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Abstract.  A comparison is made between a hot-spot model and a recently
proposed oblate spheroid model (Böhm-Vitense & Van Dyk 1987) to 
explain the spectroscopic and photometric variations of α2 CVn. It is found 
that the spot model gives a better fit to the spectroscopic and photometric 
variations. The spot model requires five high temperature circular patches 
over the surface of the star. The positions of these patches agree well with 
those derived spectroscopically by Pyper (1969).
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1.  Introduction 
 
Among all the Ap stars, α2 CVn is the brightest (mv = 2.9) and one of the most observed 
peculiar stars. Its photometric variability was first reported by Guthnick & Prager 
(1914). α2 CVn also shows a variable spectrum and a variable magnetic field. An 
extensive study of this star was carried out by Pyper (1969). Pyper found the equivalent 
width of rare-earth lines varying with a period of 5.5 days. Its light variations and its 
magnetic field followed the same period. Using a slight variation of the Deutch (1958) 
model, Pyper identified four patches of iron-peak elements along the magnetic equator 
and one patch of rare earth elements near the negative magnetic pole. The spectral 
variations of α2 CVn and other Ap stars can easily be explained by Pyper’s model. 
Various other models have been proposed, e.g., the method suggested by Falk & 
Wehlau (1974) makes use of line profiles for harmonic analysis instead of equivalent 
widths as was done by Pyper. Another method was developed by Khokhlova (1975) 
and Khokhlova & Rjabchikova (1975). In this method the line profiles are computed 
by putting spots of various elements over the surface of the star. This method has been 
extensively used by Khokhlova and her collaborators. More recently Vogt & Penrod 
(1983) have developed a technique called ‘doppler imaging’ on similar lines and used it 
successfully to map the surfaces of late-type spotted stars. Vogt, Penrod & Hatzes 
(1986) have improved the technique by incorporating the maximum entropy method 
for the construction of surface images of stars. They have applied this method to Ap 
stars as well (Hatzes, Penrod & Vogt 1986). All these methods of mapping the stellar 
surfaces using spectral line profiles have clearly indicated the presence of spots on these 
stars. 

In order to describe the photometric variations in α2 CVn and other Ap stars, 
Trasco (1972) developed a model that required high temperature magnetic regions. 
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Trasco suggested that at least three hot spots are required to produce the observed 
light variations of α2 CVn. 

Recently Böhm-Vitense & Van Dyk (1987) have come out with a new model for 
explaining the light curves of α2 CVn. The model suggested by them is essentially an 
oblique rotator but the star is an oblate spheroid with the magnetic axis being the axis 
of symmetry. One might call it an oblique oblate rotator. They also assume a variable 
surface temperature. In this model the temperature at the magnetic poles is 1000 Κ less 
than that at the magnetic equator. As the star rotates, the combined effect of the 
variable surface temperature and the variable projected area of the star causes the 
observed light variation.

We describe below the spot models we have used for α2 CVn to explain the 
spectroscopic and the photometric observations of Pyper (1969) and Molnar (1973). 
We make a comparison between the results obtained by our models and those 
obtained by Pyper. We further show that the results obtained by our spot models are 
in better agreement with the observations than the results obtained by the oblate 
spheroid model of Böhm-Vitense & Van Dyk (1987).
 

2.  The spot model for spectroscopic variations
 
Pyper (1969) identified a concentration of iron-peak elements in four regions along the 
magnetic equator of the star. She called them group 2A, 2B, 2C, and 2D, respectively. 
She found rare earths to be concentrated near the negative magnetic pole; she called 
this group 1. Longitudes and latitudes of these groups, as determined by Pyper, are 
listed in Table 1, where group 1 is designated as 2E. Pyper did not specify sizes of these 
regions. But we can consider the size of the innermost contour of the constant 
equivalent width curve (Figs 12 and 13 in Pyper 1969) as the approximate size of each 
group. We have listed these sizes as well in Table 1. Using the spot parameters listed in 
Table 1, we tried to model the equivalent width variations observed by Pyper. This 
required computation of line profiles and measurement of their equivalent widths at all 
the observed phases. We divide the star into several thousand small areas— 
specifically, 20520 area elements. This is done by dividing the projected stellar disc into 
57 annuli and 360 sectors of 1 degree. We use 57 intensity profiles in all from the centre 
to the limb of the star. The line profile from each area is Doppler shifted according to 
the line-of-sight velocity of that area element. Summation of all such profiles then 
provides the flux profile and its area provides the equivalent width. This is done at each 
observed phase. This scheme of division of stellar disc into area elements is the same as 
described by Gray (1982).
 

Table 1.  Spot parameters obtained by Pyper (1969).

 

Longitude, latitude, and radius are in degrees. 
* see explanation in text. 
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Figure 1. The spot-to-star abundance ratio is plotted against the excitation potential. The 
open circles refer to the case where spotted and unspotted regions are taken to be at the same 
temperature. The crosses are for the case where spot temperature is higher by 1000 Κ than the 
unspotted region.
 

In our first attempt, we used different elemental abundances for the spotted and 
unspotted regions, but no temperature difference between the two. This, however, did 
not provide us a satisfactory fit to the observations initially. But after a few trials with 
different abundances in spots, we arrived at a reasonably good match between the 
modelled equivalent width variations and the observed ones. But, here we encountered 
another problem. When we plotted the spot-to-star abundance ratio against the 
excitation potentials (χe) for various lines, we found that this ratio varied with χe. This 
is shown in Fig. 1 by open circles. We soon realized that our assumption of same 
temperature for the spotted and the unspotted regions was the cause of such behaviour 
of spot-to-star abundance ratio. The inverse correlation between abundance and 
excitation potential indicates that the higher levels have to be more populated, which 
means that the spots should have a higher temperature. A large abundance of elements 
in the spots will also increase the opacity and therefore the temperature in the spots 
should increase due to the backwarming. Both these reasonings made us to raise the 
spot temperature. After a few trials we settled for a spot temperature 1000 Κ higher 
than that of the unspotted region which was taken to be 12000 K. Once again the spot- 
to-star ratio was plotted against the excitation potential and was found to be 
reasonably constant for all the χe values. This is shown in Fig. 1 by crosses. 

The equivalent width changes as the projected area of the spots changes due to 
rotation of the star. A value of V sin i = 23.0 km s–1 was used in this model. We carried 
out these computations for all the lines that Pyper used in measuring the equivalent 
widths. Finally a mean curve was obtained for all the lines and normalized with respect 
to the maximum equivalent width computed. In Fig. 2 we have superimposed our 
model calculations on the observations of Pyper. We see that the spot model provides 
a good agreement with the observations. For group 2C our fit was not good at all, 
presumably because, according to Pyper (1969), at these phases her equivalent width 
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measurements were of low accuracy. For this reason we have excluded the fit for group 
2C from this figure.

In this model we consistently found a spot-to-star abundance ratio of 3 × 103 for 
iron peak elements (Fe, Ti, Cr) and 2 × 103 for rare earths (Eu, Gd). This means that if 
the unspotted region has a normal solar abundance then the spots will have a three 
orders of magnitude more of these elements. Such an abundance seems to be very high. 
Cohen (1970), by her LTE analysis of abundance determination, showed that the iron- 
peak elements are about two orders of magnitude more abundant in α2 CVn. Her 
abundance determinations, however, refer to whole of the stellar surface, whereas our 
values are a ratio of abundances between the spot and the photosphere. A large spot- 
to-star abundance ratio, however, is not very uncommon. For HD 140160, a Sr-Ap 
star, an overabundance of Sr upto 103 was found in three spots by Khokhlova & 
Rjabchikova (1975). Like Cohen (1970) and Khokhlova & Rjabchikova (1975) our line 
profile calculations are also based on LTE approximation without taking into account 
the effect of magnetic field. Since atomic parameters, e.g., gf values, for many lines are 
not known accurately, we take gf = 1 for all the lines while computing lv. Thus, in that 
case 

gfAspot/gfAstar = Aspot/Astar. 

Further we assume the microturbulence value of 2 km s–1 in spotted as well as in 
unspotted regions. We use Kurucz (1979) LTE model atmospheres for both the spotted 
and unspotted line computations. Because of these assumptions and approximations, 
we consider our derived values of spot-to-star abundance ratios as order of magnitude 
estimates only. For more accurate abundances a detailed abundance analysis, which 
takes into account the non-LTE effects and the effect of the presence of magnetic field, 
is called for. The assumptions made in our model were necessary to hold down the 
considerable computer time this model requires. We also notice that, even after all 
these approximations, a spot model can reliably reproduce the equivalent width 
variations observed in α2CVn.
 

3.  The spot model for photometric variations 
 
The basic model is the same as that suggested by Budding (1977) and later by Poe & 
Eaton (1985) for late-type stars. We have made a small change in it to include a flux 
blocking parameter which is used in far ultraviolet region where the flux is known to be 
much more depressed in α2 CVn than in a normal star of the same temperature. We 
have already seen in Section 2 that the spots are at higher temperature than the 
surrounding photosphere and have high concentration of iron-peak elements and rare 
earths. Therefore, we can assume that the far-ultraviolet flux-blocking takes place only 
in the spotted regions. Here spots are considered to be circular in shape and the star is a 
sphere of unit radius. The change in the light level due to the presence of the spot is 
given by 

ΔL = [ F (Tstar) – (1 – β) F (Tspot)] σc, 

where F (Tspot) and F (Tstar) are fluxes from the spot and surrounding photosphere at 
the temperatures Tspot and Tstar, respectively, β is the flux-blocking parameter, and σc is 
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the limb-darkening-weighted projected area of the spot. It is given by 
 

σc = 3/(3 – u) {(1 – u) }   0
1

0
0 σσ u+ , 

 

where u is the limb-darkening coefficient. The expressions for computing σ0
0  and σ1

0  are 
given by Budding (1977). Therefore, at a phase θ, the light from the star, normalized to 
unit value, becomes 
 

L(θ) = 1 – [F(Tstar) – (1 – β) F (Tspot)] σc 

or L(θ) = 1 – [1 – (1 – β) Fratio] σc, 
 
where Fratio is the spot-to-star flux ratio, L(θ) is then converted into magnitude as 
 

m(θ) = – 2.5 log L + Mref, 

where Mref is the reference magnitude normally chosen to be at the star’s brightest 
phase. We have further converted these magnitudes as 
 

Δm (θ) = m (θ) – m(0), 
 
where m(0) is the magnitude at 0 phase. This enables us to compare our results with 
those obtained by Böhm-Vitense & Van Dyk (1987). The limb-darkening coefficients 
for λ2462, λ2985, .λ3317 and for U, Β and V bandpasses are taken from Al-Naimy 
(1977) and are considered to be the same for the spots and the surrounding region. For 
λ1332, λ1420, and λ1554 the limb darkening coefficients are not available, therefore for 
these wavelengths we use u = 1. 
 

4.  Computation of light curves 
 
The above model was used for generating the theoretical far-ultraviolet and UBV light 
curves. These computed light curves are then compared with the observed ones given 
by Molnar (1973) and Pyper (1969). We fixed the temperature of the unspotted region 
at 12000 K, which is the same as the one used by Böhm-Vitense & Van Dyk for the 
equatorial region in their model. The inclination of star’s rotation axis to the line of 
sight is taken to be 50 degrees. We computed several light curves for each bandpass 
using three, four, and five spots. In every case light curves with five spots provided 
minimum (O – C)’s. Later we fixed the number of spots as five. Longitudes and 
latitudes of spots were determined by trial and error. Some adjustments in area and 
temperature of spots had to be made, as these two quantities are strongly coupled. We 
adjusted the spot areas such that either the temperature or the spot-to-star flux ratio 
was the same at least in two bandpasses. In Fig. 3a we show our computed far- 
ultraviolet light curves superimposed on Molnar’s observations. In Fig. 3b we show 
the computed light curves of Böhm-Vitense & Van Dyk (1987) that they obtained by 
oblate spheroid model. The oblate spheroid model light curves were read off from the 
best fit obtained by Böhm-Vitense & Van Dyk (Fig. 8 in their paper). The far 
ultraviolet observations of α2 CVn by Molnar (1973) and later by Leckrone & Snijder 
(1979) show large flux deficiency in this region of the spectrum. Molnar (1973) 
attributes this large flux deficiency to the strong line blanketing by the rare earths. For 
below λ1600 Å he suggests a second source of flux blocking which is a combination of 
continuous opacities and line blanketing from the iron-peak and rare-earth elements. 
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If these elements are concentrated in the spots, then the far-ultraviolet opacity will be 
larger for the spotted regions than for the unspotted ones. This implies that we will ‘see’ 
only top low-flux layers of spots, and deeper high-flux layers in the spot-free areas. This 
is where we have to make use of the flux-blocking parameter β in our model. For 
λ1332, λ1420, and λ1554 we use β = 0.7, for λ2462 and λ2985 the value of β is 0.5 and 
0.15, respectively. For λ3317 and longward, i.e., in U, B, and V bandpasses β is set equal 
to zero. These values roughly correspond to the fractional difference between 
Klinglesmith’s (1971) hydrogen-blanketed model energy distribution and the observed 
energy distribution of α2 CVn as shown in the Fig. 5 of Molnar (1973). In Table 2 we 
have listed the spot longitudes, latitudes and radii obtained in far-ultraviolet wave- 
length region. There was hardly any (or very little) change in the values of these 
quantities with wavelength. 

On the longer-wavelength side the U and Β spot temperatures (blackbody) agree 
well within 300 K. We get consistently a higher temperature for spots 1, 4 and 5 in the V 
bandpass. This could perhaps be due to our looking deeper in atmosphere in V band. 
One should notice that the variation in the V observations is almost twice as much as 
in U and B. In order to model this large V amplitude we were forced to use a higher 
spot-to-star flux ratio (thereby a higher spot temperature in V band compared to U 
and B). Another alternative could have been to reduce the star temperature or change 
 

 

 
 
Figure 3. The calculated far-ultraviolet light curves (solid line) are superimposed on Molnar’s 
(1973) observations (points): (a) our spot model; (b) oblate spheroid model of Böhm-Vitense & 
Van Dyk (1987). 
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Figure 3.  Continued. 
 

Table 2. Spot parameters obtained by our spot model in far ultraviolet.
 

 
Longitude, latitude, and radius are in degrees. 

 
the spot area drastically in this bandpass. None of these options seems to be 
reasonable when spot parameters derived from the other two bandpasses agree so well. 
We have listed these spot parameters for all five spots in Table 3. In Fig. 4(a) we have 
plotted our computed UBV light curves on top of Pyper’s observations. In Fig. 4(b) 
light curves obtained by oblate spheroid model are plotted on Pyper’s observations. 
Once again the oblate spheroid model light curves were read off from the best fit 
obtained by Böhm-Vitense & Van Dyk (1987; Fig. 10). It is clearly evident from Figs 2, 
3 and 4 that the hot-spot model gives a far better fit to the observed data than the one 
suggested by Böhm-Vitense & Van Dyk. 

If one looks at the observed light curves carefully, one notices an initial increase in U 
and Β with a peak at 0.1 phase. This initial increase could not be explained by the 
oblate-spheroid model. But our spot model calculations do reproduce this peak in 
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Figure 4. The model VBU light curves (solid line) are superimposed on Pyper’s (1969) 
observations (points): (a) our spot model; (b) oblate spheroid model of Böhm-Vitense & 
Van Dyk (1987). 
 

light satisfactorily. An exactly reverse behaviour is seen in the far-ultraviolet obser- 
vations of Molnar (1973). Our model is again able to reproduce it. We find that the 
spot 5, which happens to be close to negative magnetic pole, is responsible for this. 
 

A comparison between the parameters listed in Tables 1, 2 and 3 shows that there is 
a close agreement between the spot positions obtained by us and those given by Pyper; 
spot sizes, however, do not agree so well. This is because we have taken the innermost 
equivalent width contour as the spot size; the actual spot size and shape may differ. But 
the overall agreement is reasonably good.
 

5.  Summary and conclusion 
 
With the models described above we are able to show that, for α2 CVn, a model 
consisting of five hot spots (300 to 800 Κ hotter than the surrounding atmosphere) can 
reproduce observed light curves better than the oblate-spheroid model which has a 
variable surface temperature as well as a variable apparent radius of the star. We also 
show that a spot model is needed to explain the observed equivalent-width variations. 
The spot positions obtained by us in our photometric model agree well with those 
obtained spectroscopically by Pyper (1969).



α2 CVn: spot modelling 183
 

The Ap stars have fairly stable atmospheres. Such stable atmospheres are necessary 
if diffusion of elements is to work (Michaud 1970). However, with hot spots it becomes 
difficult to explain how can such hot regions survive for a long time in a cooler 
atmosphere. Perhaps some mechanism is at work so that there is a rapid loss of heat 
from these hot regions. Trasco (1972) has shown that, for magnetic stars, an 
equilibrium condition will exist when the temperature in the magnetic region is higher 
than the non-magnetic region. We believe that the spots on α2 CVn are associated with 
such fields and therefore are at higher temperature than the nonmagnetic regions.
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