No. 5]

27. Geochemical Studies on the Carbonated Apatite Glimmerites from Damodar Valley, India

By Alok K. GUPTA,^{*)} R. W. LEMAITRE,^{**)} M. T. HAUKKA,^{**)} and Kenzo YAGI^{***)}

(Communicated by Takeo WATANABE, M. J. A., May 12, 1983)

Lamprophyres containing "leucite", have been reported to occur as dykes or sills, intruding into the Gondwana formations in and around Damodar Valley (Ghose, 1949; Banerjee, 1953), and the districts have been considered classical localities of leucite-bearing rocks in India (Chatterjee, 1974). Recently we made detailed studies on the geochemistry of these rocks, using the following rock samples:

S: from a drill core at Sudamdih, Dhanbad district, Bihar;

M-1, M-2, M-3: from drill cores at Mohanpur and

P: from a dyke at Poidih, both Burdwan district, West Bengal.

All these localities, included in Damodar Valley, are situated about 250–270 km NW of Calcutta.

Microscopically all the samples are characterized by variable proportions of phenocrystic phlogopite and apatite, and microphenocrystic ankerite and chromian spinel in the groundmass composed of phlogopite, apatite, ankerite, rutile, pyrite and devitrified glass. In addition priderite microphenocrysts occur rarely in Mohanpur rocks as accessory mineral. Phlogopite is always the most important constituent, whereas modal percentage of apatite is 8-30%, ankerite 8-18%, and spinel<5%. A thorough scan with the electron beams failed to show the presence of any leucite in all the samples. Thus the rocks from these localities in Damodar Valley are not leucitebearing as previously considered.

Bulk rock analyses obtained by using standard XRF technique (Table I) show remarkable features of these rocks; i.e., extremely low SiO₂ and Al₂O₃ contents, and high P_2O_5 , TiO₂, and K₂O contents. They are also high in some minor and trace elements such as Ce, Y, La (La>Y), Nd, Rb, Sr, Ba, and Zr (Table II), all of which are higher almost by one order than those of the average basalts (Frey *et al.*, 1978; Masuda and Aoki, 1979).

^{*)} Department of Earth Sciences, University of Roorkee, Roorkee, U.P. 247667, India.

^{**&#}x27; Department of Geology, University of Melbourne, Parkville, Victoria 3052, Australia.

^{***)} Hokusei Gakuen College, Shiroishiku, Sapporo, 061-01 Japan.

		•		- 0	
	S	M-1	M-2	M-3	Р
SiO_2	32.37	35.29	35.70	34.11	30.31
${ m TiO}_2$	9.32	4.25	5.94	6.56	7.33
Al_2O_3	9.84	5.54	5.99	9.08	6.61
$Fe_2O_3^*$	8.68	11.20	11.22	10.44	11.51
MnO	0.12	0.286	0.137	0.145	0.17
MgO	8.09	8.31	10.05	6.10	11.20
CaO	8.26	7.18	5.85	11.55	11.76
Na_2O	0.13	0.11	0.08	0.21	0.12
K ₂ O	7.09	3.42	4.69	4.90	2.82
Cr_2O_3	0.053	0.045	0.062	0.078	0.12
BaO	0.487	0.506	0.280	0.933	0.495
P_2O_5	2.93	6.32	2.42	5.18	3.53
SO₃	0.17	0.31	0.48	0.45	1.47
Ig. Loss	11.78	14.77	15.61	8.75	11.59
Minor &					
trace elements	0.86	1.502	0.823	1.171	1.070
Total	100.18	99.039	99.332	99.657	100.105

Table I. Chemical analyses of carbonated apatite glimmerites

Table II. Analyses of minor and trace elements of carbonated apatite glimmerites (ppm)

	S	M-1	M-2	M- 3	Р	Average basalts
Sc	27	31	20	33	29	23
Co	83	49	49	44	62	49
Ni	336	425	298	127	519	101
\mathbf{Cr}	181	154	212	267	411	
Cu	104	54	50	73	100	51
Zn	160	146	150	122	98	136
Ga	30	27	20	32	26	
Rb	151	130	129	90	113	24
\mathbf{Sr}	2431	7227	2723	5730	3032	417
Ba	4383	4554	2520	8397	4455	364
Ce	891	1675	643	925	1142	95
\mathbf{Zr}	845	1090	1362	824	1697	204
Y	79	137	66	86	80	39
La	495	1020	384	557	687	41
Nd	413	823	320	448	503	48
Th	46	58	32	30	66	6
Pb	47	118	46	62	61	

Representative EPMA analyses of rock-forming minerals; phlogopite (hydroxy-titanophlogopite), apatite (fluor-apatite), ankerite (dolomitic ankerite: $(CaCO_3)_{52\pm3}(MgCO_3)_{36\pm3}(FeCO_3)_{12\pm3})$, chromian spinel, priderite, K-feldspar, and rutile, are given in Table III. Compared to priderites from West Kimberley and Leucite Hills (Car-

	1	2	3	4	5	6	7
SiO ₂	37.94	0.00	0.00	0.00	62.91	0.00	0.00
TiO_2	8.41	0.33	0.03	79.27	0.51	8.83	97.30
Al_2O_3	10.11	0.20	0.02	0.10	16.82	4.25	0.06
FeO*	8.07	0.30	5.45	8.94	1.23	37.19	0.73
MnO	0.08	0.00	0.02	0.04	0.05	0.78	0.06
MgO	18.41	0.40	17.07	0.13	0.74	8.91	0.00
CaO	0.00	54.63	26.44	0.19	0.48	0.72	0.09
Na2O	0.15	0.03	0.00	0.14	0.13	0.02	0.02
K_2O	9.87	0.21	0.01	8.10	14.16	0.00	0.06
Cr_2O_3	n.d.	n.d.	n.d.	0.22	0.02	37.09	0.09
NiO	n.d.	n.d.	n.d.	0.09	0.10	0.06	0.08
BaO	n.d.	n.d.	n.d.	1.10	1.13	0.00	0.00
\mathbf{F}	0.25	5.01	0.00	n.d.	n.d.	n.d.	n.d.
Cl	0.08	0.02	0.02	n.d.	n.d.	n.d.	n.d.
P_2O_5	0.47	36.91	0.02	n.d.	n.d.	n.d.	n.d.
Total	93.84	98.04	98.32**	98.32	98.28	97.85	98.49

Table III. Microprobe analyses of rock-forming minerals of carbonated apatite glimmerites

*Total iron as FeO. 1: Phlogopite from M-2. 2: Apatite from S. 3: Ankerite from M-1. **Total contains CO_2 49.24%. 4: Priderite from M-3. 5: K-feldspar from P. 6: Chromian Spinel from P. 7: Rutile from M-3.

michael, 1967), those from Mohanpur rocks are much lower in BaO and FeO.

From these mineral assemblages and bulk compositions, the rocks under investigation can not be termed lamprophyres, such as kersantite, minette, or camptonite (Nockolds *et al.*, 1978), but should belong to the "glimmerites" described first by Larsen and Pardee (1929), and later by Holmes (1937), which consist mostly of various micas and some minor constituents. Since the rocks are high in apatite and ankerite, they may be designated as "carbonated apatite glimmerites".

Quenching experiments on four rock samples under atmospheric pressure and NNO buffer conditions showed that the primary phases, liquidi, and solidi are as follows:

S:	Leucite,	1305	and	1185°C,
M-1:	Leucite,	1245	and	1150°C,
M-2:	Olivine,	1250	and	1150°C,
M-3:	Leucite,	1242	and	1150°C,
P:	Olivine,	1235	and	1100°C.

The phases below solidi are the same in all the samples; i.e., leucite, olivine, clinopyroxene, rutile and Fe-oxides. It is to be noted that leucite always appears in these experiments, in spite of the absence of modal leucite. Experimental studies at variable pressures on synthetic leucite-bearing melts (Gupta *et al.*, 1976), and natural leucite-bearing tephrites and basanites from East Eifel, Germany (Gupta and Yagi, 1980) indicate that leucite should not crystallize from potassium-rich magmas at pressures above 3 kbar. Although the quenching experiments under atmospheric pressure suggest that the apatite glimmerites could be potentially leucite-bearing, the fact that leucite is not present in these rocks suggests that the crystallization of the glimmerites from a highly potassic silica-undersaturated magma took place under $P_{\text{fluid}} \simeq P_{\text{total}} > 3$ kbar, and the fluid was composed chiefly of H₂O and CO₂. Comparison of the chemistry of the chromian spinels found in these rocks with those studied under variable f_{0_2} -T conditions (Muan *et al.*, 1972; Sato, 1972) indicates that the parent magma crystallized under oxygen fugacities defined by NNO and FMQ buffers.

References

Banerjee, S. (1953): Indian Mining J., 1, 9-29.

- Carmichael, I. S. E. (1967): Contr. Mineral. Petrol., 15, 24-66.
- Chatterjee, S. C. (1974): Petrology of the Igneous and Metamorphic Rocks of India. Macmillan Co. of India, 539 pp.
- Frey, F. A., Green, D. H., and Roy, S. D. (1978): J. Petrol., 19, 463-513.
- Ghose, C. (1949): Quart. J. Geol. Mining Mineral. Soc. India, 21, 134-147.
- Gupta, A. K., and Yagi, K. (1980): Petrology and Genesis of Leucite-Bearing Rocks. Springer Verlag, Berlin-Heidelberg-New York, pp. 181-188.
- Gupta, A. K. et al. (1976): Proc. Japan Acad., 52, 469-472.
- Holmes, A. (1937): Trans. Geol. Soc. S. Africa, 39, 379-428.
- Krishnan, M. S. (1968): Geology of India and Burma. Higginbothams Ltd., Madras, pp. 322-343.
- Larsen, E. S., Jr., and Pardee, J. T. (1929): J. Geol., 37, 101-104.
- Masuda, A., and Aoki, K. (1979): Earth Planet. Sci. Lett., 44, 139-149.
- Muan, A., Huck, J., and Lofall, T. (1972): Proc. 3rd Lunar Sci. Conf. 1, 185.
- Nockolds, S. R., Knox, R. W., and Chinner, G. A. (1978): Petrology for students. Cambridge Univ. Press, pp. 203-215.
- Sato, M. (1972): Geol. Soc. Amer. Mem., 135, 289.