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Abstract. Treating the coulomb interaction between ion species as a perturbation on the
Waisman-Lebowitz solution for direct correlation function within the hard core region, the
total direct correlation function it K—space has been formulated, which gives a direct method
of evaluating the partial structure factors between different ion species of the fused salts
through the use of Pearson-Rushbrooke equations. The partial structure factors so obtained
have been applied to evaluate the partial radial distribution functions of ion pairs. In addition,
many other important associated functions such as the static correlations of total number,
mass and charge densities have been computed by particular linear combination of partial
structure factors. The charge neutrality relate the partial structure factors to the isothermal
compressibility for the wavevector K — 0 and hence the evaluation of the compressibilities of
ions in fused KBr is possible, which agrees well with the observed value. As such the present
method is very useful in investigating the structure of molten salts since only the parameters
oy, the distances of closest approach between ions and &, the effective dielectric constant (which
can be estimated from the literature) are enough for this work.

Keywords. Waisman-Lebowitz solution; partial structure factors; direct correlation func-
tion; Pearson-Rushbrooke equations; partial radial distribution function.

1. Introduction

Basic interest in correlations in ionic melts arises from their nature as a dense liquid of
charged atomic constituents. Work on the correlation in fused salts has so far been
focussed on the determination of static pair correlation functions. Work is being done
extensively through the use of x-ray, neutron diffraction and computer simulation
studies (Rhodes 1972; Page and Mika 1971; Woodcock and Singer 1971; Tosi and Fumi
1964; Dixon and Sangster 1976; Enderby and Neilson 1980; Derrien and Dupuy 1975)
to unravel the correlations between the various ion pairs in molten salts. It has been
acknowledged by various workers (Rhodes 1972; Edwards et al 1975) that the
simulation studies and even the x-ray diffraction or neutron scattering technique
‘cannot resolve the correlations between the various ion-pairs.

This paper will be exclusively concerned with the evaluation of the partial static
structure factors of the molten potassium bromide (KBr) in a purely analytical way so
as to decipher the structural features of the melt. The three partial structure factors in
the limit K — 0 are equal in magnitude and are connected with the isothermal
compressibility (x,) through the compressibility sum rule equation, which enable us to
evaluate the isothermal compressibility of the concerned fused salt. Then we will focus
our attention on the particular linear combinations of the partial structure factors,
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which correspond to the correlations between total number, mass and charge densities
respectively. In addition, the partial structure functions (psr) so evaluated are utilised to
compute the partial pair distribution functions between the ion species. The present
method yields quite satisfactory results. In this connection it may be pointed out that
the determination of psr is not easy since it involves complete enrichment of an atom of
the salt with a particular species of isotope which is not always possible. This is

necessary because three sets of results are needed for evaluating the three partial
structures. |

2. Formulation of the method

Waisman-Lebowitz (wL) (Waisman and Lebowitz 1972a, b) solution for the direct
correlation function (pcr) leads to the formulation of the present important method.

According to them, the pcr within the region of hard core for the molten salt can be
written as follows:

4 R2 ‘
C‘G{L(r) = [Cs(r) ET-_’%QL l:zBij""Bil:I’ for r T (1)

ij ij

whereas the pcF outside the hard core region is simply the mean spherical model (mMsmM)
approximation given by Lebowitz and Percus (1966) as follows:

Cy(r) = E—Qj—Q—l (1/r), forr> gy, )
where Q;, Q; are the charges of ions i and J; ¢ is the effective dielectric constant of the
fused salt; §’ is the reciprocal of K, T with K 5 as the Boltzmann constant and 7, the

working temperature and a;; are the equilibrium distances of approach between two
ions.

‘ B;j=%[l+é—(‘l+2§)”2]. (3)
= K,o. v 4

4
K} = K:;"a ;P.‘q,’z— | (5)

Here p, and p, are the number densities of the ith and jth type of ions. In uni-univalent

salts p, = p, = p and (C (M is Percus-Yevick solution obtained by Wertheim and
Thiele, the details of which are discussed in the next paragraph,

At this juncture however it is important to point out that
for ions of equal size. For j

calculation (Waisman and Lebowitz 1972a, b). Moreover som
be made with respect to the dielectric constant (¢). Hence a search is felt necessary for
numerical computation of partial structure function (S;;(K)) with less parameters and
arbitrary assumptions for jons of approximately equal radii Some preliminary
i rm of the direct correlation functions
ytes as derived by Waisman-Lebowitz does not
tdiffering by about 50 7 or s0. Waisman-Lebowitz

e approximations have to

(pcF) for primitive model electrol
change if the ionic diameters are no
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(wL) perturbed the hard sphere potential and obtained the direct correlation function
CJi* (r), inside the core o;; following essentially the technique developed by Wertheim
and obtained (1).

In (1) (C;(r)}}" as already stated is the well-known Wertheim-Thiele solution of
neutral hard spheres and can be written as

CT = a—B(r/o)+7(r/o)?, (6)

where | —-(—(?_%;, ‘ )
g QLI ®

‘and y= =12 ((114“_2’1")12, | ©)
with 0 =27 and N/V = p. (10)

Now perturbing the hard-sphere potential outside the core wL obtained (1) for C;; ;(r)
inside the core o;; and this equation can be rearranged as

C () = @, — By (o) +9(r/0)’, r<o ay
where o, =a—2K, (12)
_ (+npp
ﬁl = —6n W'i" KB”, (13)
_ 0:0;B;;
R (14)

Thus one immediately sees that the form C{"(r) and C}J*() in (6) and (11) is
alike. Thus no quadratic or any such terms of r enter into C;; (r) inside the core. Only
the constants o and § (which are functions of the packing fraction and hence of ;)
change to o, and f,. Hence we believe that as long as the perturbation is the same i.e.
coulombic in nature the form of C;;(r) remain the same inside the charged hard sphere.
Hence we put forward the working hypothesis that the form of C,;(r} does not change in
spite of different ion sizes. Only the constant term and the coefficient of r and r® change.
This is confirmed by the fact that by suitably choosing ¢ thereby changing # and hence
the constant term and the coefficients of r and r3, good agreement between calculated
and experimental S;;(K) curves can be achieved.

Further recent studies of Harada et al (1982) have shown that the ion size ratio if it
varies between 075 < (0, /0 _) < 1'5 the configuration integral does not change and
hence the present working hypothesis that by a suitable choice of g;; one can obtain
satisfactory S;;(K) curves with (1).

We therefore write the DcF as

C)=Ci()  r<o

as given by (1) and outside the core we use (2). Hence the total direct correlation
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function in K-space can be obtained through the following equation:
A 47[ 9ij . BIQ.Q- rBij)Z:’ 7
AK) = — . . W =X 9B, 4 ) |dr
C;;(K) I J; r-sin Kr l:{Cs(r)},J P, ( r
+4_1r BQ%Q! (1/r)-rsin Kr dr. (16)
K o E

After simplification and multiplying with the factor p on both sides of (16) one can
immediately write the exact form of C, ;(K) as follows: '

C(K)= 24ny;(@);[ (Koy; cos Ka,;—sin Ko, K3}
+24n;;8,; [ (K? 6% cos Ko,;—2Ka;;sin Ko,
—2cos Ko+ 2)/K*et]+ 24n;7;[ (K* 6 cos Ko,
—4K30} sin Koi;—12K?0?; cos Ko,
+24Ko;sin Ko+ 24 cos Ko,;—24)/K%o$

+i’h,ﬁ¥,_g,_) x B}/6,;[12cos Ko;;/K* o~ 12/K* o},

+12sin Ko;;/K303, — 6 cos Koy;/K*a}]+ 481, (’Q_‘%ﬁ)

X (By;/a;;) [cos Ko;;/K*62 —sin Ka;/K3a},

1
—24n;;(Q:0,8 /) x — (cosKay/K2a?), 17)
ij
(1+29,;)%
where ;= — i . (18)
! e —nij)4
2
and Yy = _ 1y (142n;5)

Bij= —67;;(1 +7;;/2)* (1 =)

and K = wavevector (A1),

Then the partial structure functions can be computed through the use of the Pearson-
Rushbrooke equations (Abramo ez af 1977)

I—PCi'(K) .
Su(K) = 5 b= 1,
&) [1=0C. T TT ~pC,, (KT =Pt iy = 1o 2 20
Ci2(K)
12(K) (= rC T~ 1o B =P @D

Here ‘I’and 2’ correspond to K* and Br~ jons respectively. Thus the present method
gives an expression for pC;i(K) involving the parameters ¢;;and ¢, which yields a direct
method of evaluating the partial structure functions [, (K)]in an analytical way. The
parameters have been determined by fitting (20) and (21) with the available values of the

partial structure functions at the first maximum or at the first minimum. The partial

rm-s\\ﬁ' R
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structure functions determined from the Pearson-Rushbrooke equations are shown in -
figure 1a, b. -

The partial radial distribution functions between ion pairs can be obtained from the
partial structure factors [S;;(K)] through Fourier inversion using the well-known
equation (Bhuiyan 1979): .

0

1 .
gi;(n=1 +W L‘ [S;;(K)—6;;] K sin KrdK, - (22)

where 4;; is the Kronecker delta. The [g;;(r)] so computed are given in figure 2. The
other structure factors can also be calculated through particular combination of the
partial structure functions. In particular, the charge, mass and number correlation
structure factors are defined as follows (Adams et al 1977; Simon et al 1978).

SOR(K) = 3 (811 (K)+ 23 (K) — 28, (K)), @3
SMM(K) = 1/m? [m2+ 811 (K)+m? Sy, (K)+2m* S, , (X)], (24)
and  SV(K) =2 (51 (K4 S (K425, (K)), 29)

wherem = (m.m_)'/* withm, andm_ as the masses of the potassium ion and bromide
ion respectively. The SV (K), $%(K) and SMM(K) so computed are shown in
figures 3-5, respectively.

The behaviour of §;;(K) in the long wave limit is related with the isothermal
compressibility (x;) of the fused potassium bromide (KBr) through the well-known
compressibility sum rule equation (Bhuiyan 1979)

hm SU (K) = pKBTxT' (26)
K=0 .
2:0
- (o)
X
X
mﬁt 1-0
(b) Present calculated
o | results
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Figure 1a. Partial structures of: (i) potassium—potassium (ii) bromide-bromide.
Figure 1b. Partial structures of : potassium-bromide.
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Figure 2. Partial radial distribution functions of: (a) potassium—bromide (b) bromide—
bromide (c) potassium—potassium.
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Figure 3. Charge-charge structure function.
Figure 4. Number-numbser structure function,
Figure 5. Mass-mass structure function,
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The Fourier transform of the direct correlation functions [C;;(K)] computed with
the parameters o;;and ¢ are shown in figure 6. The parameters o;;and ¢ are presented in
table 1 along with the present calculated compressibility (x;) and other input data used
in the computation. Table 2 gives the structural features of the pair distribution
functions [g;;(r)] of the potassium bromide melt. The structural details of S92 (K),
S¥N(K) and SMM (K) are presented in table 3.

300

T ‘ Present calculated results:
For Ck_k(k)a Cy g (k) (o)
For CBr-Br(k) ()
150 —
LCK_BI— (k)
e
]
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v 0 <
~
L:):
=150 —
-300
=450 —
!
0 6

4
k(R

Figure 6. Partial direct correlation functlons of (a) Cg _g (K) (b) Cg,_g(K)
(©) Cx _p(K). '

Table 1. Molecular parameters, other input data and compressibility.

Number Present Observed
Dielectric density calculated Xr
OkrKr  Oprpr = Ok.pr lemperature constant () xr(10712 (10712 cm?/
@A) A) A) (’K) (€) (10**cm™3)  cm?®/dyne) dyne)

25 3-75 325 -1003 - 28 001078 32 38
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Table 2.  Structural fedtures of the pair distribution function [g,;(r)].

g11(r) (A) g12(r) (A) g22(r) (A)

Position of first

Maximum  Minimum Maximum  Minimum ©= Maximum  Minimum

Present calculated
results 50 56 3-5 56 47 60

Monte-Carlo results 4-8 — 32 — 48 —

Table 3. Structural details of $@2(K), SNV (K) and

SMM (K),
First maximum First minimum
Position Height Position Height
KA~! KA-!
592 (K) 1-25 688 - 2:05 1-36
SNN(K) 185 412 2-85 1-58
SMM (K 1-85 523 2:80 2:00

3. Results and discussion

In figure 1a,b we have compared the present calculated results of the partial structure
functions [S;;(K)] with the values obtained through Fourier inversion of the partial pair
correlation functions [g;;(r)] determined by (Lewis et al 1975) using the Monte-Car!Q
(Mc) method. In our present calculated results there is shift in positions of the main
peaks of the structure factor curves with reference to the mc results. It is worthwhile to

mention that there is good agreement between the present compressibility ()

calculated through the present extrapolated values of S, ;(0) using (26) and the observed

Xr value (Abramo et al 1973). An exactly similar method has been applied to fused NaCl
and RbBr (Rao and Pal 1984) and the results obtained were promising and satisfactory.
Moreover the values of all the S, ;(K)in the limit K — 0 are nearly equal which supports
the compressibility sum rule equation. In addition, the overall charge neutrality of the

system ensures that lim $%¢(K) = 0. Because of the opposing phases of the ‘like’ and
K—-0

‘unlike’ structure factors, $2¢(K) has a very pronounced first peak whereas SM (K)
displays very little structure with a weak main peak for the same reason. The pair
distribution functions [g,;(r)] of the fused potassium bromide agree favourably well

with the Mc results presented by Abramo et al (1973). It is gratifying to note that the o;; -

and & values obtained through the present method are comparable to those available in
literature (Janz 1967). Thus it can be inferred that the present method constitutes an

important and simpler method in evaluating the static structure functions and
associated correlation function.
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It is important to point out that with the present working hypothesis we give a
method to compute Si‘ (K) even when sufficient data is not available. wL defined the
parameter a;; (Waisma'n and Lebowitz 1972a, b) as

(011 +025)/2 0. >
r*dr [CU )+ _%21_:] (27)

B

0

These are in fact related to the partial molar volumes V; by
a; = V;/KgTyze. ' ‘ (28)

Choosing g;;and e around literature values along with the appropriate C;;(r) as given by
(17) it should be possible to evaluate through (27) a; values which in turn are related to
S(0) as

S(0) = (a +4,)"" | 29)

Hence a set of ¢;;’s may be scanned to give the correct S(0). Further the ¢;; along with
Pearson-Rushbrooke partial structures should produce equal §;;(0) for 1-1 type
electrolyte.

We also have another important relation for 1-1 type electrolyte

li“:) [Ci1(K) = C33(K) = ~Cy, (K)],

K~

which should be satisfied simultaneously. This is exactly seen to be the case by taking a
quick glance of figure 6 regarding Cy _g (r) and Cy, _y, () at low K values. All these tests
confirm the proper choice of ¢;; which can then be used to evaluate partial structure
functions.

3. Conclusions

It is satisfying to note that there is a general agreement of the present calculations, the
structural information obtained from this method as well as the compressibility value.
This is important if we remember that the partial structures as determined from
experiment need not be taken as accurate because of the experimental difficulties.
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