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Abstract. A conceptual model is proposed to explain the observed aperiodicity in the short
term climate fluctuations of the tropical coupled ocean-atmosphere system. This is based
on the evidence presented here that the tropical coupled ocean-atmosphere system sustaing
a low frequency inter-annual mode and a host of higher frequency intra-seasonal unstable
modes. At long wavelengths, the low frequency mode is dominant while at short wavelengths,
the high frequency modes are dominant resulting in the co-existence of a long wave low
frequency mode with some short wave intra-seasonal modes in the tropical coupled system.
It is argued that due to its long wavelength, the low frequency mode would behave like a
linear oscillator while the higher frequency short wave modes would be nonlinear. The
conceptual model envisages that an interaction between the low frequency linear oscillator
and the high frequency nonlinear oscillations results in the ‘observed aperiodicity of the
tropical coupled system. This is illustrated by representing the higher frequency intra-seasonal
oscillations by a nonlinear low order model which is then coupled to a linear oscillator with
a periodicity of four years. The physical mechanism resulting in the aperiodicity in the low
frequency oscillations and implications of these results on the predictability of the coupled
‘system are discussed.

Keywords. Aperiodicity; inter-annual variability; tropical coupled ocean-atmosphere
system; predictability;, convergence feedback; multiple periodic attractors; low frequency
oscillator; non linear intra-seasonal modes.

1. Introduction

The short term climate in the tropics is dominated by the El Nino and Southern
Oscillation (ENSO), an irregularly fluctuating inter-annual phenomenon. These
fluctuations are associated with large scale climatic anomalies such as devastating
droughts in western Pacific, torrential floods over eastern tropical Pacific and
damaging weather patterns over other parts of the world such as north America.
Therefore, ability to predict these climatic fluctuations has tremendous socio-
economic impact. During the last decade or so, it has been well established that the
tropical atmosphere and the ocean interact strongly in time scales longer than a
season and that the ENSO is a result of such interactions between the atmosphere
and the ocean (see Philander 1990 for a review).

For time scales in which the atmosphere can be considered in isolation, the
predictability of the atmosphere has been studied extensively (e.g. Shukla 1985 for a
review). It has been shown that there exists a limit on the predictability of the
instantaneous state of the atmosphere. This limit, which happens to be between two
to three weeks, depends on the internal dynamics (nonlinearity, instability etc.) and
external forcing in the system. While, it may be impossible to predict the day to day
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fluctuations of the weather beyond a few weeks, the averages or climatic conditions
of the atmosphere may be more predictable. It has been argued (Charney and Shukla
1981; Shukla 1981) that the mean fields in the tropics may be more predictable compared
to those in the extratropics as slowly varying boundary conditions (such as the SST,
soil moisture, vegetation cover etc.) introduce a slowly varying component to the
forcing of the tropical atmosphere. Thus, a conceptual basis for tropical climate
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Figure 1. Monthly mean time series of (a) a classical index of Southern Oscillation i.e. the

- pressure difference between Easter Island and Darwin in mb, (b) sea surface temperature
anomalies in the eastern equatorial Pacific region TEEF (20°S-20°N, 80 W-180 W) in °C.
The thick line in (a) represents a 12-month running mean and in (b) the thick line is a 15-month
weighted average.
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predictability is established. However, as soon as we go to time scales longer than a
season, we cannot consider the atmosphere in isolation. In these time scales the tropical
atmosphere and the ocean interact strongly. Therefore, to address the question of
predictability of the tropical climate, we must consider the tropical coupled ocean—
atmosphere system. The sea surface temperatures (SST) modulate the atmospheric
heating which drives the surface winds which in turn drive the oceanic currents and
thereby affects the SST distribution. Hence the concept of slowly varying boundary
forcing will not be applicable to the coupled system. The only external forcing to the
coupled system is the annually varying solar forcing. Therefore, the predictability of
the coupled system will be mainly governed by internal dynamics. The internal
dynamics encompasses the nature of the nonlinearities, the dominant natural modes
of oscillations and the instabilities of the system and their saturation mechanisms.
As opposed to the atmosphere alone, however, the internal dynamics itself may lead
to slow modes of oscillation of the coupled system leading to long range predictability
of the system.

To get an idea of the nature of internal dynamics of the tropical coupled system, it is
illustrative to examine some features of inter-annual variability in the tropics. Figure 1
shows the time series of one index of the Southern Oscillation (SO) and another
index of the El Nino (EN). Several features are noteworthy. High frequency
intra-seasonal oscillations (light curve) are superimposed on a dominant low frequency
oscillation (heavy curve) of both the atmosphere and the ocean. There is a very high
coherence between the atmospheric low frequency oscillations and the oceanic low
frequency oscillations. The high frequency fluctuations of the two systems are not
well correlated. The low frequency oscillation is quite irregular but seems to have a
preferred periodicity of about four years. This is seen in figure 2 which shows power
spectra of similar SO and EN indices. It is clear that there is a dominant peak around
4 years but it is a broad band spectrum, indicating the already noted aperiodicity.
If the inter-annual variability were perfectly periodic, it would be infinitely predictable.
The existence of a dominant natural slow mode of oscillation indicates the existence
of some long range predictability. However, the aperiodicity is going to introduce a
limit on this predictability.

While there exists a large volume of studies on the predictability of the atmosphere
(see Shukla 1985 for more references), only a few studies (Goswami and Shukla 1991;
Blumenthal 1991; Latif and Flugel 1991) have attempted to make a quantitative
estimate of the predictability of the coupled system so far. Goswami and Shukla
(1991) follow the classical method of studying predictability and conducted a large
ensemble of identical twin experiments with the Cane and Zebiak (1985; Zebiak and
Cane 1987) model and showed that the growth of small errors in the coupled system
is governed by two time scales. The fast time scale has an error doubling time of
about 5 months, while the slow time scale has an error doubling time of about 15
months. Blumenthal (1991) following a different approach arrived at the same two
time scales. Latif and Flugel (1991) also obtained the fast time scale using a more
complex ocean model but their forecasts were not long enough to estimate the slow
time scale. The two time scales first discovered by Goswami and Shukla (1991) seems
to be a generic feature of the coupled system. The slow time scale which provides a
basis for long range predictability appears to arise as a result of the dominant four
year cycle of the system while the fast time scale appears to arise due to the aperiodicity
of the system. We are now beginning to understand the physical mechanism for the
4 year cycle. One plausible scenario that seems to explain results of several simple
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Figure 2. Spectra for mean monthly anomaly time series (September 1953-December 1974)
for Tahiti minus Darwin normalized surface pressure difference ( T-D)y, Easter Island plus
Rapa surface pressure (E + R) and SST anomalies near upper Peru coast (4—12°S) (after
Rasmusson and Carpenter 1982).

models (Zebiak and Cane 1987; Battisti 1988; Schopf and Suarez 1988) as well as
some complex coupled GCM simulations (Philander et al 1992) is the delayed
oscillator mechanism (Suarez and Schopf 1988; Battisti and Hirst 1989). The delayed
oscillator mechanism has its root in the fact that the coupled ocean—atmosphere
<vetem in the equatorial Pacific is capable of sustaining a low frequency unstable
'~ (Philander et al 1984; Hirst 1986). The positive feedback associated with this
~*-—sea interaction and the negative feedback associated with the Rossby
d from the western boundary as Kelvin waves leads to an oscillating
d around 4 years. However, no such conceptual picture is available
~eriodicity of the system. The objective of this article is to attempt
nysical process(es) responsible for the aperiodicity of the low
1€ coupled system. Then, we shall present a conceptual model

ans leading to this aperiodicity.
may be attributed to nonlinear interaction between more
es of freedom) of the system. Early instability analyses
st 1986, 1988) showed the existence of only one unstable
which has been invoked in explaining the four year
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oscillation. If there exists only one low frequency oscillatory mode of the system, it
is unlikely to produce aperiodicity by itself. The task, therefore, is to identify other
unstable modes that are capable of coexisting in the system. In an attempt to identify
the physical process that may be responsible for introducing new unstable modes in
the coupled system, we carried out a series of sensitivity studies with the Cane-Zebiak
model. These results are presented in section 2. These sensitivity experiments indicate
that “convergence feedback” or wave-CISK mechanism included in the parameterization
of atmospheric heating may introduce some new unstable modes, To establish this,
we carried out a stability analysis of the linear coupled system including the effect
of wave-CISK. These results are presented in section 3. It shows that the convergence
feedback indeed introduces a set of new higher frequency unstable modes. In section
4 we present a paradigm for generating the aperiodicity in the low frequency variability
of the coupled system and illustrate it with a simple low order dynamical model.

2. Aperiodicity in the Cane—Zebiak coupled model

In an attempt to identify physical processes that may be crucial in introducing the
aperiodicity in the inter-annual variability, a series of sensitivity studies were carried
out with the coupled model developed by Cane and Zebiak 1985 (Zebiak and Cane
1987, hereafter referred to as CZ model). This is a simple coupled anomaly model
that is successful in simulating both the preferred periodicity of about 4 years and
the irregular interval between warm (or cold) events. The ocean in the CZ model
evolves according to linear reduced gravity equations and has a frictionally driven,
constant depth, upper mixed layer. The atmospheric model dynamics is that of Gill
(1980). The seasonal cycle is included through prescribed climatological surface winds,
sea surface temperature (SST) and ocean currents. The SST anomalies (SSTA) are
predicted through a fully nonlinear thermodynamic equation. The atmosphere is
coupled to the ocean through the surface wind stress parameterized by a drag law.
The ocean is coupled to the atmosphere through the parameterization of
atmospheric heating which has two parts. The first part is proportional to SSTA and
depends nonlinearly on the mean SST. The second part is proportional to low level
convergence anomaly but operates only when the total flow is convergent. In this
way, the coupling depends on the annual cycles of mean convergence and mean SST.
The model has several adjustable parameters such as the oceanic equivalent depth,
the sharpness and amplitude of the mean thermocline, the strength of atmospheric
heating proportional to the SSTA, the strength of the atmospheric heating
proportional to the convergence anomaly (“convergence feedback”) and atmospheric
dissipation. For a range of parameters, the model simulates several features of the
observed ENSO variability quite well (figure 3a). This model has shown considerable
skill in making hindcast for past ENSO events (Cane et al 1986; Barnett et al 1988).
We shall call the set of parameters used by Zebiak and Cane (1987) as the “standard
set”. Battisti and Hirst (1989) showed that the dominant oscillation with periodicity
of about 4 years arises in the CZ model due to a delayed oscillator mechanism. The
aperiodicity in the model arises due to nonlinearities in the model. The model has
explicit advective nonlinearities in the thermodynamic equation and implicit
nonlinearities in the coupling processes. The dominant quasi four year cycle arises
due to the dominant low frequency mode of the coupled system found by Hirst (1986)
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Figure4. Power spectra of NINO3 SSTA from three simulations with three different values

of the strength of the convergence feedback (). Power is shown as percentage of the total
and unit of frequency is cycles per month (from Goswami and Shukla 1993).

and others. In order that the spectrum around quasi four year period be broad,
there must be more than one unstable mode. However, Hirst (1986) and other early
stability analyses indicate the existence of only one low frequency mode. In these
studies, the atmospheric heating anomaly was assumed to be directly proportional
to the SST anomalies. In addition to this process, the CZ model also contains the
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convergence feedback process. We argued that inclusion of physical processes not
taken into account in earlier stability- analyses may introduce other unstable modes
in the coupled system. To test this possibility, we carried out some sensitivity
experiments with the coupling processes of the CZ model (Goswami and Shukla
1993). i

It is found that for the standard set of parameters, the aperiodicity of the CZ model
may be related to the “convergence feedback” effect. For example, if the convergence
feedback is set to zero (figure 3b), the model variability becomes periodic. Figure 4
shows the power spectra of one index of model variability for three different strengths
of the convergence feedback. It is seen that for § = 0, the spectrum is a line spectrum
with period of about 4 years and as f is increased the spectrum broadens around
this periodicity. As parameterized in this model, the “convergence feedback” is
proportional to convergence anomaly but operates only when the total flow is
convergent. Convergence anomalies, occur due to the SST anomalies and are nearly
colocated. The SST anomalies in the model are largest in the eastern Pacific. Therefore,
when the SSTA is large in the eastern Pacific e.g. in the warm phases of ENSO, if
the mean convergence field happens to be around the equator or south of the equator,
it overlies the SST anomalies and the convergence feedback has the highest chance
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. Figure 5. Time evolution of NINO3 SSTA (°C) corresponding to three different strengths
~ of the convergence feedback (top three panels) when the mean convergence field is kept fixed

- at March values. The other mean fields have normal annual cycle. The power spectra of the
+ -three‘time series are also shown below (from Goswami and Shukla 1993).
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of enhancing the atmospheric heating. On other occasions, when the mean
convergence field and SSTA field are not colocated, the feedback may not contribute
to the atmospheric heating field. An examination of the annual March of the mean
convergence field reveals that the mean convergence field is located around the equator
during February—April and farthest from the equator during September. Therefore,
we expect that the “convergence feedback” would be most effective during March
and least effective some time around September. Figures 5 and 6 show that, indeed
that is what happens in the CZ model. When the mean convergence field is held
fixed at March values, even a small strength of the convergence feedback is able to
make the model variability aperiodic. This indicates that during March, the efficiency
of the convergence feedback process is enhanced. On the other hand, if the mean
convergence field is held fixed at September values, the model variability remains
quasi periodic even for a very large strength of the convergence feedback.

These sensitivity studies with the CZ model indicate that the convergence feedback
introduces aperiodicity in the standard version of the CZ model. At this point, we
postulate that the convergence feedback introduces new unstable modes in the coupled
system and an interaction between these new modes and the low frequency mode
results in aperiodicity of the low frequency mode. In the next section, we examine
theoretically whether the convergence feedback is indeed capable of introducing some
new unstable coupled modes.

:‘ B=0"2

< 2F
*a‘OMAN\AMI\HMMHMM\MM LA
VVV VVVVVVVVVVVVVVVVVV
20 - b
4 B:0.5
< 2
8jn)\AAA/\AAA/\/\/\AAAAAAAAM/\/\A/\/\AA
VvVVVVVV VVVVVVVVVVVV VYVVVYV YV
_‘2" 1 T
22t
@ of
'20“"“”4‘0”Y'E;R““alo”“ %0
757 75 50
Ze0|- R=02 |gof B=05 |4l B:0.75
of
£ 301 0 20}~
& s |- 15 10 -
O—'AJ. [ O-IAlll’lxxn [ L]
o o1 62 0 0.1 02 ° o T 62

FREQUENCY (cycle /month)
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3. Linear stability analysis of the coupled system with convergence feedback

The stability analyses of the linear coupled ocean—atmosphere system have been
instrumental in identifying natural coupled unstable oscillations. These studies provide
a basis to understand the nature of the observed low frequency variability in the
tropics. Early such analyses (Philander et al 1984; Hirst 1986, 1988) showed that
although the linear tropical atmosphere and ocean by themselves may be stable, the
coupling between the two may drive the coupled system unstable. All these studies
showed that the coupled system is capable of sustaining one low frequency unstable
inter-annual mode. The nature of this mode depends on the nature of the
thermodynamics that determines the evolution of the sea surface temperature
anomalies (Hirst 1986). Equations governing the evolution of the total energy of the
atmospheric and the oceanic perturbations may be derived from the linear coupled
equations. They show that the perturbations of the coupled system may grow if
convergent atmospheric low level winds overlie convergent currents in the upper
ocean. Since the atmospheric winds result from atmospheric heating, it is reasonable
to think that the atmospheric heating distribution dictates which mode may be
unstable. The atmospheric heating distribution in turn depends on the SST
distribution governed by the ocean thermodynamics. The 'stability analyses (referred
to earlier) assumed atmospheric heating to be directly proportional to SSTA. This
rather simple minded parameterization of the atmospheric heating field assumes that
the tropical ocean is warm and an increase in SST enhances evaporation which is
immediately converted to latent heating. However, on time scales of a month or
longer, the local evaporation over a large precipitating region accounts for only about
one third of the precipitation (Shukla and Wallace 1983). The rest comes from low
level convergence. An initial organized heating in the atmosphere results in low level
convergence. Convergence of moisture associated with the enhanced low level
convergence further intensifies the heating. This process, which we refer to as
“convergence feedback” can influence the air-sea interaction in the following ways.
The convergence feedback essentially reduces the effective static stability of the system
(Lau and Shen 1988; Hirst and Lau 1990) thereby reducing the phase speed of the
atmospheric waves. With the phase speed of the atmospheric waves sufficiently
reduced, the speed of some of the atmospheric waves may become comparable to
“that of some oceanic waves. This introduces the possibility of some atmospheric
modes being strongly coupled to some oceanic modes. Lau and Shen (1988) studied
the role of convergence feedback on coupling between an atmospheric Kelvin wave
and an oceanic Kelvin wave. This study excluded the possibility that heating
associated with one oceanic mode may generate a number of other atmospheric
modes. Hirst and Lau (1990) extended the study of Lau and Shen (1988) to more
general equatorial beta plane system but still restricted their analysis only to
“advective” and “upwelling” limits of oceanic thermodynamics. Although, these special
cases are useful in understanding the dynamics of the coupled system, the general
ocean thermodynamic case (model IIT of Hirst 1986) is fundamentally different and
may be more relevant to the real system. Recently, we carried out stability analyses
of a coupled system with linear first baroclinic mode atmosphere and linear reduced
gravity ocean with general oceanic thermodynamics involving both advection and
upwelling (Goswami and Selvarajan 1991; Selvarajan and Goswami 1992). The

atmospheric heating was proportional to SSTA as well as the wave convergences.
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Figure 7. Nondimensional dispersion relation (all modes) for the strength of convergence
feedback, g, = 0-8. This represents 80 percent reduction of dry static stability. o,, 6;, and k
are the nondimensional real, imaginary frequencies and wavenumber respectively. UH, WM
and EM represent the unstable low frequency mode (Hirst’s mode) and maximally growing
westward and eastward propagating modes. The other symbols refer to other eastward
propagating (E) and westward propagating (W) intra-seasonal modes. (From Selvarajan and
Goswami 1992). : '

Details about the basic equations, parameterization of heating and method of solution
may be found in Selvarajan and Goswami (1992).

We found that the convergence feedback not only significantly modifies the low
frequency unstable mode found by Hirst (1986), but also introduces several new higher
frequency intra-seasonal unstable modes if the strength of the convergence feedback
exceeds a critical limit. Figure 7 shows the dispersion relation for the unstable modes
for a representative strength of the convergence feedback (g,). The low frequency
mode found by Hirst (1986) is marked UH. The convergence feedback introduces
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strength of convergence feed back {4,) for nondimensional wavenumber, k =015 (wavelength
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SOme new unstable intra-seasonal modes. The growth rate of the new unstable modes
decreases very slowly with wave number. We note that at long wavelengths the UH

4 A paradigm for aperiodicity in the coupled system

The low frequency unstable mode (UH mode) together with the reflections of the
Rossby waves from the western boundary is attributed for the dominant oscillation
with a period of about four years (Schopf and Suarez 1988 and Battisti and Hirst
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6-7 thousand kilometers similar to the observed ENSO anomaly scales). For such
planetary scale phenomena, the nonlinear effects are not expected to be strong as the
equatorial Rossby number, U /Bo IZ (where U is a typical velocity scale, L length scale
and f, is equatorial gradient of the Coriolis parameter) is quite small. Therefore,
we assume that the low frequency oscillation may be considered as a linear oscillator.
On the other hand, the higher frequency oscillations have much shorter scales and
for them the advective nonlinearity may be important. Thus, the evolution of the
coupled system may be represented by an interaction between a low frequency linear
oscillator and some high frequency nonlinear waves.

To represent the nonlinear interactions between the high frequency waves, we
choose a prototype nonlinear system used by Lorenz (1984, 1990) to describe some
aspects of general circulation of the atmosphere. Coupling these nonlinear equations
to a linear oscillator, the equations for the coupled system may be written as

X=—Y2-2Z2_gX +aF, (1)
Y=XY—-bXZ~CY+G +0P, )
Z=bXY+XZ—CZ+aQ, 3)
P=—wQ-BY, )
Q=wP - pZ, (5)

- where w is the frequency of the low frequency oscillator with a period of four years,
P and Q are amplitudes of the sine and cosine phases of the oscillation and o and p
are coupling strengths. Equations (1)-(3) represent the high frequency component
and (4)—(5) represent the low frequency component. The typical period of oscillation
of the high frequency coupled modes is in the intra-seasonal range. In order that the
nonlinear system (1)~(3) contain these intrinsic scales of the coupled system, we have
rescaled Lorenz’s (1984) equations by a factor C as (original variables denoted by
prime),

t=t/C,X=CX, Y=CY’, Z=CZ,a=dC,b="
F=CF' and G = C%G'.

As Lorenz (1984) discusses, X may be interpreted as a zonally averaged field while
Yand Z may be interpreted as amplitudes of two wave components. F and G are
forcings. F may be interpreted as external zonally symmetric forcing (eg. solar forcing)
while G is the zonally asymmetric forcing (eg. land—ocean contrast). However, we
have chosen equations (1)—(3) primarily as a prototype nonlinear system containing
the essential nonlinearity of the coupled intra-seasonal modes. This may be considered
as a “toy model” to derive some insight regarding the nonlinear interactions in the
coupled.system. We do not attempt to interpret the variables X, Y, Z with any specific
variables of the real system. We have used C =0-5. A typical time series of the variable
X for 50 years is shown in figure 9 without coupling with the low frequency oscillation.
Several features of this time series are noteworthy. Firstly, the system seems to have
two preferred regimes of oscillations, one active regime with large amplitude relatively
low frequency oscillations and another with small amplitude relatively higher
frequency oscillations. During the active regimes, the number of oscillations within
a year range between 2 and 5. The smaller number of oscillations in a year occurs
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Figure 9. - A typical time series of the variable X for 50 years after an initial integration of
40 years for Fo =35, F; =10, Go =025, =00, §=01.

(eg. during 5657, and 84-85 years) when the system tends to reside in a quasi-steady
regime. The forcings for this time series has an annual cyclein F and a constant G.

The coupling of the high frequency oscillations to the low frequency oscillation is
assumed to take place through the nonzonal components (Y, Z). This is based on the
following heuristic arguments. As we discussed in the previous section, the amplitude
and growth rate of the high frequency oscillations depend crucially on the strength

' of the convergence feedback (ref. figure 8). The strength of the convergence feedback
~ depends on prevailing mean conditions such as the mean SST distributions. The low
- frequency oscillation associated with ENSO modulates these mean conditions and
- generates east—west asymmetry in these conditions. This may be considered as a
zonally asymmetric forcing for the high frequency oscillations. This is why we have
‘added the coupling in the Yand Z components of the nonlinear equations. We note

- thatif « = 8, the low order system (1)—(5) conserves total energy E = (X + Y2 + Z +

P? +Q%)2, in the absence of forcing and dissipation.

‘Qur objective here is to explore how the high frequency component modifies the
~ low frequency oscillator. Therefore, in figure 10, we show a 240 year time series of
. ' P and nine month running mean of X for « = = 0-1. The time series of P shows
_ - that it is quite aperiodic but still has the dominant four year period. This time series
- has many of the characteristics of the observed time series of ENSO. The low frequency
component of X, although it has some low frequency variability, does not show any
»prefercnce for a particular period (this was checked by examining the spectrum of 9
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Figure 10. Low frequency variability of the coupled model (a) 240 year time series of P.
(b) 120 year time series of 9 month running mean of X. =01, $=01. F and G are the
same as in figure 9.

month running mean of X). The spectra of P and X for the same case as described
in figure 10 are shown in figure 11(a, b). The interaction between the high frequency
nonlinear intra-seasonal oscillations and the linear low frequency oscillator results
in a broadening of the spectrum of the low frequency oscillations (figure 11a). This
is quite similar to the spectrum of observed El Nino or Southern Oscillation indices
(ref. figure 2) or that of the spectrum of ENSO indices in coupled models (Zebiak and
Cane 1987; Goswami and Shukla 1993). The coupling of the high frequency component
to the low frequency component may be looked upon as a slowly varying zonally
asymmetric forcing for them. This slow variation in the forcing together with the
annual cycle (slowly varying zonally symmetric forcing) results in some low frequency
variations in the nonlinear system (figure 11b). The mechanism through which the
low frequencies in the nonlinear system are generated may be understood as follows.

To illustrate that the slowly varying forcing associated with the annual cycle of
F=F,+ F, cos 2nt/t,, where T, is one year and that associated with G = Gy +
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Figure 11. Spectra of (a) P and (b) X for the same parameters as in figure 9. F and G are
the same as in figure 9.

G, cos 2nt/t,, where 1, is four years can introduce low frequency variations
in the high frequency nonlinear system, we carried out some integrations with
o = =0 and with C=1-0. Figure 12 shows the power spectra of six month running
mean of X in two cases of these uncoupled runs with a slowly varying forcing. The
first one corresponds to a case with the annual cycle alone while the second one
corresponds to a case with no annual cycle but a slowly varying forcing with period
of four years in G. In both cases, it is evident that the system generates a considerable
amount of low frequency signals with periods much longer than the forcing period.
To understand how the slowly varying forcing introduces the low frequency response,
we need to examine the nature of variations of the nonlinear system (1)(3) for different
values of the isteady forcing (F, = G, =0). In figure 13(a), we show some gross
characters of the attractors (long term mean and standard deviation) of the system
(1)—(3) with G = 1-0 and for a range of values of F. The two symbols represent attractors
attained from two different initial conditions. The system has periodic attractors for
F between 5-0 and 7-5. For F between 7-5 and 8-8 the system has a chaotic attractor.
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Figure 12. Spectra of six month running mean of X with o = B=0and C=10 (a) with
only the annual cycle in F, Fo=170, F, =20, Go =10, G, =00 (b) with only a four year
cycle in G, F,=80; F 1=00, G, =1-0 and G, =0-25. Power spectra are calculated using
20 segments of 2'* days data in each case.

Beyond F = 8-8 again the system goes to a periodic regime. We note that for F between
50 and 7-0, the system has at least two periodic orbits, one with high amplitude and
low mean while the other with low amplitude and higher mean. Within the chaotic
regime too, the system tends to have two preferred regimes, one with large amplitude
oscillations (active regime) and another with small amplitude oscillations (weak
regime). This is seen in figure 13(b) where the mean and standard deviation calculated
over three month segments over a period of 100 years is shown. The standard deviation
shows the tendency for two preferred locations.

With this background, we may try to understand the response of the nonlinear
system when the forcing changes periodically. When the forcing varies annually

the orbits of the multiple periodic attractors of constant forcings discussed earlier.
Whether the system would tend to visit the weak or the strong regime depends on
- the previous history of states (or initial conditions, in a loose manner) which may -
favour one or the other regime. At many of these values of F, when they are held
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Figure 13. Some gross features of the attractors for « = =0 and C = 1-0 with no annual
cycle in F and constant G, G, = 1-0, G, = 0-0, F, =00 (a) variation of long term mean (X,)
and standard deviation (X,) for a range of values of F (b) mean and standard deviation over 3
month segments for F = 8-0.

constant, the system may possess multiple periodic attractors which depend on the
initial conditions. But when the forcing is varying, because of chaos, the system
reaches a different state on the same day (or same value of T) of every year. This
difference determines the difference in the subsequent behaviour of the system-
whether to visit the strong or the weak regime. This essentially is why the annual
cycle itself is capable of introducing some inter-annual variability. Thus, the mechanism
of generation of low frequency signals in the nonlinear system in our model is similar
to the one discussed by Lorenz (1990).




Variability and predictability of the coupled system 67

04 a= 0.1, 820.001

4 . 1 1 1 1 ] { ) 1

’ 168 184 200
120 136 152 YEAR

Figure 14. 160 year time series of P for @ =01 and three increasing values of § (a) § = 0-001,
(b) £ =001, (c) B =0-05. F and G are the same as in figure 9.

with the high frequency component is strikingly similar to the broadening of the
Spectrum of the ENSO signal in the coupled model of Cane and Zebiak with the
inicrease in strength of convergence feedback in that model as discussed in section 2
of this article (ref. figure 4).

The experiments described in the previous paragraph for which « was 0-1 represents
a case where the nonlinear high frequency component had a slowly varying forcings
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Figure 17. Power spectrum of uncoupled X. F and G are the same as in figure 9.

with periods around four years. As a result, the nonlinear system generates significant
amounts of low frequency signal as seen in figure 11(b). We examined the role of these
low frequency signals in the nonlinear system in producing the broadening of the
spectrum of the low frequency linear oscillator by conducting some experiments
with « = 0. Figure 16 shows a 240 year time series of P for o, = 0 and for two different
values of B. It is seen that even for strong coupling strength (8 = 0-1), the variations
in P remain nearly periodic. The amplitude has a very slowly varying envelope. This
amplitude envelope tends to grow very slowly in time. This seems to be due to the fact
that the intrinsic spectrum of the nonlinear intra-seasonal oscillations without
coupling to the low frequency oscillation, does not have much signal in the low
frequency regime as shown in figure 17. Therefore, it appears that a low frequency
component in the nonlinear system is necessary to produce aperiodicity in the low
frequency oscillator. However, the low frequency variability in the nonlinear system
is generated only through interaction with the low frequency oscillator. In other
words, mutual coupling between the linear low frequency oscillator and the nonlinear
intra-seasonal oscillations is necessary to produce aperiodicity in the linear low
frequency oscillator. A brief report of the work presented in this section is being
published elsewhere (Krishnamurthy et al 1993).

5. Conclusions

The predictability of the tropical short term climate is limited by the aperiodicity of
the low frequency variability of the coupled ocean-atmosphere system. An attempt
has been made in this article to gain insight into the mechanism leading to the
aperiodicity of the low frequency variability of the coupled system.

An examination of the observed inter-annual variability in the tropics as well as
simulations of some coupled models (Cane and Zebiak 1985; Zebiak and Cane 1987)
indicates that the variability is aperiodic but the spectrum has a dominant peak with

—
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a period around four vears. The oscillations associated with theS d(;lmmlar;tetlzrw
frequency mode have very large horizontal scales (67 thousand km). Such a pla ducz
scale phenomenon is expected to behave nearly .hnearly and is unlikely to pro f
the broadening of the spectrum by itself. Thus, in order to produce aperloc!lcxty.c;1
the low frequency variability, the dominant low frequency mode must coexist wit
- unstable norral modes of the coupled system.

Migrﬁm stability analyses of the coupled system (Hirst 1986, 1988) showed the
existence of only one low frequency mode. Other unstable modes -of the couplc?d
system, if they exist, must be related to physical processes not tak_en into accoupt in
these early stability analyses. To have an idea about such physical processes tl'{at
may lead to new unstable modes in the coupled system, a number of sensitivity studies
were carried out with the CZ model. These studies showed that for the standard set
of parameters used by CZ, the convergence feedback contributes significantly to the
aperiodicity of the model. In the absence of convergence feedback, the model
variability is perfectly periodic. With the increase of the strength of the convergence
feedback, model variability goes from a line spectrum to a broad band spectrum. A
binear stability analysis was then carried out to investigate if the convergence feedback
could introduce some new unstable modes. This analysis reveals that, the convergence
feedback indeed introduces a set of higher frequency unstable intra-seasonal modes.
In the long wavelength limit, the growth rate of these modes is weaker than that of
the low frequency mode. Therefore, in the longwave limit, the low frequency mode
is dominant. However, on the shorter wavelength side, the low frequency mode is
stable but the high frequency modes have considerable growth rate. Thus, in the
shorter wavelength regime, the higher frequency intra-seasonal modes are expected
to dominate. Therefore, in the coupled system we expect a low frequency long wave
mode to coexist with a number of higher frequency shorter wave intra-seasonal modes.
Since, the scales of the intra-seasonal modes are much shorter, it is expected that the
nonlinear interaction between them would be important.

We then propose that the aperiodicity in the low frequency variability in the tropics
results from an interaction between a linear oscillator corresponding to the dominant
four year low frequency mode and the nonlinear intra-seasonal modes of the coupled
system. We demonstrate this by representing the nonlinear interactions between the
ints al modes by a prototype low order nonlinear dynamical system and
Coupling xt to a linear oscillator with a period of four years. We show that if the
ang is only ome way, that is if the intra-seasona] component acts as a forcing
to the low frequency linear oscillator but does not get affected by the linear oscillator,
# canpot spectrum of the low frequency oscillator. However, if the
g were both ways, interaction with the nonlinear intra-seasonal component

roadenmg of the low frequency spectrum. The low frequency oscillator
ehaves fike Ay varying forcing to the nonlinear intra-seasonal oscillations. This
@ves nise to low frequency components to the intra-seasonal oscillations. The existence
of ma fow fmmy tail in the nonlinear higher frequency oscillations seems to
be crucial for producing the aperiodicity in the low frequency oscillator. It is rather
m‘m ﬁw{ our conceptual model could simulate many features of real coupled
model simulations such as that with the CZ model.
i and Shukla (1991), Wﬁiﬁﬁmoe of two time scales for the predictability
‘ &WM System Was dmvered‘ However, the physical processes
10T the two time scales were not clear from that study. The results presented
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in this study may throw some light regarding the two time scales in the predictability

- of the tropical coupled system. The slow time scale is expected to be related to the

: low frequency oscillator while the fast time scale is associated with the broadening
of the low frequency spectrum. However the broadening of the low frequency results
from interactions with the nonlinear intra-seasonal oscillations. Therefore, the fast
time scale is essentially related to the nonlinearities associated with the higher
frequency intra-seasonal oscillations. If the saturation level of the errors associated
with the higher frequency oscillations is lower than the saturation level of the errors
associated with the low frequency oscillation, we may be able to see the two time
scales in the error growth of the coupled system. We are currently examining the
predictability of the coupled system (1)—(5) using a large ensemble of identical twin
experiments.
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