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Abstract. Using shallow water equations on an equatorial beta plane, the nonlinear
dynamics of the equatorial waves is investigated. A general mathematical procedure
to study the nonlinear dynamics of these waves is developed using the asymptotic
method of multiple scales. On faster temporal and spatial scales the equations
describe the equatorial waves viz, the Rossby waves, Rossby gravity waves, the inertia
gravity waves and the Kelvin waves. Assuming that the amplitude of these waves
are functions of slower time and space scales, it is shown that the evolution of the
amplitude of these waves is governed by the nonlinear Schrodinger equation. It is then
shown that for the dispersive waves like Rossby waves and Rossby-gravity waves,
the envelope of the amplitude of the waves has a ‘soliton’ structure.

Keywords, Shallow water equations ; finite amplitude solutions ; multiple time scale
method ; envelope solitons.

1. Introduction

In the tropical and mid-latitude atmospheres, large (planetary) scale wave-like
structures of -the atmospheric flows are observed features of the general
circulation and have been the subject of intense study among the theoretical and
observational meteorologists. A large number of theoretical investigations
on the linear stability analysis of atmospheric flows has been made with
flows which are independent of time and longitude. Once the superimposed
perturbations reach a finite amplitude or a fully developed eddy stage by deriving
a substantial amount of energy from the zomal flow via either baroclinic or
barotropic instability mechanisms or a combination of both, the total flow
pattern becomes nonsteady and zonally non-uniform. Regardless of the energy
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sources of the atmospheric wave-like disturbances, their finite-amplitude existence
is certain and therefore, nonlinear processes should play an important role in
their dynamics.

For barotropic Rossby wave motion, instability has been established by Lorenz
(1972). By employing linear perturbation analysis Lorenz showed that in the
barotropic atmospheric flow, Rossby’s (Rossby et al 1939) original solution (repres-
enting an east-west propagating planetary wave embedded in a constant westerly
flow) is unstable provided the wave amplitude is sufficiently large or its wave number
is sufficiently high. It is clearly of interest to us to determine how the nature
of the instability is affected by the nonlinear processes which become increasingly
important as the perturbations superimposed upon the basic state reach a finite
amplitude regime. A few questions of fundamental importance arise here :

(i) Given sufficient energy, how will the waves evolve in time and space?
In other words, what is the structure and long time behaviour of the
finite-amplitude waves 73

(i) What are their propagation characteristics on slower time and space
scales 7 ;

(iiiy How does the finite-amplitude perturbation state affect the basic flow in
the long time?;

(iv) Are the fully developed zonally uniform or non-uniform and non-steady
flows (basic zonal flow + finite amplitude waves) stable with respect to
further perturbations. The present investigation addresses itself to these
questions  (or & few of them) which cannot be answered by a linear
theory. The vast majority of theoretical investigations have been made
to study the linear stability problem of unstable waves in the barotropic
atmosphere on the equatorial and mid-latitude B-planes [Matsuno 1966;
Longuet-Higgins and Gill 1967; Lorenz 1972; Duffy 1974 (to name a
few) and references therein]. It was Phillips (1954) who first took
account of some effects of nonlinearity and computed the second order
changes in the basic current embedded in the unstable waves which
exhibited exponential growth.

But this theory seems to have an unavoidable defect that each succeeding
term in the amplitude expansion grows more rapidly than the previous term and
therefore severely restricts the time for which the expansion remains valid. In
recent past a number of nonlinear equations describing the evolution of finite-
amplitude  waves in dispersive media, have been shown to possess exact
analytical solutions whose single most distinctive feature is the existence of
solitary waves (solitons) [an excellent review on solitary solutions has been given
by Scott et al (1973) 1.

Investigations on the nonlinear time evolution of finite-amplitude waves in
the baroclinic atmosphere, have been made by several research workers (Long
1964; Larsen 1965; Benney 1966 ; Pedlosky 1970, 1971, 1972a, b, 1977
Clarke 1971; Redekopp 1977 Redekopp and Weidmann 1978). But in the
case of barotropic atmosphere With a zero basic zonal flow or a horizontally
sheared zonal flow, only a few investigations have been made to study the
nonlinear behaviour and time evolution of these waves (Gill 1974 ; Dommaracki
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and Loesch 1977; Loesch 1978; Boyd 1980). Only a few of these research
workers have shown the existence of “solitary” solution for large scale planetary
waves in both the middle latitude and equatorial atmospheres.

The present investigation represents an extension of the linear analyses of
Matsuno (1966) into the nonlinear regime, while the perturbation is finite but
small. Under this assumption, the nonlinear analysis may be carried out
using asymptotic expansions for perturbations and their derjvatives and using
the procedure of multiple scales. In this paper we have studied the long time
evolution of finite-amplitude (i. e. weakly nonlinear) and slowly varying wave
train propagating in the atmosphere with a zero basic zonal flow, using the
divergent barotropic model on a (-plane.

In § 2, we have outlined our model and presented the governing equations
and the formulation of the derivation of a modified nonlinear Schrodinger
equation governing the amplitude modulation of the atmospheric waves.
According to this equation, the waves have steady state *envelope soliton”
solutions under certain conditions. Though dispersive waves in optics and in
plasmas are known to have envelope soliton solutions, to our knowledge, this
is a good theoretical evidence of the existence of ‘envelope solitons’ in any
geophysical situation. We have also discussed briefly in this section the
propagation characteristics of the linearized solutions [0(1) solutions} for these
waves as the lowest order approximations of the model. In §3, we have
obtained the envelope solitary wave structures (solitons) as the stationary
solutions of the modified nonlinear Schf?)dinger equation. In §4, we have
discussed the results obtained. Finally, the results of our analysis are sum-
marized in the concluding section.

2. The model and the governing equations
2.1 Formulation

The model we consider here, is the so called divergent barotropic model on a (-
plane. We follow Matsuno’s (1966) approach, retaining the nonlinear terms in the
present analysis. The model consists of a single layer of homogeneous inviscid
fluid of mean constant depth H, with a free surface under hydrostatic balance
(figure 1). We take the local cartesian coordinate system shown in figure 1,
where x' is positive in the eastward direction. y* is taken in northward direction
and 2’ is antiparallel to the gravity vector and is thus vertically upward.

We assume that the free surface deformations ‘4 are sufficiently small (< H) so
that these can be ignored when the effects of horizontal divergence are incorpo-
rated into the model. We make here B-plane approximation whereby the
important dynamic effects of the earth’s rotation and sphericity on large
scale motions are considered by assuming the linear variation with latitude ¢ of
the Coriolis parameter f' (= 2£2 sin ¢) as

fr=rfo+py, M

where ' = a (¢ — ), i.e. the coordinate y' is centred at the latitude @q , @ is the
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Figure 1. The model and the co-ordinate system.

mean earth radius, fo = 2620 sin ¢o (Q being the earth’s angular velocity and
B[ = (af"[ad)pola] is the Rossby parameter taken as constant.}

The governing equations and the appropriate boundary conditions for the
model subject to the above approximations are

ou' ou’ ou’ a®’

r 0% r o I [ ! L= )
at'+“ax'+"ay' for + BV + 0, (@
LAV VAV L Ay YR 1) S Sy 3
at ax’ 3y’ ay ’

o’ a0’ P’ ou' . av

o r 07 p 27 ou oV —_ 0, 4
at Ty v ay' gH (aux’ + ay' @
wv, 0 —0asy — 1 o, )

where prime denotes the dimensional quantities ; ' and v’ are the components of
horizontal velocity in zonal and meridional directions respectively; @ is the
geopotential of the free surface. Assuming that there is 1o averaged basic flow,
u', v' and O here represent the perturbations around this state. Equation (4) is
the integrated continuity equation assuming that u’ and v’ are independent of the
vertical coordinate.

We now define non-dimensional variables as
(6 y) = (5 y)Ls wy) = @, v) [ U
t=@ Lr; ®=20/(FL7T), (6)

where U is the horizontal characteristic velocity and L is the horizontal
characteristic length defined by L? = (gH)'/*/B, g being /acceleration due to

gravity. The set of the governing equations (2) — (4) are transformed, using (6),
into nondimensional form as
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s+ € (uug + vug) ~ (fo+ y) v + 0, = 0, @)
vt e (wix+vw) + (o+») u+t 0 =0, ®)
s+ € (Whs + xQ) + ux + vy =0, 9)

with the boundary conditions
hv,$=>0; asy—+ o, (10)

where fo = fo'/B'L is the dimensionless planetary vorticity at the latitude ¢4 and
is thus a constant parameter. A subscript represents differentiation with respect
to that variable : e = U/B'L2 is the equivalent Rossby number. For typical
values of U-x 10 m/sec, H~ 10km and ¢ ~ O (10-2) ie e is a small
parameter much less than unity.

The equations (7) - (9) are nonlinear in nature, with ¢ as a f nondimensional
smallness parameter representing a measure of the magnitude of the monlinear
products. 'We thus choose ¢ as an expansion parameter in the analysis
developed here.

The derivative-expansion method suggests us to extend the independent variables
x and ¢ to the sets of independent variables

XO, XI,X2;---andT0,TI’T2'-a (11)

where long time and space scales (independent variables x and t) are defined as

Xi=édx;Ty=¢t,i=0,1,23,..., (12)
which are incorporated in (7)-(9) through the expansion of the derivative
operators —*and - as
P - ot

9 0 d 0 ‘
2 5,9 ST S
¢3’t'm>é)To+e 3Ty e ol e

0 d d a

— — —_ 2 —_
ax e T Sexm it 13)

Accordingly, any dependent variable, a function of (x, y, 1), is now regarded as a
function of (X, y, Ty, i =0, 1, 2,...). We assume further that the dependent
variables, u, v, ¢ (perturbations from a uniform basic state under consideration)
have the asymptotic expansions in ¢ of the following form :
(u, v, ®) = (1O, v0), BO) + ¢ (4, yb), O) 4 € (u@, v, D) 4, ... (14)
Substituting (13) and (14) into the governing equations (7) to (9) and equating
coefficients of like powers of ¢, we obtain a set of perturbation equations to the
different orders in e.  These will then determine successively the perturbation
quantities (u®, v, ®) ; j = 0,1,2. .. to the different orders in ¢ as defined in
(14). These dependent quantities are to be determined so as to be bounded
“non-secular) at each stage of perturbations.

ki“ o
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2.2 O(1) problem : linear analysis

To the O(1), the perturbation equations determining v®, () and @© and obtained
by equating the coefficients of Yequal to zero are

% :‘. LV =0, (13)
| Pu® — Qv =0, (16)
o O + 1o + v =0 (1)
“ ! where L= aToTom—axoxoxo—ayy-ro+y”6-ro—-8xo

P = droro — dxoxo 3 @ = ydTo+ayxo

This set of equations (15) — (17) constitutes the linear problem for O(1)
solutions as nonlinear terms are absent.

As we are concerned with the problem of amplitude modulation, we assume
the linearized problem to have a dispersive wave solution of the form
exp [i (kxo—wr0)ls propagating in west-east direction, k being the wave number
and  the frequency. Let the solution to (15) be

O = BLAP (1, Ty V50 Qe BFT 0T o 4 0y (s T o) 1)
b

where j=0,1,2, . . . and AP are the complex wave amplitudes (constant with
respect to Xo, To, ¥) which are assumed to be smooth slowly varying functions
of slow time and space scales and satisfy A (X0, T, - =4 (=X 15—T15 - ),
are real constants, functions of higher order scales and can thus be termed as slow
modes arising due to nonlinear jnteractions on slower time and space scales.
Since we are concerned with the nonlinear modulation of the wave train
represented by (18) and the nonlinear terms are absent in (15), we assume that
O (1) perturbation has the wave from which is devoid of the slower modes a.
Therefore, a;=0 is assumed here. If we take (18) as the O (1) perturbation,
we may treat interactions between the wave trains as slow modes. This case,
however, is not treated in the present analysis.

Equations (15) to (17) are same as obtained by Matsuno (1966) who treated
the O(1) problem in detail and showed that the O(1) problem is an eigen value
problem. Following his approach, the orthogonal O(1) eigen solutions belonging
to eigenvalues w; can be obtained as (writing 6; = ks Xo—w;To)

v =2 [—i (@} —k}) Vi + c.cl (19)

4O = 3 [h(ws v k)Y, 4 o+ PR Y, ol (20)
]

PO =2 [§ (o5 +h1) \Vn]-+1 — i (05— k) ¥y T 0 @1

where Vo 7 AP, o, - - - ) (€Xp i85 = expi(—yY 2 Huy ()3 = 0 1h 20
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and Hy; isthe Hermite polynomial of degree m; provided that the following
dispersion relation is satisfied

D (wy, k) -—_-w%-— (k;2 +2n5+1) wj —k; = 0. (22)

Here n; can be indentified as meridional mode of solutions. This is the cubic
dispersion relation whose roots define the characteristic wave types of this
model. This gives arelationship between the frequency and the longitudinal
wave number for some definile meridional mode n;.

For #;>1 and using a trigo-
nometric method of solution for cubic equation, the approximate values of
three roots for «; are given as

1% (5 2m 1) 4y (K2 4 25 1) 62 (62 2+ 1502, (232)

09 (it 20 1) by (k22 1) 4 34202 2y 1)-50 (23b)

wg= —ki(k? +2ni + 1)1 (23c)

The wupper two frequencies @iy and  wy;  correspond to respectively
the frequencies of east and west propagating inertial-gravity waves, while v
corresponds to the frequency of a westward propagating Rossby wave. The
dispersion curves for these three frequencies for a few meridional modes n; are

shown in figure 2. Fon;>1, these are completely separated from each other
over the whole range of &;.
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Figure 2, Frequencies as functions of wave number (dispersion curves).
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For the lowest mode w=0. The three roots of the dispersion relation (22) are

u)li = '—kj (243)
woj = *]z‘k3+(3ilc,2 + 1)1'2 (24]3)
vy = He—(H + 112 (240)

The first root wy; gives atrivial solution, u® =y = O™ =0 and hence,
cannot be adopted as an eigenvalue of the O (1) equations (15) = (17). Thus
in the case of the lowest mode n;=0, we have only two waves, the frequency of
one of which (wy) corresponds to an eastward propagating inertial-gravity
wave and that of other (ws;) corresponds to a westward propagating mixed
Rossby-gravity wave or Yanai wave. These are also shown in figure 2. As
is obvious from figure 2, this mixed Rossby-gravity wave connects the two
families of waves and its frequency ranges from a value which compared to the
frequency of the inertial-gravity wave, to a value which is close to that of the
Rossby wave.

2.3 O(c) problem: the finite-amplitude (non-linear stability analysis)

To the O(¢), the solutions v, u( and ®® can be found out from the O(¢)
perturbation equations which are obtained by equating the coefficient of ¢ equal
to zero_and are

LD = —L, vO— POV +vOy0)— MO+ vOu®) + N@OUG + 0 (), 25)
Pl Oy =— (PO —01vO)—uOu +vOuD)zo — @ODY+vODP)0  (26)

OB+ ul) + Vy) = ‘D(T"f—“i"? —u09Q —v<0>d><y°>, \ 27

where L; = 397orori—dxox0Ti—dyyT1 + Y1811 — dx1—29%0T0K1 5
Py =2 (37oTi —dxoxt) 5 Q1=ydTi+dyxt ;
M = (3x0y — yd10) 5 N=9yT0—Y3x0

It is obvious that the solutions »®), #® and ® of (25) - (27) will be the linear
combinations of the two solutions, namely (a) one solution of the homogeneous
parts of (25) - (27) ; (b) another solution arising due to the inhomogeneity present
on the r.h.s. of (25) - 7). As is clear from the above equations, knowing v
from (25) will enable us to solve for u(!) from (26) and finally @ from (27).
Since the operators appearing in Lh.s. of (25) - (27) are the same as those
appearing in (15) - (17) which determine v 4@ and ®©, the solutions of
the homogeneous parts of (25) - (27) (obtained by putting their r.h.s. = 0) will be
similar to the O(1) solutions described by (19)~(21) with the dispersion relation (22)
being satisfied, in their (xo, To, ) functional structures. Though the operators
in Lh.s. of (26) and (27) are the same as those in Lhs. of O(1) equations (16)
and (17), the solutions of the homogeneous parts of these equations may be
slightly different from O(1) solutions because these operators now operate on W\
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and u") as well. It can be noticed from the linear inhomogeneous terms of (25)
= (27) that for every component of v(O®M and () there exists a corresponding
resonant forcing arising from the introduction of multiple scales (7, X)) which
are involved in the operators L, P, and O Nonlinear inhomogeneous terms
may also give rise to resonant interactions under special conditions. Both
linear and inhomogeneous resonant forcings will produce higher harmonics in the
fundamental wave on O(<) space and time scales, X; and 7). Thus, considering
that on these scales the second harmonics are produced due to resonant

forcings,
we assume the O(e) solutions of the following forms :
v“):? [_,-(w? ~k?) \7[,&15)_{_3%) (X,,T,, .. )exp 21'6,-Vf1§3 (N 4+c.cdcy] (28)
Ul ?[A(IE)(X“ T, . . .) expiig; WD (»)+ B X7 ...)
exp(2i0) Wi (»)+c.c+ o), (29)
OW=2[AD (X, Ty....) exp its Z{ () + BY (X0,Ty, . .. )
J exp (2i0)Z1 () + c.c4eq] (30)

where (1 'AEU(XI,TI,....) exp (i6d) exp (»2/2)Hy; (v). - Since we are interested in the
nonlinear modulation of the amplitude 4(® of the wave train (described by the 0 (1)
solutions), we assume that 4{), 4D, and B}, 4, are functions of AP and 40
(asterisk denoting the complex conjugate) and thus are complex
constants with respect to Xo,7o and p. Ci1,0.3; are real constants with respect
to Xo, 7o and y and assumed to be functions of AD, A% These constants
are to be determined from the secularity removal conditions for higher order
terms in €. Vl(li.’,‘ W((ll,)2)j’ Zgll?;)j are functions of y, yet to be determined.

Substitution of (28) into (25) will give us an equation which will determine
the solution v(!) completely. The structure of v(1) so obtained would contain
resonant secular terms (proportional to exp (+i6;) unless the coefficients of
exp (£i6;) vanish. Equating the coefficients of exp (2i6;) in both sides of this
equation will determine B{}) and V(). In order that the solution for v(1) pe
non-secular, we must have

it Ve AR} =0, - @1

which is the condition for non-secularity and thus removes the secular behaviour of
Vi, By considering the complex conjugate terms, we shall get an exactly similar
non-secular condition for AJ€°)*. Here ¥, is the group velocity of the waves
defined by

Ve == D/ Duj = (1 + 2 05 k(32 — ki~ 20 — 1) (2)

D being the dispersion function defined by (22).  Under these non-secular

conditions (31) and equating the coefficients of exp (+2i9;), we obtain the secular-
free solution »(1) as

Y = 2{-1- (3= ) Yl + 50 VO + e + c;j] , (33)
i ] wj

P

=
gy
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where V(1) = KAP 2 exp (2i0;) V®(y), K being the constant of proportionality and
V‘Qj) is determined by solving the following differential equation

42y ' . .
o (4o? — 42 — fifw; — 3?) VP = K F (3 ks, 9) s 34
where we have replaced the partial derivative 82/9)” by the total derivation d?/dy?.
The function F (wj, kj, y) appearing in (34) is given by
F(wi, ki, p) =1 Fiy HY + Foi Hoy Hoj 41+ Fyy HY 1] exp (27) (35)
where F{; »,3); are all functions of «; k; and y and are given by
Fij(w;, ks, p) = 2 [ 3 (wi — k)2 Qui—k3) + 22k} (wj — k)* —» (v—k)
(2 — k) (2 — K+ 1) + (o) + k) (415 w2 + 4, 0 —K2)
—k;j i (1) (05— k)} + (w—ki) {wj(w+k)? + 2ki(wf—k7)
+ Anwiki} ], (36a)

Fo; (w3, kiy 3) = 202 (wj— k) { (05 —k;)? — wikj (0, —5k)} U —
pik2 (wF + k) —2wik} =2 (wl—k2)2 (0 — 1) —z (w5 + Ky)
{(wi—k) (6ui + Sk w))+2k; (W} —KkF) } + 2n; { 2 (o] — A} )
+k2} 1, (36b)

Fy; (wi, ki ) =pw; { Z(w]? — k]z) + k; (30)]?-{» /c;%} — 2uw; ka . (36¢)

The secularity removal condition (31) essentially means that to the O(e), the
amplitude A" is constant in a frame of reference moving with the group
velocity V. In other words, AJU’) depends on X, and T; only through
f = X 1 = Vg T 1

The y-structure of the O(e¢) perturbation in v is governed by (34) which is an
inhomogeneous, second-order ordinary differential equation. Using power series

and green’s function methods (Margenau and Murphy 1966) the solution of
(34) can be formally written as

Ly
1 .
=g c@nre e, @)
Ly
satisfying the boundary conditions. & isa point which divides the range of y
from — Ly to L, into two parts (i) — Ly < y<0 and (i) 6 <y <Ly. G(9, ) is
the Green’s function for the homogeneous differential equation (34), with
boundary conditions same as those for V{I) The integrals in (37) can be
evaluated analytically or numerically so that ¥{}) is known. The structure of
Vil for a special case corresponding to n; = 1 is shown in figure 3. Once
Vi) is known v(!) described by (33) is determined.
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Figure 3. V(1) as functions of ¥ (=fy+y) for the meridional mode nj=1.

Now substituting v{) and u(!) represented by (29) into (26) which governs '),
subsequently removing the secular terms (i.e., equating the coefficients of
exp (+ i6;) to zero) which will determine A, Wil) (and its c. c. equivalent) and
equating the coefficients!of exp)(:£2i9;) which will determine B W (and its c.c.
equivalent), we get the secular-free solution u!! in terms of Vi as

nj+1
—2w5 k; Vuje 1] AQJAD—[y (o —KF) Yoy + (0} — k) ¥y a 11X
AQ AR} + 3 (F—E2) {y VO A+ (ei) ¥ Q VL VY
(D (@ — Ky + (o2 k)] Y2 =y o? YuiVagy 1}
+ cc+ ¢y . (38)

w0 = 3 [y o) ¥+ I ¥4, — i (@2 — ) {1y (0F —g2) Y
]

Sintilarly, the solution of (27) which governs ®) can be obtained as

B =3 [ (k) YU + w3V 0, 4 1 {y A—2hifoid ¥

]

— (02— 3R2) (02 —k2) (Vajy 1) (A AD) — ((1—2Kkif0) Yo

— 2 w3t (= R g ) (AQAP) Y+ & (- R)

jx1

b kifw; + VPV ¥ + 3 { (92 wj (wi—ki) — (w3 — k)
(U + 2kifw; + 2m)) V2 4 p ki (wi + 2) ¥uj Voo + BV

+ecec + ng] s (39)

H
{
{
H

e
M
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where primes in (38) and (39) denote derivative with respect to y.  The first two
terms on the r. h. s. of (38) and (39) are equivalent to the first two terms in the
expressions for 4‘» and ®© ((20) and (21) respectively) when the recurrence relations
for the Hermite polynomial are made use of. We observe here that for knowing
v, D and @) in terms of known quantities, we have to still dctermine the
complex constant A1) and real constants Ci, i =1,2,3,.... We shall
show in the next section that these constants can be determined from the
secularity removal conditions for the equations corresponding to higher
order in e. [ Following Bogoliubov and Mitropolsky  (1961), we may set
A(Jl) and A(P* equal to zero. However, as will be seen later, it is not necessary
to do so within the order of approximations considered here]

2.4 O(&) problem: Derivation of non-lineqr Sc/zraa’inger equation
The O(<?) solutions v, u® and ®® can be found out from the O(€2) perturbation

equations which are obtained by equating the coefficient of &2 equal to zero and
are given by

LV® = — [y [,y 0—p (O 4 u DY + 4Oy 4 Oy 4 vy
—M (zt(o)zz§(1))+u“htf(%)u(o)+u’(g)—}— vy viy©) 4 N (D@L +uDp )
+u(0)¢£’01‘ +V(0)¢§ll)+vfl)(lb§,0):) — P, (“(O)V)(‘(l)) + V(O.)ngo)) —M, (u(o)u)(‘%)

HVOU®) + Ny @O+ 0pO), (40)

Pul® — Qv = — (Pr()— Q1)) — (P2 ® — Oyy(0)y (O 211y D
+ uuo 4 v + VU ) — (u© G 4 uDY) + u® O

+ V(°)(l"§,”+v(”(l>§,°))xo —_ (u(o)ll_i%)+v(.°)1l§f)))1“1 — (”(O)l‘§%)+v(°’l’(2))-r1

—@OQ + VOO (41)
9 2 —
P+ D+ = — il — w— OY — ) — wv gy — yrg
— 40P — OO — DO, (42)

where L,=397gp9py — 9x0x0T2—0yyT2 + Y2012 + 3970T1T1I—20 %0011
——ax2~—28x01‘0x2—61:0x1x1 5 ‘
Mi=8ya—yari ; Mi=ogr — yay 3 Q2=yoratoya;

Pr=2 (31012 — 9002 ) + OTITI — Axlxl
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As is obvious from the above equations, the solutions V2w and ¢ will ii;f

. e . . Ce . . . i o

now contain additional linear resonant forcings arising from the introduction of RN
higher space and time scales (X,T3), giving rise to higher harmonics in the R

fundamental wave. The nonlinear resonant forcings due to the inhomogeneous
terms containing the nonlinear products of O(1) and O(¢) quantities, will also
produce further higher harmonics produced by the nonlinear terms involving

{
the products of O(1) quantities. Considering the fact that these forcings might £
|

give rise to the second and third harmonics in the fundamental wave, we assume

the solutions v®, 4 and ¢*2 of the following forms (as was done in the case of
vyt and @)

vD=3 [ —i (0} —k?) V&4 B exp (2i6)) V{H+C® exp (3i0;) Vi +c.ctdy
j (43)

el Sj[Aﬁ) exp (i6;) Wii + BR) exp (2i6)) WgH—Cg) exp (3ig;) W§§)+c.c+ci(2£k ’
! )

¢ D=3 [AD exp (i6) ZD+ BR) exp (279)) ZP+ C@ exp (3i6)) ZE + c.c + dy),
i (45)

where 3 = Aexp (i0] - y*[2) Huy(3) 3 AP, ARy, BY, |

2)j? s,

are functions of A{” and 4{¥* and are thus complex constants with respect to ' 3
Xo, To, and y.  dy, i=1,2,3 are real constants with respect to Xy, To, y and

functions of A and A{"*. These constants are to be determined from the

non-secular conditions in higher order in e. The functions fo:’z)jl,W(‘f_‘Q -
and Z®, , . are functions of y. :

The solutions v, u® and ®2' in terms of known quantities can be found out
in the same manner as the solutions v, ‘™ and ®.1 were obtained. In order
to have the O(<?) perturbations completely known, we must determine all the ‘
constants and functions just defined above. We are, however, not proposing |
to do so in this paper. We shall only assume that these O(e) solutions are
well-behaved. This means that all the secular terms appearing in the equations
governing these solutions, should vanish. The equations governing these 4
solutions will now contain two types of secular terms, (a) secular constant terms s
and (b) secular resonant terms proportional to exp (4i8;). Therefore, we will \
now have two secular-free conditions in order that the O (e?) solutions are ;
bounded (well-behaved), one for constant terms and another for resonant terms. i

Substitutions of (43), (33), (38), (19), (20) and (21) into (40) which governs the
evolution of v(2, yields

2iw; (4wl — 42 — k;[wi—)23,5) B VD exp (i20;) + 3iv; (9w? —9K?2
— kiJoi—y* +3y) CP V@ exp (3ie;)+c.c ! ?
=(PVe+1) 9C1; [ax— (w2 —k?) (DwsHy;) {exp (—y?[2)} (A, + V,4®) o

+i (A§'lr)1 + VgA§i’1 )""“’iDZ)lj (3A§('P1T1'A]{g)1x1 + 2ki“’5_] A§2’1T1)
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+fi 4D A (@ — 2 )LD i (' oy —h y5603) (02 — K2 )1 D hwi ] exp(ios)
+terms proportional to exp (2ig;) and exp (3i0;) +c.c (46)

where Dwj = 8D[dwj = 3 w}—k? —2m — 1 and  V, is the group velocity
defined by (32) and

ﬁ (f;_, fzj f?,]) }['l exp (+y2/ ) ; /1'”:]1,”, H;; €Xp (y2/2, l’l,2j=1123 H;l
exp (y2/2) (47)

with £, y; and A, , being functions of wj, kj, ¥, which are given in the appendix I.
Equating the coefficients of exp (42i6;) and exp (+3i0;) in both sides of (46), we
will get the expressions for B, V@ and C{¥, V{» while the constant [d,;] can
be determined from the hlgher order equatlons 1n e. This will determme the
solution v/® completely. But, as discussed earlier, we are interested only in
knowing under what conditions the solution v® remains well behaved (bounded)
and this can be done by removing the secular constant and resonant terms
appearing in (46). Therefore, we have not presented here the terms proportional
to exp (£2i6;) and exp (£ 3ie;) in (46).

The condition that the constant terms appearing in (46) be non-secular so as to
get secular-free solution v, requires that

oaCy;

2 _, -

As (*V,+1) =0 gives dependence of V', on y which is not permitted, we have
¥V + 1 == 0. Therefore we must have

3¢ 0, or <l acu) -
o\ 7 a1 )= O
{by virtue of (31)] 49)

which means that C,; are constant with respect to X, and T,. However, C;;
could be variable in higher order time and space scales Nevertheless, as far
as time scale T, and space scale x, are concerned, C,;, is a constant which means
that to this order the meridional velocity has a constant .component. Physically,
this is unrealistic because it will mean constant piling up of momentum and
vorticity at high latitudes.  Therefore, from physical consideration we shall
put C;;=0

Similarly, the condition that the resonant terms proportional to exp (ti65)
should be non-secular, requires that

AG, + Vedl) + 1 5E AQ

]xlxl
= — ( mjz - k]z )‘1 D"le [A(?)2 A(?)*f} + (i]l'lj Clj— hlgj Czj) A(?)] s (50)

together with its complex conjugate relation. In deriving (50) we have made use
of the following relations
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94w aA
(1) (1) — (0) i
AjTl + Ve ij1 ——aA(‘:.” (Aj’n + VgAﬁ‘.l)l) + -—_BA(‘?])* (Aj'(rol)* + .VgAj(,gg*):O, (1)
and ] .
W ( 40 ok \ dv
Do ( 3Ry — Afixi =2 o Am )=V A, (52)
]
where
dVy _ 3V, Ve _
712,1_ = _BE_+ VgEJT‘ —[Zw.i(1+3VgZ)+4kJ Vg]/D"Jia (53)

and the fact that A, + ¥, 4% = 0. Equation (
relation have been made use of,

Note that the equation (50) does not contain the arbitrary constants (with
respect to Xy, To, Y) A(}) and A(jl)* so that we need not determine them so far
as (50) for the time evolution of the wave amplitude A® is concerned. It
does contain as yet undeterminedfconstants Cy;. It can be silown that the substi-
tution of (43)-(45) into (41) and (42) and then imposition of the condition that the
constant terms be secular-free, still leave the constants Cy; undetermined. However,
these constants can be determined from the next higher order equations in ¢, i. e,
0 (€2 set of equations.

43) and its complex conjugate

Proceeding exactly in a manner described in this section, it can be shown that
by having the requirement that the constant terms appearing in the set of 0(e%)
perturbation equations be secular free, one gets the following non-secular
conditions for constant terms :

ad!; . 32
— (Ve + 1 371—]- =200 =D+ Vo4 ay ]5;1—2 (AD AD%) - (54)
and
ad; 3% ¢y _ 92 4
Vg ax +y (Vi — 1)"5)(:1—2 = (ngﬁz —a3) a—xli(A(?)A(?)*) . (55)

The functions @y, @3 and a4 appearing in (54) and (55) are functions of wj, ki and
y and are deflned in appendix 2. Eliminating d;; between (54) and (55), we get

32 Cy; L

V=D =8 op

where
g=Vem—as —22 Vg (as+ oy V2 —ad) )y * Ve + 1) 1,
[ntegrating (56) twice with respect to X; we get

Cy= gl AQI2J(V2 — 1) + 6 (X2, Toy.l) X + B (Ko, Topnl),  (57)

where d; and B; are two constants of integation and functions of X3, T, .

Using the relation (31) and its complex conjugate in (56) the second term
on r.hs. of (57) will be ieplaced by J; T;. As these terms give rise to the
secularity in C»; with respectto X; (or 7)) we assume that for secular-free

(14%z), (56)
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Cyp 6= 0. The function f; has to be evaluated on physical grounds from
the appropriate initial or boundary conditions. For example, if we assume that
Cy—0at ¢ = X — V, Ti— £ oo which means that there is no steady part at
infinity, we get

Bi=—¢ | dieo | */(V3—1) where  Ajg = A0(§ = + ), (58)
we note that this solution is valid only for Vi # 1. This may always be the

case for dispersive waves under consideration for which the group velocity is
different from the phase velocity.

Substituting for C:zj in (50), we get a nonlinear equation for the evolution of
complex amplitude Ag‘”, that is,

24O 34 3240 ,
i(;ﬁzmi- e ) + M= Ni| AP | 2 AP R; 4D, (59)
1

together with its complex conjugate relation, where AJ(O) now depends upon
¢, Xo,T5, ..., while R; (through B;j) depends upon X3, T3, X3, T, . .. and
is constant with respect to § (=X, — V, T1) and

dv, . . ERTI
Mj = %-dkj"; Ni=—[fi=hoy (V2—1)"1] (F'—k2) " D-lw; ;

Rj:Bi 11'3j (w’Z_.kf )'] ij"l . (60)

The second term in (59) is the dispersion term and the third term is the
non linear term. This equation shows that, ina frame of reference moving with
the group velocity of the waves, the modulation amplitude A(*) is determined by
the nonlinear interaction (¥; term), the dispersive term (M term) and the linear
interaction term R;.

Now, introducing a coordinate transformation such as
r=T; {-X—VD, (61)
(59) can be written as

AP 9240
i—é;—-l'Mj—as-z = N | AJ(O) | ZAJ@) +RiA®, (62)

where AJEO) is a function of ¢, {, 7, X3, Tz and R is that of 7, ¢, X3, T3. This
equation, in a frame of reference moving with the group velocity of the waves,
isa nonlinear equation which governs the evolution in slow time and space
scales T, and X, of the waves propagating in a barotropic atmosphere with a
zero basic state. When we consider the variation of A4, with respect to 7 and {
(whose order can be regarded as O(1) with respect to (62), then Xj, T3 become
of higher orders and in this sense they can be considered as slow parameters.
Therefore, upto second order variation, A can be regarded as a complex function
of r and £, while R; as a real function of B;. If boundary or initial conditions
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are such that  (and hence R) is constant with respect to 7, (62) is called
the “modified nonlinear Schrc;dinger equation”, because of the linear terms
appearing on the right hand side of (62) as a modification to the usual nonlinear
Schrodinger equation. Whether Rjis a constant or varies with 7, the linear
interaction Ri4; term in (62) is not very important because it causes only a
phase shift in the solution 4;. Making a transformation such that

T

AP =A9 (g, ) exp [_iJ'R, (r"y dr1], (63)

the Rj 4; (0) term can be formally eliminated from (62). With the transformation
(63), (62) can be rewritten as

.aﬁg‘” 82A§O):N. A 2A(0) 6
l%a,r-k jyg._,‘ J] i f g (64)
It should be noted that the modified nonlinear Schradinger equation (64)
describing amplitude modulation of the wave trains represented by (19), (20)
and (21), has been derived from the non-secular conditions (boundness condition

for the wave solutions) for O(e2) perturbation equations and therefore, is valid
for scales as large as O(e™2).

3. Solutions of modified nonlinear schradinger equation (64)

If now, we look for a plane wave solution to (64) for the amplitude 4 ©, of
the form

A9~ 4D exp [i(F; ¢ — Qr], (65) _

we get following nonlinear dispersion relation
Q= MR N1 4912, (66)

where K; and fgj are respectively the wave number and frequency of the envelope
of the wave trains represented by (19), (20) and (21).

3.1 Stationary solitary wave solution

Let us look for a localized solution of (64) for 1 @ satisfying the boundary
conditions ; (a) | Z((j’) 12 is bounded between two limits Ay, and Amin. (b) at
[ AD P = Apgx, an extremum i.e. § | A9 1266 =0 but 2 | AY 12382 # 0 and
(€) Amin is the asymptotic value of | Z(?) l2atfé— 4+ .

introducing two real variables &; and ¢ which represent the real and imaginary
parts of 49 we can write 4D as

AV 6 7)) = VI (€, 7) exp {i6; (€, ) ] 2Mi } (67)

Substituting (67) into (64) and separating real and imaginary parts, we get after
simplification,

[
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o 4 (= 3N _

W age(ise =0 o
a0 - — 4 \?

e (Ge) - meaE e L ()] e

It can be seen from (68) and (69) that M; = 0, the envelope will steepen in the
course of time evolution and finally break down. On the other hand, if
M; % 0, the dispersive term

gl (3 1]

begins to play a role in checking the steepening.of the envelope. Therefore, one
may expect an equilibrium stationary “state resulting from the balance between
nonlinear steepening and the dispersive effects. Following Hasegawa (1975), the
stationary solution (i.e. when 9/37 - 0) to the modified nonlinear Schrodinger
equation (64) for the case when M; N; < 0 and subject to the boundray conditions
(a), (b), (c), mentioned above, can be written as

AP (8, 7) = Assech (6| W) exp { i (@ ] 2M5) 7 } (70)
where '

Ai = AL - V/'_ﬁj [ MiNi, Wi = (—2M | N)'2|A; and @, > 0

and is a constant. This solution has structure similar to ‘thej “soliton £ soluton”
for weakly nonlinear waves in a dispersive medium and hence, is called “envelope
soliton” which moves at a speed equal to ¥, i.e. group velocity of the waves. It is
seen that the amplitude of envelope soliton A; (also called the height) is inversely
proportional to its width W;. As is obvious, the constant parameter Q in (70)
is a phase factor and will thus determine the phase of envelope sol1ton When
M; N; > 0, the solution of (64) has a “envelope hole™ structure and has not been
discussed here for its lack of relevance in geophysical fluid dynamics.

4. Results and discussions

The various asymptotic behaviours of the atmospheric waves have been discus-
sed, using multiple time and space scales and the derivative expansion method.
This method has, as pointed out by Kawahara (1973), an advantage over the
other methods in the sense that the dependence of the parameters on the indepen-
dent variables need not be specified a priori and also that the perturbation
analysis to the different orders could be carried out systematically. Based upon
the divergent barotropic model on a f-plane, we have investigated the long time
evolution of finite amplitude (i.e. weakly nonlinear) and slowly varying wave
trains propagating in the atmosphere witha zero basic zonal flow. The present
analysis is basically an extension of the linear stability analysis of the atmospheric
wave motions in the equatorial region (Matsuno 1966) into the nonlinear regimes
for these waves.
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In the Jowest order approximations of our model, i.e. to the 0(1), the resujts
of the linear theory of Matsuno (1966) are retrieved. The propagation characteristics
of the linearized solutions for these atmospheric waves are such that “there exist
three distinct classes of planetary scale waves for the meridional modes =1, The
first two types are the eastward and westward  propagating  inertial-
gravity waves while the third is the westward  propagating Rossby  waves.
They are distinguished from each other by the fact that the frequencies of the iner-
tial-gravity waves are much larger than that of Rossby waves (figure 2). For the
particular lowest meridional mode n;=0, the existence of only two types of waves
is possible ; one is eastward "propagating inertial-gravity waves and the other
describes the westward propagating mixed Rossby-gravity or *Yanai waves’
(figure 2). The dispersion relation for the latter type resembles that of the
Rossby waves for the wavelength much smaller than the meridional extent.
For the case where the wavelength is longer than the meridional extent,
however, the frequency approaches that of the gravity waves of the same wave-
length. 1In other words, the mixed Rossby-gravity wave connects two families of
waves and its frequency ranges from g value which is comparable to the
frequency of the inertial-gravity waves to a value which is close to that of the
Rossby waves.

Using multiple time scale method to solve the weakly nonlinear equations, it
is shown that the evolution of the wave amplitude on slowly varying time and
space scales is governed by the modified nonlinear Schrc;dinger equation. The
stationary solutions to the modified nonlinear Schrodinger equation are obtained
and found to have the structure of ‘envelope solitary waves (envelope solitons or
Wwave packets)’ moving at a speed equal to the group velocity of waves, which
results from the balance between the nonlinear steepening and the dispersive
effects. 'We consider this result as an indication of “the possible existence of the
envelope solitary waves in the atmosphere. Though the dispersive waves in optics
and plasmas are known to have envelope soliton solutions, this is, to our
knowledge a very good theoretical evidence of the existence of ‘envelope solitons’
in a geophysical situation.

The methodology presented in §2 for deriving (59) [or (62)] governing the
the evolution of the amplitude is quite general in the sense that this equation
governs the amplitude evolution for all the waves described by the Shallow
Water Equations. However, the envelope soliton solution presented in § 3
is valid only for the dispersive waves. For example, Rossby waves and Rossby-
gravity waves will have such nonlinear solution. On the other hand the Kelvin
waves will not have soliton solution. We note that for the Kelvin waves
;= —kjand n; = —1. Therefore, the group velocity 7, for the Kelvin waves

given by (32) is a constant. Thus M; in (62) is given by M, = %[5[—1];" =0 [see (60) ].
pl

In the absence of the dispersive  term  containing M;, (62) represénts
steepening of the amplitude of the Kelvin waves in the nonlinear regime.

We note here that the modified nonlinear Schrodinger equation describing
the dependence of the wave amplitude on slower time and space scales (T2 and
X2), has been derived from the non-secular coaditions (boundedness conditions
for the wave solutions) for O(e?) perturbation equations and therefore, is valid
for scales aslarge as O(¢™2).  Although the dependence of the wave amplitude on
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O(<*) and higher order scales should be determined up to this order of pertur—
bations we have however not considered in the model the variation in the change
of the wave amplitude upto O(e’) and higher order scales which may be
considered in a sense as a kind of slow parameters since e<1. In other words,
the evolution of the wave amplitude in the present analysis is accurate up to 0(e?)
scales and will have an error of O(e3).

5. Conclusions

In conclusion, our model predicts that the long time evolution of finite-amplitude
waves generated in a barotropic single layer model atmosphere on a S-plane can

be described by a modified nonlinear Schrodinger equation. The model further
predicts that these finite-amplitude waves finally evolve in time in the shape of
envelope solitary waves or envelope solitons (i. e.in the shape of wave packets)
and this provides us theoretical evidence for the existence of ‘envelope solitons’ in
a barotropic atmosphere, in particular and in any geophysical situation, in general.
These envelope solitons propagate with the group velocity of the wave.
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Appendix 1. Expresstons for A 5 ; and fy;, i=1, 2, 3 appearing in (47).
hij= (0] — k)2 (pHy; — Hujy1) exp — (122) + (yoi + ki 9/3y)
lexp (—2/2) {(¥¥(wi — ki) + ©j + (2 + 1)k;) Hy; — yw;j Hujor}]
—(k; 4 wj 8/ay ([exp (—3*2) {(¥X(w; — ki) — k5 — wj (25 + 1) ) Haj
+yk; Hujr}], (Ala)

haj=ki (0} —k2)2 Hy; exp (—32)2) + k; (yo; + &; 3/ay).[exp (—12/2)
{¥(w; — kj) Hyj + K Hujp i3] — ki (ks 4+ © 3/0y) [exp(—%2) {p(wi—k;)
Hyj — wj Hyj. (Alb)

Fii=3 (@} — k) [k + o (w2 — 362) ) V) + QoF—3k2) V" 201}
Hyjexp (—-y2/2) — (wj — 3k12 Jw;) Vx(xlj) Haje1 exp (—»2) + kj (“’,2 —-k]z)

Haj exp (—25) {(Pwi(w; — k) + w2 —k2) HE — po? Hy Hyjy1}], (A22)

S
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Fai=0w; + k; 8/33) [exp(—y2/2) ki(p(w; — k;) Hoy FhiHg1) (Ho?— &2)
OV + V' kilw)) + (32 (w—k;) + of —k})H}; exp (—2) — yol H,
X Brjes 5D (=) + 1y (V) 3V + ¥ 0oy — 4 (03— 1)
{0005 — k) + w2+ w; (w5 — k) — niwf — k) y HY,
+io? — k) Hy

— (%; (0 —k;)
Unj+ 1+ %yw? Hn.i+ 1} CXP(—J/Z)H‘%“DFIVQ,-) (Hnj [ yz("’j

— k) H oy + @ + 1) k] — yw;Hng, )}, (A2b)

Fi=kiyk; + w 8/3y) [exp—y*2{} (02— k2)1 [p(w; — k;) Hyj — wjHy, ]
OV + KV ws) + dewt— K2)p(w; — k) Hy; + &, Hjy 1 J(kiyV Wy
FV) = V0o — k) — ks + @niy) w) Hy + v, Hoiy 1} 20ik;
THVE + 3V Q' + wiv 8 k) f4o; + exp (—32)({p (w; — k) Hy; + k;
oy} {025 — k) ;4 (03— k2) (1 + 2kifw;) + 2 (wf—k2))
2y vk (@54 2) Hog Hojoy + K2 Hojyr} —Hp(0; — ki) Hyj — w;
Hujy s} {05 — K)oy + w2 — k?) HY — yw? Hy Hyy,,} — 3H,; (w?
—k) [y (05 (0, — k) (32 + 1) + oyt (©f — k) (w5 + 2k) — 22 - K
(5 + 1) (w; + 2) + 2n; (w2 — k2)) By — ks (U + K + wyj2) B2, |
—(%w; (05 — k) + (02— k2) (w) + 2%;)Jw; — 2k — k; (1 + wf2)
+2m(wf —2k7) ) Haj Hoj 1D},

(A2¢)
where a prime denotes the derivative with respect to Y.

Appendix 2. Expressions for az, as and @4 appearing in (54) and (55).

0=y exp (=) [ (w5 — k) Hoj + ki Hugy )2 — {(Vy + 1) (2 + 1)
(f —&2) =2 (5 + 1) Quik;¥, — Wf =k} Hy + p{(V + 1)
(@} — k1) — 20V + 02 + k2 }Hoy Hyg, ), |

w=y exp (—) [{hi(Vy + 1) (1 — 2kl Hij kit (wf — k2)1
[w; (w0f = 3k2)Vy + 28] Hujy My (0 — K;) H,, Tk Hajyr } +{pk;
Vs + 1) Hoj — &y (02— k)" (Q0ik; ¥ — 0f— k) Hujr } {y (@ — ky)
Hoj— wiloje1 } + (@3 — k) Hu{( (Vg +1) (2 + 1)

(o5 = 26y — 2™t @E—kE) (1 + 1) [og¥y (w— 382) + 2]
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Ho; —p ( (Ve + 1) (w5 — 2K5)J0; — o™ (0 — k2) [wi¥ () — 3k2)
H2Y) Hojyr } — (0F— &2) (PH2— yHoj Hojar) + wiksH2 11 ],

“4=2(0f — 1) Ha exp(—) {y (62— 263+ wiky) By — (w2 — 22 Hig1 }-
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