible to introduce an interaction of this
form between four different physical entities, as for
example, W1y @) @1y o). The original interaction
between electrons, neutrinos, protons, and neutrons in-
troduced by Fermi in the theory of the 8-decay was of
this type.

We have so far mentioned interaction terms in which
each quantity in the product is a vector, but this
is “clearly quite immaterial. A quadratic quantity
Yy ¢ transforming according to some irreducible
representation ®(n,m) may be contracted with a linear
term I'(,)"" "'y transforming according to the same repre-
sentation to introduce a third degree interaction term

" in the Lagrange function. A similar remark applies to

terms of the fourth or higher degree. The differential
operator p, may also appear once in any interaction
term, but our basic postulates would exclude it appear-
ing more than once in any term, or a differential of
higher order than the first occurring. This remark has
a bearing on modifications of Fermi’s theory of the
B-decay which have been considered by several authors
and would exclude most of the proposed modifications
of the interaction.

It may be possible to introduce third or higher
degree terms in the Lagrange function involving only
one irreducible set, say ¥, of the components of .
For example, fourth degree terms of the type (28) with
p=v can invariably be introduced in the Lagrange
function. Higher degree terms of this sort are of an
essentially different nature from the interaction terms
that have been considered so far. For in the case of the
latter, the system as a whole still possesses particular
solutions in which all the components of y are zero with
the exception of one irreducible set, and this set is then
just a solution of the corresponding linear equation (22).
The consideration of the solutions of the linear equation
(22) derived only from the quadratic terms (12) in the
Lagrange function is therefore of physical significance.
An example is provided by the plane wave solutions of
the Maxwell field which still remain exact solutions of
the system as a whole, including interaction with
charged particles when no such charged particles are
present. On the other hand, the third or higher degree
terms involving only one irreducible set of the com-
ponents of ¢ introduce essential non-linearities in the
equations, and the consideration of solutions of the
linear equation (22) for such components of ¥ would
have no physical or mathematical significance, since
there are no circumstances -in which the effect of the
higher degree terms can be neglected. Such terms
however do not seem to have played any part in physics
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so far and,it may be that they do not correspond to
anything in nature. The present approach to the
problem therefore shows the logical significance of
linear equations of the type (22), allows a distinction to
be made between the usual non-linear inreraction terms
and terms which would introduce essential non-linear-
ities in the equations, and provides a justification of the
usual methods of perturbation theory.

The remarks of the preceding paragraph are true
classically, but have to be modified in quantum theory
due to the zero point fluctuations of the field and the
process of virtual pair-creation. However, the dis-
tinction between (non-linear) interaction terms and
essentially non-linear terms is so deep mathematically
that one would expect some essential features of this
distinction to be preserved even in the quantum theory.

When we are confronted with a situation in which a
number of different physical entities transform into
each other, as for example, in meson decay, the question
arises as to what really constitutes an elementary
physical entity. The present approach allows a logical
answer to be given to this question.

Definition 1. An elementary physical entiry is one
whose behavior is determined by one of the independent
and trreducible parts in (12), that is, in the quadratic
terms in the Lagrange function. Equivalently, it is deter-
mined by an irreducible equation of the type (22).

This is the least that can be demanded of any physical
entity that is to be called elementary, for if this condi-
tion is not satisfied, then the quadratic terms in the
Lagrange function and the corresponding equations can
be split into two independent parts and sets, respect-
ively, which determine their parts of the wave function
independently of each other. The further discussion
will show that this criterion for an elementary physical
entity is necessary but not sufficient.

A further sharpening of the concept of irreducibility
and therefore of an elementary physical entity is pos-
sible. When the interaction terms in the Lagrange func-
tion are neglected, the different states of the same
physical entity in the sense defined above cease to be
connected with each other. By the state of a physical
entity one means here a solution of (22). It would be
absurd, however, to regard the different states as
representing different physical entities simply because
no transitions between them are possible in the absence
of interaction. A state is not a relativistically invariant
concept, and one state can be transformed into another
by simply changing the frame of observation. We can
therefore make the sharpened

Definition 2. An elementary physical entity is the en-
semble of all solutions of Eq. (22) which can be irans-
formed into each other by transformations of the full
Lorentz group, that is, by an ensemble which is invariant
and irreducible for all such transformations.

If the group mentioned in this definition were sub-
stituted by the orthochronous Lorentz group, then the
positron and electron would become two distinct physi-

BHABHA

cal entities, even though the same according to defini-
tion 1. It will, however, be shown in the next section
that every equation of the type (22) which is invariant
for the orthochronous Lorentz group £' must also be
invariant for the full group so that it is legitimate to
use the full Lorentz group in the definition 2 of an
elementary physical entity. The electron and positron
are then to be considered as different states of the same
physical entity, but the states of different rest mass of
a physical entity which is elementary by the definition
1 are to be considered as different physical entities by
definition 2. The ensemble of states which is invariant
for transformations of the full Lorentz group provides
the representation space of a non-trivial representation
of the inhomogeneous Lorentz group, that is, the group
consisting of all Lorentz transformations and all trans-
lations of the origin of the coordinate system.!* Defini-
tion 2 is equivalent to the statement that an elementary
physical entity is constituted by an ensemble of states
which provides an irreducible representation of the in-
homogeneous Lorentz group.

IV. PROOF OF THE EXISTENCE OF THE
ANTIPARTICLE. SPIN AND STATISTICS

It has only been postulated that the formalism shall
be covariant for all transformations of the orthochron-
ous Lorentz group £'. We now prove

Theorem 4. Every equation of the form (22) is covariant
for the full Lorentz group £ if it is covariant for the
orthochronous Lorentz group £'.

The transformation » which reverses the directions
of all four axes, and therefore of the time component
x% of a time-like vector x*, commutes with all other
transformations of the group £. Every transformation
of £ is obtained by multiplying the transformations of
&' by 7, and to prove the theorem one has to prove
that a »Xv-matrix R can be found which has the prop-
erties required of the representative of 7.

An irreducible representation 9, ; of the orthochron-
ous proper Lorentz group £,' is labeled by two posi-
tive members ¢ and j each of which may take on any
integral or half-odd-integral value independently of
the other. The irreducible representation ®(z,m) of
£1 decomposes if m>0 into two irreducible repre-
sentations D; ;4D ; of the proper group £.! where
i=31(n+m), j=%(n—m). On the other hand, ®(x,0)
provides the single irreducible representation /s, ns2

of £.7. As before, we denote the sub-matrices of R

with regard to this decomposition by (¢,7| R|4’,7") and
define the matrix R by
0if ¥4, 7'*7,
1(3,7) if i=7', j=7" and ¢
(t,7|R|7,5")= is an integer (29)
—1(,7) if i=4/, j=j and 7 is half
an odd integer
4T am indebted to Professor W. Pauli for this information,

and for a very useful discussion on the subject of irreducibility
in this context.
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where 1(4,7) denotes the unit matrix having the same
number of rows and columns as the representation
D;,;.1* Then R*=1 and R commutes with every matrix
in ® representing a transformation of the sub-group
£.1. Moreover, it commutes with R if n=14+7 is an
integer and anti-commutes with it if # is a half-odd-
integer. Since the representations with # integral are
single valued while those with » half-odd-integral are
double valued, R has the correct properties for a repre-
sentative of the matrix . Thus, with the addition of the
matrix R the representation ® can be extended into a
representation of the same degree of the full group £.
Moreover, with regard to the present decomposition the
only non-vanishing sub-matrices of o* and g8 are®

@,7|8]7,7) =i, j'=j (30)
Gjler|?,f) ¥'=ix}, j'=j+}
It follows from (29) and (30) that
o*R=—Ra*, SR=RS, @31)

proving the theorem.

The matrix R,=RR, represents the transformation
which reverses the direction of the time coordinate,
leaving the other coordinates unchanged. Suppose (22)
possesses a static solution of the type

y=eiuig,

where the vector ¢ is independent of the time ¢=x% If
we now reverse the direction of the time axis, Eq. (22)
remains invariant as stated in the previous theorem,
while the solution (32) is transformed into

Y'=elE0y  where ¢'=Ryp.

32)

33)

This proves

Theorem 5. If Eq. (22) possesses a static positive fre-
quency solution of type (32) then it also possesses a nega-
tive frequency solution of type (33). These negative fre-
quency solutions must be interpreted to describe the
antiparticle.

The proof just given shows that within the framework
of our basic postulates every particle must have an anti-
particle. So far no negative proton, for example, has
been recognized in nature, but this is not a proof that
it does not exist since even theoretically the chance of
its occurring is small. However, if it should be established
that any of the elementary particles, say the proton, has no
antiparticle in nature, then our proof shows that the basic
equation could not be of the type (22), and it would be
necessary to abandon at least one of the basic postulates
on which present quantum theory is buill.

15 That the only non-vanishing sub-matrices (4,7|R|%,7) must
be multiples of the unit matrix follows from the fact that R must
commute with every I*! whether the representation 3j, ; is single-
valued or double-valued.

16 The form (29) is uniquely determined by the first relation
of (31) but for a multiplying factor if the a-matrices by them-
selves form an irreducible set.
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It remains to consider what happens when R is sub-
stituted in place of T in (9). A spinor symmetric in 1
undotted and j dotted indices transforms according to
the irreducible representation D, ; of £47. Its complex
conjugate transforms like a spinor with ¢ dotted and j
undotted indices, that is, according to D;, ;. Hence, with
respect to the present decomposition the only non-
vanishing sub-matrices of D are (4,7| D|j,i). It follow
from (29) that :

RiDR= [+R for i4+j=n an integer

| —R for i+j=n a half-odd-integer. (34)

Hence, in a representation of £ every matrix T repre-
senting a transformation of the orthochronous group
£7 satisfies (9), while every matrix representing an
antichronous transformation of £ satisfies (9) with a
minus sign on the right-hand side. It follows that in
corresponding states ¢ and ¢’ of positive and negative
frequency the charge density YDa®% at any point has
the same sign if the spin is a half-odd-integer and the
opposite sign if it is an integer. Correspondingly, the

—.energy density 1D’ —1(3/9¢) I given by (25) has the

opposite sign for half-odd-integral and the same sign
for integral spin.

This leads to

Theorem 6. In corresponding states of positive and
negative frequency the total charge has the same and the
lotal energy the opposite sign if the spin is half-odd-in-
tegral, while the total charge has the opposite and the total
energy the same sign if the spin is integral.

From this theorem one can deduce the important
corollary : .

Neither the energy density nor the total energy can be
positive definite for particles of half-odd-integral spin and
neither the charge density nor the total charge can be posi-
live definite for particles of integral spin.

The appearance of states of negative total charge or
negative total energy requires one to treat the wave
function ¢ and its Hermitian conjugate ‘as operators
and not as ordinary functions of the coordinates. Since
every wave function can be expressed as a sum of all
its static solutions of the type (32) and (33) multiplied
by suitable coefficients, this requires that these coeffi-
cients or amplitudes should themselves be treated as
operators. If it is required that the number of particles
of the given type in each such state be a positive in-
teger or zero, and that the probability of any one of
these alternatives occurring is positive, the sum of all
these probabilities being 1, as required by the usual
concept of probability, then it can be proved that one
has to work with a positive definite metric in this
amplitude space. The difficulty regarding the states of
negative energy of particles of half-odd-integral spin
can then be removed only by the use of Dirac’s well-
known hole theory requiring the particles to obey the
exclusion principle, provided the total charge is positive
for all positive frequency states. On the other hand,
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Pauli'” has shown that for particles of integral spin
quantization in accordance with the exclusion principle
leads to a mathematical inconsistency. This leads to
the well-known conclusion: A physically sensible theory
capable of a probability interpretation is possible for
particles of hald-odd-integral spin only if the particles
satisfy Fermi-Dirac statistics, and for particles of integral
spin if they satisfy Einstein-Bose statistics.

The theory therefore requires a connection between the spin
of an elementary particle and its statistics which appears to
to be in agreement with nature. However, a somewhat un-
satisfactory feature of this demonstration, in my opinion, is
the circumstance that the connection between particles of
half-odd-integral spin and Fermi-Dirac statistics is due to the
necessity of a physically sensible interpretation—mathe-
matically the theory could be quantized according to Bose-
Einstein statistics—while the connection between particles
of integral spin and Bose-Einstein statistics is due to an en-
tirely different type of reason, namely, the mathematical im-
possibility of quantizing the theory according to Fermi-
Dirac statistics.

The theoretical connection between spin and statistics
disappears altogether if one does not work with finite repre-
sentations, that is, with a wave function  in (1) having only
a finite number of components. As is well known'®1? there
exist “infinite” representations of the Lorentz group, that is,
representations by matrices having a discretely infinite num-
ber of rows and columns. These representations are all uni-
tary, whereas the finite representations can never be unitary.
It has been shown by Dirac'® and Harish-Chandra'® that
these infinite representations can also be made the basis of
wave equations of the type (22). Due to the unitary character
of the infinite representations, particles of integral and half-
odd-integral spin can then be quantized according to Bose-
Einstein or Fermi-Dirac statistics at will.

When one comes to review the experimental position,
one finds that definite evidence is extraordinarily
meager. One knows definitely that the electron, proton,
and neutron all have half-odd-integral spins and satisfy
the Fermi-Dirac statistics. The present evidence, de-
rived from non-relativistic experiments as far as con-
cerns the proton and neutron, is that each of these
particles has a spin 3%. The experimental evidence then
simply reduces to the more limited statement that
every elementary particle of spin 3% satisfies Fermi-
Dirac statistics. Up to now there is no positive evidence
that elementary particles of half-odd integral spin
greater than 3% exist in nature, though in my opinion
the possibility remains that the proton, for example,
may possess unstable states of higher spin and higher
mass into which it might be thrown after a violent colli-
sion with another particle while moving with an ex-
tremely relativistic velocity.

The evidence with regard to particles of integral
spin is even more meager. One knows definitely that the
photon has an integral spin % and obeys Bose-Einstein
statistics. The photon, however, has no rest mass.
There is so far no definite evidence that an elementary
particle of finite rest mass and integral spin exists in

17 W. Pauli, Phys. Rev. 58, 716 (1940).

18P, A. M. Dirac, Proc. Roy. Soc. A183, 284 (1945).
19 Harish-Chandra, Proc. Roy. Soc. A189, 372 (1947).
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nature, although there are theoretical reasons for be-
lieving that some of the mesons might be of this type.
About the statistics of the mesons absolutely nothing
is known experimentally and only theoretical inferences
can be made.

V. GENERAL COMMUTATION RULES OF THE
o-MATRICES. REST MASS

Introduce the abbreviations

P=akpy, p*=ghlprpi=prp*. (35)

In this section the p; stand for any four real numbers.
Put

Y=exp(ipix*)o, (36)

where ¢ is an one-column matrix whose components
do not depend on the coordinates.

P being a matrix of finite degree, satisfies a minimal
equation® of finite degree whose coefficients must be
polynomials of the four numbers p; since P itself is a
linear function of p;. Moreover, (13) shows that a
Lorentz transformation transforms P into

P'=akp,=TPT, @37

so that P’ satisfies the same minimal equation as P.
The minimal equation is therefore invariant for all
Lorentz transformations, and its coefficients must there-
fore contain p; in an invariant combination. The only
such invariant which can be formed from p; is $* and
functions of it. Since the equation must be homogeneous
in the p; and the invariant of lowest degree is the quad-
ratic expression ?, it follows that the equation must
contain only even, or only odd powers of P. Every such
equation can be factorized into linear factors of P? (in
the field of all complex numbers). It can therefore al-
ways be written in the form

(P2—a?p?) (PP —a?p?) - - - =0 (38)

if its degree d is even, or P times (38) if d is odd, the a’s
being certain numbers independent of pz. Equation (38)
can be written in the form

pipiprpr - - (la’—ar’g)(afal—alg*")- - - =0. (39)

Since this is a polynomial of degree d in the four num-
bers po, p1, s, and ps which holds for arbitrary values
of these numbers, the coefficient of every term of it
must vanish. This yields :

Theorem 7. Every set of a-matrices must salisfy an
algebraic equation of degree d of the type

S (ol arg)(atal—aigH)- - =0,  (40)

if d is even, or o times (40) if d is odd, where 3 denoles
a summation over similar terms with all possible permuta-
tions of the indices i, 7, k, 1,--- and ai®, a?, --- are
certain numbers. d is the degree of the minimal equation of
any matrix of the set.

20 The minimal equation of a matrix is the algebraic equation of
least degree satisfied by that matrix.
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In particular, the minimal equation of o is obtained
by putting all the indices equal to & in (40), and is

{(ak)Z_alzgkk} {(ak)zazzgkk} e =0,

if 4 is even, or o times (41) if 4 is odd.

Consider first those equations of the form (22) in
which B is non-singular, so that it can be replaced by
the unit matrix according to theorem 3. Then for every
solution ¢ of (22),

(P+x)¥=0, whence Po=(—x)". (42)

Operating on a solution ¢ with the left-hand side of
(38) replaces every P in it by —x. Since the resulting
operator is then a multiple of the unit matrix, it must
itself vanish by (38). Hence,
(32— a2p?) (xE—asp?) - - - =0

if d is even, or x-times (43) if d is odd, proving

Theorem 8. Equation (32) (with B=1) has plane wave
solutions of the type (36) only if p* has one of the values
x2/ a2, x3/a?, - - - where a1, d=as, - -+ are the non-zero
etgenvalues of o°. Conversely, for every such eigenvalue of
a® a solution of the type (36) exists.

To prove the converse, put p*=x%/a,* in (38). Then
(38) contains a factor P?—x? and it can be written

(P+x){ <P—x>(P2—gx2) (PZ-—Z—j:—xQ) - }:o.

Any column of the matrix in curly brackets® yields the
required solution of (32) for which p*=x%/a,%

The rest mass of a particle is defined as the positive
root of the eigenvalues of the operator 2. One can then
draw the following conclusions from theorem 8.

Lemma 9. If a particle is to have only real values of the
mass, then all the eigenvalues +ai, as, -+ - of o must
be real.

Lemma 10. If the particle is to have only one real mass,
then o must have one and only one pair of non-zero real
etgenvalues £a, (which may occur several times).

Without loss of generality one may put e¢;=1 since
this can be achieved by changing the value of x and a
renormalization of y. The minimal equation of of is
then

(41)

(43)

{(@)*—1}(a")=0,

where 7 21, s 20 are non-negative integers.

Lemma 11. If the particle is lo have zero resi mass,
then B in (22) must be singular.

It may, but need not, be zero. Hence, all equations
for particles of zero rest mass are not obtained by
putting x=0 in the corresponding equation for a par-
ticle of finite mass, and irreducible equations exist in
which 8 is singular but not zero. It may be found later

(44)

21 H. J. Bhabha, Curr. Sci. India. 14, 89 (1945).

2 This matrix cannot be identically zero for it would mean that
P satisfied a minimal equation of degree d—1, contrary to as-
sumption.
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that in nature particles of spin greater than % can exist
if the rest mass is zero, but not'if it is finite.

Equation (38) being an identity in the py, holds even
when we put pr=—19;. Equation (43) is then to be
regarded as an operator equation satisfied by. every
component of the wave function ¢. Since p?=—9,0%,
it follows that every component of ¢ satisfies a differen-
tial equation of order higher than the second unlessr=1.

VI. THE EQUATION OF DIRAC

The work of the last section allows one to tabulate
the various relativistic wave equations according to the
degree of the minimal equation of their a-matrices. For
brevity we call the degree d of the minimal equation of
the a-matrices of an equation of type (22) the ‘‘alge-
braic degree” of the wave equation. One can regard an
equation as simpler than another if its algebraic degree
is less.

A minimal equation of degree 1 of the type (41)
leads to the trivial solution a’=a'=a?=0a*=0, and in
consequence no wave equation of the type (22) is
possible.

The next simplest case is an equation of degree 2.
Since a* and its Hermitian conjugate o*f are similar

by (14), if e, is an eigenvalue, then @, must be one also.

Hence, when the degree d is less than four, the only two
possibilities are in any case @, purely real or purely
imaginary. Without loss of generality one can therefore
put a;=1 for it will be shown below that the only other
alternative ;=1 does not satisfy postulate 1’. Equation
(40) then reduces to
a’aitalai=2g1. (45)
These are just the commutation relations of the Dirac
matrices. As is well known, a set of quantities satisfying
(45) has only one irreducible representation, namely,
by matrices with four rows and columns. By a use of
(45) every relation of the type (21) can be reduced to

I*'=¢(akal—a'ak), (46)

¢ being some number, and this is the simplest possible
connection between the a’s and I’s. Moreover, the
representation of the Lorentz group provided by the
transformations of the wave function ¢ is then the basic
spinor representation and is irreducible. It follows from
(13) that the matrix 8 in (22) must necessarily be a
multiple of the unit matrix. There is therefore one and
only one equation of type (22) for which the o’s satisfy a
minimal equation of degree 2, namely, the famous equa-
tion of Dirac. Our derivation shows that it has a unique
position in the scheme of relativistic wave equations, being
the simplest equation which is possible within the frame-
work of our basic postulates. As is well known it de-
scribes a particle of spin 3.

Since 8 has to be a multiple of the unit matrix in
this case, it must be zero if it is singular. We conclude :
There is only one possible equation for a particle of spin §
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and zero rest mass, namely (22) with x=0 and the o’s v

satisfying (45).

If a,=1 the sign on the right of (45) is reversed, and then
the one and only representation of the o’s can be so chosen
that « is skew-Hermitian while !, o2 and o3 are Hermitian.
It then follows from (14) that D must anticommute with «,
and commute with o, o2, and o3, whence D=1ia'a%3. But the
transformation 7, which reverses the direction of the three-
space axes is represented by a multiple ¢ of af from which
follows Rs!DRs= —¢ta(ia'a?ad)ca®= —&cD proving that (9)
can never be satisfied. The Lagrangian would therefore not be
invariant for all orthochronous transformations, contrary to
postulate 1’.

VII. EQUATIONS FOR PARTICLES OF SPIN 0 AND 1.
A NEW EQUATION :

The next simplest equations are provided by a set
of o’s satisfying an equation of the type (40) of degree 3,
namely, :

aialok+atakal+ ol o+ akotai++ ook i+ okodart

=2giiak+2gihait2gkial. (47)

This relation is more general than the Duffin commuta-
tion relation

(48)

although matrices satisfying (48) clearly satisfy (47)
-also. It can be deduced from (48) that

Lo, [afar []=gliak—gi*al. (49)

Further, it follows from (48) that the six quantities 7%
defined by (46) with c=1 satisfy (16) and (19a). These
DI’s can therefore be identified with the infinitesimal
transformations of the corresponding representation of
the Lorentz group.

Conversely, if the o’s satisfy (46) then together with
(19) and (47) we can deduce that they must satisfy (48).

It has been shown by Kemmer® that the algebra
defined by (48) has only two non-trivial inequivalent
irreducible representations. The one consisting of matri-
ces of five rows and columns leads to the so called
Klein-Gordon equation describing a particle of spin
zero. The other of ten rows and columns leads to the
so called Proca equation describing a particle of spin 1.

The circumstance that neither (48) nor (46) can be
deduced from (47) indicates that there must be irre-
ducible representations of the a’s satisfying (47) but
not (48) and (46). In (47) any particular matrix, say
a® occurs on the extreme left or extreme right in more
than one term, in contrast with (48). In consequence
(48) by itself does not enable one to move any par-
ticular o by two or more places to the left or right in a
product of o’s. The abstract algebra generated by alge-
braic quantities satisfying only (47) is therefore not
finite and one would expect there to be an infinite

2 N. Kemmer, Proc. Roy. Soc. A173, 91 (1939).

a’afak-{— a’“a’a“= guak_*_.gkzaz,
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number of inequivalent irreducible sets of matrices
satisfying (47), all except two of which will not satisfy
(48). Each such set must yield an algebraically irre-
ducible wave equation for an elementary particle of
spin 1 according to definition 1 (but not definition 2).
Every such particle possesses only one value of the rest
mass. _

One example of such equations is the following. Let
F®! be a skew-symmetric tensor. Define a vector 4*
and a skew-symmetric tensor A% by

xA¥= __a‘lpkl, XAklm=akFlm+alka+akal, (503)

where x is an arbitrary real number. Then the set of
equations defined by (50a) and

(0% A'—0'A*) 40 A* i xFFL=0 (50b)
describes a particle of rest mass x. The fourteen quan-
tities A*, Fkl AFim gl satisfy the equation (9:9*
+x)y¢=0. Writing Eqgs. (50) in the form (22) with the
help of four 14X 14 matrices oF, it is easy to verify that
the o’s satisfy (47). For example, (a*)3=gFa® and
(@24 alala+al(a’)?=al. But a’ala’#0, proving
that the matrices do not satisfy (48). Hence, the o’s
cannot be expressed as a direct sum of o’s satisfying the
Duffin commutation relations. The connection between
the I’s and the a’s cannot be (36) as in the cases treated
by Kemmer, even though we are concerned here with a
particle of maximum spin 1. The total energy is also
not positive definite.

As one goes to equations of higher algebraic degree,

. corresponding to particles of higher spin, the number

and variety of the possible equations increases rapidly.
It is, therefore, necessary to add further restricting
conditions to limit the number of allowed equations.
The example given above shows that if the equation of
algebraic degree 1 are to be restricted to the Klein-
Gordon and Proca equations, then one can achieve this
by imposing as further condition either (a) that the
connection (46) between the I’s and a’s shall always
hold, or (b) that either the total charge or the total
energy shall always be positive. The scheme that arises
on the basis of the restriction (a) has been fully in-
vestigated and leads to particles having several dif-
ferent values of the rest mass. Except for the three
equations for particles of spin 0, 3, and 1 it does not
include the equations for particles of higher spin given
by Dirac-Fierz-Pauli. The requirement (b) includes all
the equations of the Dirac, Fierz, and Pauli scheme and
many others besides, and the particles are not ele-
mentary in the sense of definition 2. This raises the in-
teresting question as to whether the scheme of equa-
tions can be limited to include only the equations of
Dirac, Fierz and Pauli by imposing suitable algebraic
conditions on the a-matrices.



