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Abstract. This paper is mainly concerned with elastic and acoustic properties of vitrous silica
besides the computation of phonon frequencies. Thus the phonon frequencies of vitrous silica
have been calculated assuming the electronic bulk modulus, K e» @8 €qual to zero. New equations
have been derived to relate the pressure derivatives of second order elastic constants to the
acoustic Gruneisen’s parameters using both Bhatia-Singh’s parameters and Schofield’s
equations. The calculated longitudinal and transverse Gruneisen’s parameters and the predicted
absorption band spectra from Nagendranath’s equation and Bhatia Singh’s parameters are in
good agreement with experiment. The calculated mean acoustic mode Gruneisen’s parameter
evaluated from the pressure derivative of Nagendranath’s equation is also in good agreement
with experiment.
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1. Introduction

Recently, various aspects of vitrous silica have been investigated [1-5]. Some of the
important properties that have been investigated are the acoustic properties [1],
neutron diffraction studies [2-4], velocity measurements [5] of densified a-Si0, etc.
Vitrous silica is of great technical importance. It is a pure, single-phase glass and its
non-linear acoustic properties are singularly anomalous. The temperature dependence
of elastic stiffness constants, as measured by Wang et al [6] are negative up to 70K
and then become positive. Recently the pressure dependence of longitudinal sound
wave velocity in vitrous silica has been measured [7] through Brillouin spectroscopy
between 50K and room temperature. It is found that there is a reduction in velocity
by the application of pressure. Negative pressure derivatives of second order elastic
stiffness tensor components and positive third order elastic constants (TOEC) reveal
anamolous effects in the vibrational anharmonicity while the mode Gruneisen’s
parameter’s are negative [6]. Hence a knowledge of acoustic mode Gruneisen constant
is important in understanding low temperature thermal expansion. Hence we felt a
theoretical investigation of phonons, acoustic and elastic properties of vitrous silica
is important. As pointed out earlier SiO, is remarkable in the sense that the pressure
derivatives of second order elastic constants (SOEC) and also that of bulk modulus
is negative unlike in normal substances like TeO, glass [8], amorphous As [9] and
As,S; [10]. Even though the SOEC pressure derivatives are negative it is remarkably
isotropic over a wide temperature range. Vitrous silica has been shown to possess tetra-
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hedral structure [11, 12] and the average number of nearest neighbours has been
estimated [11] to be 4.3. Extensive elastic and acoustic work has been done on vitrous
silica. We give only the reference to the recent studies of Wang et al [6] in which
other references can be found. Wang et al made a detailed experimental study of the
SOECs, their pressure derivatives as well as the acoustic Gruneisen’s constants as a
function of temperature. We also derive the phonon frequencies through Bhatia—
Singh’s (BS) method [13].

2. Theory

A. Computation of phonon frequencies

Bhatia and Singh [13] derived the following expressions for the longitudinal and
transverse phonon frequencies

2 — g& KeK%sz [G(krs)]2
patll) = 2 @l + o) + RS )
2 :
pwi(k) = ‘;25[/3104‘%(10“12)]- (2)

Here n, stands for the number of nearest neighbours, a is the nearest neighbour
distance, K. is the Thomas-Fermi inverse screening length, K, is the electronic bulk
modulus. r, the Wigner—Seitz radius, G(kr,)is the shape factor and (k) is the Linhard-
Langer-Vasko - expression for the k dependent dielectric constant. Since these
expressions have been discussed earlier [14, 15] we do not give any more details
here. Since vitrous silica is not a semiconductor and is a dielectric we take K, the
electronic bulk modulus to be equal to zero and calculate w, (k) and w(k) from (1)
and (2). To evaluate B and & we use the experimental values of C,, and C,, as given
by Wang et al [6].
The equations are [13]
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Here ¢ is the pair potential. We calculate the phonon frequencies at four different
temperatures.
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B. Derivation of the pressure derivatives-of eldstic constants Sfrom Bhatia—Singh's B

and & parameters
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Here yr is the isothermal compressibility. Remembering that the Gruneisen’s constant

7, is given by [16, 17]
3
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one can show that
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Similarly it can be shown that
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Thus finally we obtain

4o —%[‘5 (ﬁ+5)vg],

dP
and
4B __u(b-9)

- dP 3

~ Hence from (8) we get
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In an exactly similar way we obtain

dC,,
dp

- nch[é([)’~O-65)+T2§ygT(B+5)]. . (18)

Equations (17) and (18) are important and offer a method in the evaluation of the
pressure derivatives of the SOECs. Vitrous silica is a highly isotropic substance and
we can obtain dC,,/dP from the following equation

,dC,, _dC,, dCy,
&P~ dP  dP

(19)

In this connection it is important to note that liquids in the high frequency region
show rigidity which is a characteristic of solids [18, 19]. Hence it will be interesting
and tempting to try the equations of Schofield [20] (Sch) to derive the pressure
derivatives of SOECs. From Schofield’s equations [20] we derive the following
expressions for the pressure derivatives of SOECs as [21]

dC
3t =Cuixp+ 18(C, — D) (20)
dc ‘
d;4 =Cu Xr+ 0-6(C, —1). (2D
Cu_¢ yr+06(C, —1). | (22)
dp 12 ~ ‘
Here
C, =(dB/dP) (23)

and B is the bulk modulus.

It is important to remember that C, is related to third order elastic constants [22].
Thus (20)—(22), even though can strictly be used for fluids can help us to estimate
the pressure derivatives of the SOECs. Calculations for computing the pressure

derivatives of SOECs have been made for vitrous silica at different temperatures
using (17)—(22).

C. Prediction of band absorption spectra of vitrous silica
It was shown that [23-25]

8A(4 +8C,, — 16C,,)

=1, | 24
(34—8C,, + 16C,,)? @4

where ,
A=w?M)/2a. , (25)

‘From (24) and (25) it is possible to solve for the frequency and hence predict the

position of the absorption band.
From (6) we get -
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204 Pramana - J. Phys., Vol. 42, No. 3, September 1994 * !

e VR g



({

Elastic and acoustic properties of vitrous silica

and we can calculate (dqu/drz)r=a = K,. With a three-force constant model it is
possible to show that for a diamond type of lattice [25]

4K

YA (27)

and we have 1/4 = w/2nC where C is the velocity of light. Hence we can predict the
position of the absorption band and can make a comparison of these results with
experiment. Such calculations have been made for vitrous silica in these investigations.

D. Methods of evaluation of acoustic Gruneisen's parameters yg and y;‘

From (17) we get C, associated with yg the Gruneisen’s constant of longitudinal wave
while from (18) we get Ve T'that of the transverse wave. Similarly we use (20) and (21).

The mean acoustic mode Gruneisen’s parameter ye‘ can be obtained [6] from the
following equation

% 2yg>( 1 : )_l
Z v:tvz

We now give a method of evaluation of y“" using (24) and (25). We differentiate (24)
with respect to pressure and solve for (dA/dP . Thus we obtain

dA
4 _ {dcll [564 +128C, ,  64C, ] —64A<dc44) +
P | d A dp
dflz [128C,, — 484 — 256C, ,] }[A —56C,, +48C,, + 64C,, 17",

(29)

Now we eliminate dC |, /dP using the isotropy condition (vide (19)) and finally obtain

dd _ {S(dc“)(BA 8C,, +16C,,) + 16(‘1;) >

dp dpP
(8C11-16C12—A)}(A—24C11+ 16C12)'1. (30)
Further we have
A=K,w? | (31)
where
K,=M/2a _ (32)

From (31) we get
d4 1 /
—=,37~ [23’;' +§:|, (33)

where we assumed that v = kr>. Here v is the volume and r is the radius. Hence from
(30)-(33) we can solve the mean acoustic mode Gruneisen parameter ye‘
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3. Results and discussion

As pointed out already an application of the various equations derived above have
been applied to vitrous silica. The experimental results used are those of Wang et al
[6]. In figure 1 we give the phonon frequencies as obtained from (1) and (2) at two
different temperatures namely 273 K and 77 K. As pointed out already vitrous silica is
a dielectric and hence it is assumed that K, = 0. The 8 and § values calculated from
(3) and (4) at the four temperatures are given in table 1. The position and maximum
* values of w, (k) and w(k) are given in table 2. It may be noted from table 1 that

| 5i0 at 273K
——- 77K
Tm 9 b= "-,'_':y\\ ,
[x) 4
o Loy _\ FN
= ’/,“'.%ﬂ':"-\‘- o mr ARG
— 7’ W
= ofF f'f i\\——""“
3 |/ fe
3k
0 i 1 1 1 4 1 L 1
0 2 4 6 8
k (A7)

Figure 1. Phonon frequencies at 77 and 273 K.

Table 1. Parameters obtained for § and § at different

temperatures.

Temp. K # x'10*2dyn/cm? d x 10'2dyn/cm?
273 S 00469 0835

233 0-0406 08383

123 0-0380 0-8311

71 00352 0832

K,=0and p, =2202g/em3 n, [11]=43 a [11]=1614

Table 2. Characteristics of phonon frequencies at different temperatures.

Position and maximum value Position and maximum values

Temp. k () (k) O

(K) At 101351 A-t 101351

273 24 9-03 34 73

233 24 898 34 724

123 24 892 34 719
7 24 8-89 34 71

®
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B +#0 and hence central forces are not alone operative. Evidently the tetrahedral

angular forces are contributing and hence (d¢/dr),_,#0. The position of the
maximum phonon frequency does not change with temperature both for w, (k) and
wr(k). However with increase in temperature the frequency increases slightly. As
expected w, (k) attains a maximum at a small value of k and oscillates showing
collective mode propagation for larger values of k while wy(k) attains almost -a
constant value beyond the maximum. From f and ¢ given in table 1 and at a
temperature 273 K we get w = 111 x 103s ™! through the use of (27) and the position
of the absorption band should appear at 583cm™!. The value of A obtained from
(24) is 31'7 x 10*2dyn/cm? and from (25) we get the absorption band of vitrous silica
to appear at 536 cm ™. The observed bands for vitrous silica as reported by Lippincot
et al and Hass [26, 27] appear between 500cm ™! and 600 cm ~! which are reasonably
close to the calculated values obtained from A and (d*¢/dr?),_,. The average value
being 560 cm 1. According to Bell and Dean [28] this vibrational mode arises from
bond bending vibration in which the oxygen atoms move along the bisectors of
Si-O-Si angles. In this connection the absorption band values of 536cm™~! and
583cm ™! correspond to a frequency 10 x 10'3s~* and 11-0 x 10*3s~*, These values
can be considered to be close to each other. From the observed pressure derivatives
we obtain (vide (20) and (21)) C% corresponding to dC,, /dP and CT to dC,,/dP. We
now use the well-known Slater’s equation [29]

CL T _ va T4 _;_ . (34)

We evaluate y and y at 273 and 77K using (17) and (18) and also from (20) and
(21) The values calculated are given in table 3. It is important to stress that y ‘and
y are related to third order elastic constants [30].

*1t is known that Bhatia—Singh equation is meant for amorphous solids and gives
very good results in agreement with experiment both at low and high temperatures
for which results are available. The application of Schofield’s equations gives satisfactory
results as well. It should be borne in mind that Schofield’s equations are meant for
liquids and hence the present agreement can be considered as very good.

We can calculate from (30)—(33) the mean acoustic mode Gruneisen’s parameter
y" at 273 K. Using the experimental values of SOECs we obtain a value of 31-7 x
1012dyn/cm2 for 4 from (24) and finally we get a value for y5' = — 2:2 where we used
(30)-(33). The experimental value is — 2:0. Thus the agreement is excellent.

Table 3. Gruneisen constants evaluated by different methods at different

temperatures.
Ve '
Temp. B.S Sch B.S Sch
K eq. (17) eq. (20) Expt!® eq.(18) eq. (21) Expt'®
77 —54 —59 -55 —24 —36 —-28
273 —24 -30 —2-5 -18 —-29 -21

Pramana — J. Phys., Vol. 42, No. 3, September 1994 207




R V Gopala Rao and R Venkatesh

4. Conclusions

Using Bhatia—Singh’s equation and assuming K, the electronic bulk modulus, equal
to zero the phonon frequencies have been derived. A change of temperature over a
wide range does not effect the position of the maximum while its magnitude decreases '
only slightly with decreasing temperature. Equations for the pressure derivatives of
SOECs have been derived using both Bhatia—Singh’s and Schofield’s equations. Using
the experimental values of the pressure derivatives of the SOECs the longitudinal
and transverse Gruneisen’s constants have been calculated at two extremely different
temperatures for which accurate measurements are available. The results calculated
from Bhatia—Singh’s parameters give excellent results in agreement with experiment
while those obtained from Schofield’s equation are also in good agreement with
experiment. Using (24) the absorption band spectrum of vitrous silica has been
calculated and compared with that obtained from Bhatia—Singh’s ‘4’ parameter. Both
the results are in fair agreement with experiment for SiO,. Finally we calculate the
mean acoustic mode ygl from the pressure derivatives of (24). The value obtained is
in excellent agreement with experiment.
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