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Abstract. The stability of a simple coupled ocean-atmosphere system similar to the one
studied by Hirst with general ocean thermodynamics is investigated in which the atmospheric
heating is determined by sea surface temperature anomalies as well as the convergence
feedback (low level moisture convergence by the waves themseives). It is shown that the
unstable coupled mode found by Hirst (UH mode) is profoundly modified by the convergence
feedback. The feedback increases the unstable range of the UH mode and can increase its
growth rate several folds. The maximally growing UH mode can become westward
propagating for certain strength of convergence feedback. If the convergence feedback
strength exceeds a critical value, several new unstable intraseasonal modes are also introduced.
These modes are basically ‘advective’ modes. For relatively weak strengths of the convergence
feedback the growth rates of these modes are smaller than that of the UH mode. As the
atmosphere approaches ‘moist neutral* state, the growth rates of these modes could become
comparable or even larger than that of the UH mode. It is argued that these results explain why
the El Nino and Southern Oscillation (ENSO) signal s clear in the eastern Pacific but not so in
the western Pacific and they may also explain some of the differences between individual
ENSO events. Our results also explain the aperiodic behaviour of some coupled numerical
models. Importance of this process in explaining the observed aperiodicity of the ENSO
phenomenon is indicated.

Keywords. Large‘ scale air-sea interactions; coupled instability; wave-CISK; ocean-
atmosphere system; atmospheric heating; convergence feedback

1. Introduction

Although the linear tropical atmosphere and the tropical ocean may be independently
stable, coupling between them can introduce unstable coupled modes (Philander et al
1984: Hirst 1986; Rénnick and Haney 1986; Yamagata 1985; Lau and Shen 1988). Such
unstable air-sea interactions have played a crucial role in the evolution of the delayed
oscillator mechanism for the El Nino and Southern Oscillation (Suarez and Schopf
1988; Battisti and Hirst 1989) phenomenon (ENSO). They are also important for the
predictability of the coupled system (Goswami and Shukla 1991a). Study of necessary
conditions for instability (Yamagata 1985; Hirst 1986) shows that ocean perturbations
can grow only if positive correlations exist between the ocean currents and the
atmospheric surface winds (U, u and/or V, v). Thus it depends on the structure of the
eigenfunctions of a particular coupled normal mode. Hirst (1986, hereafter referred to
as H86) showed that the structure of the coupled eigenfunctions depends crucially on
the oceanic thermodynamic processes. In the upwelling-dominated case, the structure
of the Kelvin wave was such that the surface winds and the ocean currents could
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cooperate. However, in the advection-dominated case the structure of the Kelvin wave
changed to the extent that the surface winds and the ocean currents were uncorrelated
and the wave was damped. In this case the eigenfunctions for the n = 1 Rossby mode
were modified so that this mode became unstable. This explained the apparently
contradictory results between some early studies (Philander et al 1984: Rennick and
Haney 1986). Whether upwelling or advection would dominate the ocean
thermodynamics depends on the prevailing mean conditions. Rough estimates (Hirst
1986; Battisti and Hirst 1989) indicate that while upwelling may dominate in the
eastern Pacific, advection may dominate in the western Pacific. In the central Pacific,
both these processes may be important.

All the studies on coupled instability with the exception of Lau and Shen (1988),
assume that the atmospheric heating is directly proportional to the sea surface
temperature (SST) anomaly. This simple-minded parametrization of the atmospheric
heating assumes that the tropical ocean is warm and an increase in SST increases
evaporation. This increase in available moisture then results in increase in

- condensation and heating through convective instability. Modelling studies (e.g.,
Shukla and Wallace 1983; Fennessy et al 1985) show that local evaporation accounts
for only about a quarter of the precipitation anomalies while the remaining three
quarters of the precipitation anomalies come from large scale low-level convergence.
Organized heating of the atmosphere results in low-level convergence of moisture to
the heating region. This leads to increased moisture flux to the heating region and
further enhancement of the heating. Several studies (Webster 1981; Zebiak 1982) have
shown that this mechanism (hereafter referred to as the convergence feedback) enhances
atmospheric heating. In the present study, it is argued that convergence feedback is an
important process in the tropical dynamics and the stability of the coupled system could
not be studied without the inclusion of this process. Inclusion of this process in the

- parameterization of atmospheric heating modifies the atmospheric heating and hence
the structure of eigenfunctions of the coupled modes. In the simplest form of
parameterization, this process results in a reduction of the effective static stability of the
atmosphere. This results in reduction of the phase speed of the atmospheric waves. If
convergence feedback reduces the atmospheric static stability sufficiently, the phase
speed of some of the atmospheric waves may be comparable to the phase speed of some
oceanic waves. This introduces the possibility of strong coupling between the two
systems. Lau and Shen (1988) studied the effect of convergence feedback on coupling
between atmospheric Kelvin wave and the oceanic Kelvin wave. This essentially
excludes the effect of the Coriolis force, Moreover, they studied the non- dissipative
case. The growth rate of their coupled mode is smaller than the atmospheric dissipation
rates used in many coupled model studies, Therefore, it is unlikely that the coupled
modes seen by Lau and Shen (1988) would play any significant role in the real coupled
system. In this study, we examine the effect of convergence feedback on a more
complete coupled system including the effect of Coriolis force (equatorial § plane). It is
shown that this allows many new modes to be unstable and drastically modifies the
character of the most unstable mode in HSs.

Iinrst and Lau (1990), also recently studied the stability of the coupled system in
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the ocean thermodynamics only. Moreover, they consider only cases when the
atmospheric gravity wave speed is very close to or smaller than the oceanic gravity
wave speed. This means that the effective atmospheric stability is very close to moist
neutral (< 0-5% of the dry static stability) case. This is a rather very special situation.
Our study differs from that of Hirst and Lau in two important ways. First, we consider
the general oceanic thermodynamic case (model IIT of H86). While the ‘advective’ and
the ‘upwelling' limits are useful limits for understanding the dynamics, as shown by
H86, the general thermodynamic case is fundamentally different and may be more
relevant to the dynamics of ENSO events. Second, we show how the unstable modes
evolve with variation of effective atmospheric static stability over a wide range of
values. A brief summary of some preliminary results of this study has appeared in
Goswami and Selvarajan (1991). The present work contains a comprehensive account
of the role of the wave-CISK on the coupled instability with additional new results and
insights.

2. Model details

The coupled system comprises of a linear first baroclinic mode atmosphere and a linear
reduced gravity ocean interacting through (i) stresses parametrized in terms of
atmospheric winds and (i) atmospheric heating parameterized in terms of convergence
feedback and SST anomaly fields. This model is similar to model I1T used in H86 except
that the atmospheric heating is now parametrized in terms of convergence feedback
and sea surface temperature anomaly field. In the coupling parametrization of H86 the
atmospheric heating was assumed to be proportional to sea surface temperature
anomaly field only.

2.1 The ocean model

" The equations for the oceanic perturbations are given by

u,— Byv+ oagATh, + au= Tx/(Po-ﬁ), (1a)
o, + Byu + agATh, + av = /(poh), | (1b)
h,+ h(u, + v,) + bh =0, | (lc)
T,+uT,—Kih+dT=0. (1d)

These equations represent an ocean model consisting of a mixed layer with a deep,
cold, inert layer below it. A thin thermocline separates the two layers. Motion and
temperature are assumed to be constant with depth in the mixed layer. The dependent
variables (u, v, h, T, %, 7*) represent perturbations in zonal current, meridional cu_r_rgnt,
thermocline depth, temperature, zonal windstress and meridional windstress. AT is

the difference between the temperatures in the mixed layer and the deep layer and h
is the mean thermocline depth. a is the coefficient of Rayleigh friction and b,d are
that of Newtonian cooling for the ocean. This model is similar to the oceanic
component of model IIT of H6.
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2.2 The atmosphere model

The equations for the atmospheric perturbations are given by,

U~ ByV —(gH/8,)0, + AU =0, (20)
Vi+ ByU —(gH/8,)0, + AV =0, (2b)
6= (Ca00/gH)(U + V,) + BO = — Qcon, — (Bo/gH)K o T, (2c)
0+ 4o(Us+V,)=E—P. (2d)

0 is the potential temperature perturbation at the mid-level. This model can be derived
from the atmospheric component of model IIT of H86 by using the relation

¢ = —(gH/0,)6, | 3)

where ¢ is the geopotential thickness (Davey and Gill 1987). 6, is the mean
background temperature at mid-level and H the scale height. It is to be noted that
the mass source/sink term in the ¢ equation of model III of H86 has a negative sign
as U, V in this model are interpreted as upper layer winds. This leads to negative
signs of the heating terms in our equation. Equation (2d) represents a linearized
moisture balance where g is the perturbation moisture content, E the surface
evaporation and P the precipitation anomaly. To a first order of approximation it
can be assumed that the atmosphere can be divided into two different heating regimes,
namely, the convective regime and the non-convective regime. In the convective
regime, when g increases, since the atmosphere remains saturated g, = 0 and the extra

moisture gained by convergence and evaporation is depleted as precipitation. Hence
from (2d) we get,

QOS(UI:C + Vly) =E— P3 (4)

where g, is the background saturated moisture content. In this regime, heating occurs
by condensation only and so g = do = gos- In the non-convective regime, P =0 and
the evaporated and converged moisture goes into moistening the atmosphere. It is
assumed that tropical atmosphere is always saturated and is in a state that can be
categorized as convective regime.

In the convective regime, the heating rate Q,,,, associated with wave convergence
is related to precipitation by

Pwly
Qconv = P conv* . (5a
HO Pa Cp ( )

The background saturated moisture content g, is a strong function of SST through
the Clausius-Clgpeyron equation. Assuming a standard lapse rate of the tropical
atmosphere of I' = 6:5°C/km, and that the temperature at the interface of air-sea
remains a constant one can linearize the Clausius-Clapeyron equation to give

90s(T,) = G exp[0-059( T, — 301)]

q is the saturated’ moisture at 301 K and has the value of 7:2cm (Lau and Shen 1988).
The heating term in the atmosphere model consists of two parts, namely, Q, and
Qconv- The part Q, = (8o/gH) K, T is the same as used by H86 and is contained in
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the term E. It represents heating of the atmosphere by increase in local evaporation
due to increase in SST. The term Q... represents heating due to low-level wave
convergence. Since the increase in atmospheric heating from local evaporation due
to increase in SST (ie., QO term) is considered separately, the precipitation due to
low-level convergence may be represented as

Pconv = - qos(le + Vly) (Sb)
Substituting in (5a) for P, from (5b) we obtain

_ Lupw aUl a Vl
Qconv - Ho Cppa qos|: ax + ay

L,p, ou ov
=3H,C,p, q“[ ax T 6y]’ ©)

where the low-level winds (U,, V;) are given by
U, V) =—(U,V)2,

g, Tepresents the saturated moisture corresponding to a background mean SST T;
expressed in units of depth of precipitable water. H, is a projection factor and is
~ 2H (Davey and Gill 1987) if all the latent heat is assumed to go to the first baroclinic
mode. With these parameterizations, (2c) may be rewritten as

00 cgoo[gg oV

Bo
— — |- 0=——K,T, 7
ot gH | ox + dy :|(1 9)+ B gH ¢ ™

where T is the SST perturbation and g = qos/derit> with ger = 2C,p.H 0C200/(L,pwgH).
With 6, = 310°K, g, is approximately 7-6 cm. ‘

2.3 Method of solution

As in H86 the wind stresses are parameterized in terms of the atmospheric low level
winds.

' (Tx’ 1.'),) = ')’(U, V)

The method of non-dimensionalization is exactly the same as in H86 except that 6
is non-dimensionalized with C,0,/gH. Values of the parameters used are given in
table 1. The non-dimensional equations of the coupled system are given by

u,— yv+h,+au=KgU, (82)
v,+yv+hy+av=KSV,' ‘ (8b)
h, + h(u, + v,) + bh =0, (8c)
T, +uT,— Kyh+dT=0, o (8d)
U,—yV—6,+ AU =0, - (8e)
V4 yU—0,+AV=0, ‘ (81)
8,—C*U,+V,)(1 —g,)+B0=~K,T, (8g)

where C? = C2/C3 and Ky = KoATt,/C3 and the other non-dimensional parameters
are same as those used in H86.
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Table 1. Values of the constants used in the standard case.

Parameter  Dimensional value Non-dimensional value
C, 14ms™! 1-0

Ly 250 x 10°m 10

to 1-8 x 10°s 10

a,b,d 116 x 10~ 75! 02049 x 10~}
C, 30ms™! 250

A,B 50 x 10651 07771 x 10~!
K, 70x1073m?s73K"! 03091 x 10~2
K 80x 1078s7! 01413 x 10~*
Ky 35x107°km~!s™'  0-88 x 10*

T. ~50x 10" "km™! —0-8831 x 1072
T, —3053x 10" "km~! —03053 % 103
i 70m —

AT 14K —_

The meridional dependence of amplitudes (U, ¥, ¢,u, v, h, T) are then expressed in
terms of the sum of parabolic ¢ylinder functions as

N
S(y) = ,,Zo S.D,(y),

where D, is the parabolic cylinder function. The selection of parabolic cylinder

functions is most appropriate since they form the basis functions for the normal modes
ofan ocean or an atmosphere on an equatorial beta plane. Parabolic cylinder functions
are orthogonal and thus equations (8) are transformed into a set of linear algebraic
equations given by MX = isX where M is a 7N x N sparse matrix and ic and X
are eigenvalues and eigenvectors. The series is truncated at N = 20 (Also see Appendix).
The system of equations is solved using a standard technique with double precision.

2.4 Energetics

From Fhe above set of non-dimensional equations an energy integral equation can
be derived for the atmosphere and the ocean separately (Lau and Shen 1988; Hirst

1986). Muiltiply equations (8¢) by U, (8f) by V, and (8g) by 6/ and sum over the
terms to get

OE,/0t= — AU* — AV? — (B/T)$? — (Ko/T)6T,

Where .I‘=(1 —4,)C7/C}. Integrating over one wavelength in x and between + oo
In y this equation can be written as

OCE, [0t = — ACU?Y — A(V2Y — (BT)<6%) — (R o/T)COTD. (9a)
Similarly, for the ocean the energy integral equation is
0CEo /0t = ~ alu?y ~ a(v®y — b(h2) — K (uU» — K (uV). (9b)

In(9) E,=(U? +V2+6%T )2 and Eq = (u? + v2 + h?)2 are measures of total energy
of the atmospheric and oceanic perturbations and () represents the integral over one
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wavelength in x and between + oo in y. Equation (9) shows that the oceanic
perturbations can grow only if the oceanic zonal currents (u) and atmospheric zonal
winds, U (upper level winds in this model) and/or the oceanic meridional currents (v)
and atmospheric meridional winds (v) are negatively correlated. Alternatively, if the lower
layer zonal (meridional) winds correlate positively with oceanic zonal (meridional)
currents, oceanic perturbations may grow. Similarly, atmospheric perturbations can
grow only if the atmospheric temperature perturbation (6) and SST perturbation (T)

are negatively correlated.

4. Results and discussion

In the absence of convergence feedback (g, = 0), this model is identical to the model ITI
of H86 and the corresponding results were reproduced. For the standard set of
parameters (listed in table 1) there is only one unstable mode whose maximum growth
rate occurs for non-dimensional wavenumber k= 0+15. The e-folding time and period of
this eastward propagating mode at this wavelength are about 5 months and 26 months
respectively (hereafter referred to as the UH mode). Now the effect of including the
convergence feedback is studied. As g; is increased the growth rate of this UH mode
increases steadily and beyond a critical value of g, new unstable modes start appearing.
The number of new unstable modes increases steadily as g, increases. The dispersion
relation for the unstable modes for g, = 0-8 is shown in figure 1 and for g, = 0-95 is
shown in figure 2. The symbols used to represent the various modes are consistent
within the same figure and should not be compared with those of another figure. All the
modes are identified in figure 1 and in figure 2 only the three gravest modes (i.e., UH,
EM and WM) are prominently marked. It is to be noted that the new modes appear in
two distinct sets, one set of eastward propagating modes and another set of westward
propagating modes both roughly of the same period. Apart from the UH mode, the
maximally growing eastward propagating mode is termed the EM mode and similarly
the maximally growing westward propagating mode is designated as the WM mode.
The labels E2, E3, E4 represent the other eastward propagating modes and W2,
W3 represent the other westward propagating modes. Secondly, the growth rates of all
the new modes seem to have only a very weak dependence on the wavenumber. At
moderate strength of convergence feedback (e.g. g, = 08, figure 1) the UH mode is still
the dominant mode with maximum growth rate for k ~ 0-15 (wavelength = 10,000 km).
However, as g, (or equivalently, the mean background SST) increases, its character gets
modified drastically. From figure 2 it is seen that for g, = 0-95, the growth rates of some
of the new modes-are already comparable to that of the UH mode. Figure 3 shows the
non-dimensional dispersion relation for the UH mode as a function of the strength of
the convergence feedback (g;). The unstable regime of the mode in the wavenumber
domain also increases with increasing g,. It is to be noted that with moderately strong
convergence feedback, the growth rate of the UH mode has a maximum around
k ~ 0-15, facilitating a scale selection for this mode. It is seen that the eastward phase
speed of the UH mode goes on decreasing until non-dimensional g, is about 0-8 when it
becomes nearly stationary. With further increase of g, it becomes westward
propagating. At g, = 09 the maximally growing UH mode is westward propagating
and its period is about 20 months. However, at higher values of g, its period further
decreases and it becomes indistinguishable from the westward propagating
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Figure 1. Non-dimensional dispersion relation (all modes) for g, =0-8. o,, o, and k are the

real frequency, imaginary frequency and wavenumber respectively. Other symbols are
explained in the text, :

intraseasonal modes. Decreasing g, slowly we could trace the new unstable modes to be
neutral interannual modes with periods greater than one year. In the presence of
convergence feedback, periods of both the gravest new modes go on decreasing with
increasing g,. This character is similar to the character of the growth of the Kelvin mode
found by Lau and Shen (1988) when background SST (Ty) exceeds a critical value of
about 28°C. This character of dependence on g, is seen for all wavelengths (i.e. all k). For
45> 0-95, the growth rates of some of the new unstable modes become comparable or
even larger than that of the UH mode. The non-dimensional dispersion relation for the
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Figure 2. Same as in figure 1 but for g,=0-95.

EM, WM modes as a function of g, is shown in figure 4. It is clear that the eastward and
westward propagating modes remain eastward and westward but their growth rates
increase with increasing g,. In order to provide a better idea of the dependence of the
unstable modes on g, we show in figure 5 the variation in the period and e-folding time
of all the unstable modes as g, is increased from 00 to 098 for the wavenumber
k = 0-15. While the UH mode exists even if g, = 0, the new unstable modes appear only
when g, exceeds a critical value. The e-folding time of the UH mode decreases (or the
growth rate increases) with an increase in g,. However, the period of the UH mode does
not change appreciably until g, = 0-6 and then increases sharply until about g, ~ 0-8. At
this strength of convergence feedback this mode is stationary (represented by a gap in
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Figure 3. Non-dimensional dispersion relation for the UH mode for different strengths of
convergence feedback (g,).

the figure as the period becomes infinity) and with a further increase in g, the period
decreases sharply. However, it is to be noted that the direction of propagation is
eastward for g, < 0-8 and westward for g, >09. As g, increases new unstable modes
start appearing whose e-folding times and periods decreases rapidly. For larger values of
qs the e-folding time and period of all. the modes are close to each other.

As discussed by Yamagata (1985) and H86 the stability characteristics of the unstable
modes depend crucially on the product of the coupling coefficients Le, K, K in this
case. Figure 6 describes the dependence of the UH, EM and WM modes on the product
K K. The growth rate increases with increasing coupling strength in a manner similar
to the one shown by HS6.

The value of K used by H86 was estimated empirically making total precipitation
proportional to SST anomalies. Since the wave convergence part has been taken care of
separately in our study, K, should be less. Therefore, in figure 7, the dependence of the
UH mode as well as the gravest eastward and westward propagating modes on ¢, and
four different strengths of Kofork=0151is shown. A point of interest in this figure is
that with smaller strengths of K the new unstable modes are excited only for larger
strength of the convergence feedback. However, as the atmosphere approaches moist .
neutrality their growth rates increase exponentially. This character of dependence on g,
is seen for all wavelengths (i.e,, all k). For gs > 0-95, the growth rates of some of the new
unstable modes become comparable or even larger than that of the UH mode. It is to be
noted that for moderate strength of convergence feedback, even if the coupling strength
is one-quarter the strength used by Hirst (1986), the UH mode may be unstable and
may still be the dominant mode. The dispersion relation for 9; =098 when K, is one
tenths its standard strength is shown in figure 8. The mode numbered 6 is the UH mode.
As in the standard case, we note that the unstable modes appear in two sets, one
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Figure 4. Same as in figure 3 for (a) EM mode and (b) WM mode,

eastward propagating and the other westward propagating. This shows that the
behaviour of the modes for smaller K, is similar to that of the standard case except that
the new unstable modes are excited for higher and higher strengths of convergence
feedback. Since the characteristics of the dispersion relation remains qualitatively same
even at small K, we have used the standard K, for examining the structure and some
sensitivity of these modes. v

Note that the new modes were interannual modes in the absence of convergence
feedback that become intraseasonal modes with increasing g; (figure 5). For example,
the periods of the gravest eastward and westward propagating new modes for g, = 03
and standard K, were 12 and 18 months. For g, =095 they reduce to 3—4 months.

In order to derive some insight regarding the origin of the new unstable modes, the
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Figure 5. Dependence of the e-folding time and period of all the unstable modes on the
strength of convergence feedback (g) for k=015, ‘ :

dependence on the thermodynamic processes in the ocean is studied. Keeping the
maximum value of T, as — 5°C /10,000 km (as in the standard case) the dependence of
the nature of the unstable modes on fractions of T, is studied i.e., the numbers 02,04
etc. on the abscissa of figure 9 mean 0-2 times the standard value of T, 0-4 times the
standard value of T, etc. Figure 9 shows the variation in the real and imaginary parts of
the frequency for the UH mode and the gravest eastward and westward propagating
modes as a function of T, for three values of gs and for k = 0-15. It is seen that as T,
reduces the growth rates of the UH, EM and WM modes also reduce (for all three
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strengths of convergence feedback). The EM and WM modes become stable when T.
reduces below a critical value. Also, the growth rate and frequencies are larger for larger
g, and the critical value where the EM/WM modes stabilize is larger for larger g;.
However, for g, = 0-4 the EM/WM modes appear only when T, is equal to the standard
value. The change in behaviour of the real frequency of the UH mode with g, is also
clear. This implies that T, is important for the new unstable modes. This in turn
indicates that the advective processes in the ocean thermodynamics are crucial for the
existence of the new unstable modes.

To further investigate how these modes depend on the thermodynamic processes
governing the evolution of SST anomalies, the normal modes when the SST anomaly
evolution is governed only by the upwelling (i.e., the ‘upwelling’ limit) and when the
SST anomaly evolution is governed only by the advection of mean zonal SST gradient
(T.) by the perturbation zonal currents (i.e., the ‘advective’ limit) are calculated.

4.1 Upwelling limit

If adyective processes are unimportant (T, = 0 in equation (8d)) and upwelling is the
dominant process present to determine the evolution of sea surface temperature
anomalies it is found that the convergence feedback does not produce any new unstable
modes. The only unstable mode present is the ‘upwelling’ mode similar to model LIV of
H86. Figure 10 shows the variation in the real and imaginary parts of the frequency asa
function of wavenumber for different strengths of g,. It can be seen that both tl}e gr‘owth
rate and the phase speed increase with increase in g,. Also, the unstable region in the
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Figure 8. Non-dimensional dispersion relation (all modes) for g, =098 for Ky = 01(Kyp)

wavenumber domain increases with g,. This model is similar to model IV of H86 and
the mode shown in figure 10 is the same mode B of Hirst and Lau (1990) for their small
C* (i.e. our large g,) and their large D, (our 4, B) case. It may be noted that in this
parameter regime Hirst and Lau (1990) also get only one mode (mode B). When Dy,
(our A, B) is reduced considerably we also find three unstable modes as seen by them.
Thus, in the upwelling limit our results are similar to theirs.

4.2 Advective limit

Similarly, if the upwelling is unimportant (K, = 0in equation (8d)), figure 11shows the
real and imaginary frequencies of all the unstable modes present when advection is the
only thermodynamic process invoked to determine the evolution of SST anomalies in
the presence of convergence feedback for g, = 0-8. The striking feature in the figure is
the appearance of two classes of eastward and westward propagating modes somewhat
similar to the general thermodynamic case. Only one unstable mode has a clear
maximum like the UH mode in the general thermodynamic case. However, this mode is
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Figure 10. Non-dimensional dispersion relation for the “upwelling” only thermodynamic

case. The dependence of the only unstable mode on the convergence feedback (g,) is shown.

westward propagating for all wavenumbers. The presence of some upwelling seems to
slow down this mode for small wavenumbers. Except this mode which has strong
dependence on wavenumber, the other westward and eastward propagating unstable
modes have very weak dependence on wavenumber similar to the new unstable modes
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Figure 11. Non-dimensional dispersion relation for the “advection” only thermodynamic
case for g, =08 (all modes). Abscissa is wave number k.

in the general thermodynamic case. The fact that the two eastward and westward
propagating new classes of unstable modes are present in the ‘advective’ limit but notin
the ‘upwelling’ limit implies that these new modes that appear when convergence
feedback is introduced are basically ‘advective’ modes and that upwelling is not
necessary for their existence. As g, is increased the growth rates of the eastward and
westward moving modes increase more rapidly than those of the UH type mode and
beyond a certain strength of convergence feedback (g, ~ 0-95) the growth rates of all the
modes become comparable. In this limit Hirst and Lau (1990) found a mode
(designated by them as mode A) whose structure crucially depends on the relative
strength of C* (= (1 — ¢,)C,) and Co. They showed that when C3 > C, the oceanic
Rossby wave is destabilized and when C, < C, the oceanic Kelvin wave is destabilized
For the values of C* used by Hirst and Lau (1990) the parameter g, (in our notation) is
> 0-9955. Also the dissipation rates used by Hirst and Lau (1990) is much smaller than
the ones used in our study. For values of g,> 099 and for smaller dissipation, we also get
many unstable modes, one of which is similar to mode A of Hirst and Lau (1990). The
modes discussed here are unstable even for lower values of g, and in spite of high
dissipation rates. Hence these are new modes and of a different type.

Hence it can be said that the unstable modes of the general thermodynamics case, the
UH mode and the westward propagating modes, in particular, are basically advective
modes that are influenced by upwelling.

It is to be noted that the atmosphere alone with convergence feedback (¢; < 1,in the
absence of any other feedback like the evaporation-wind feedback) does not support
any unstable normal mode. Thus, these unstable modes arise purely due to coupling
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Table 2. Sign of the energy source terms for all the unstable modes for two values of gs.

4;=08 q,=095

Mode —0T) —KUu) —<(Vv) Mode ~0T) —(Uud —{(Vv)

UH + + + UH + + -
WM + + - WM + + -
w2 + + - w2 + + -
w3 + + - w3 + + -
EM - - + w4 + + -
E2 - - + EM - - +
E3 - -~ + E2 - - +
E4 - + + E3 - ~ +

E4 + + -

E5 + + +

between the atmosphere and the ocean. Convergence feedback introduces new coupled
unstable modes through the following process. The modified atmospheric heating
fieid, due to the inclusion of convergence feedback, modifies the eigenfunctions for
some modes in such a way that the correlations between the lower layer atmospheric
winds and ocean currents may now be positive, leading to the growth of ocean
perturbations. From the eigenfunctions of all the unstable modes the sign of the source
terms in the energy integral was calculated. The signs of the source terms for ail the
unstable modes for ¢, =0-8 and g, = 0-95 are shown in table 2. This shows that the
convergence feedback makes either or both the terms involving correlation between
surface winds and ocean currents (— {uU)», — {vV?)) positive for the new unstable
modes.

Figure 12 shows the structure of the eigenfunction for the UH mode when q,=0-8.1t
is seen that the 6-field and U-field of the atmosphere and the h-field and u-field of the
ocean do not coincide. The shift in phase actually determines the direction of
propagation. It can be seen that the maximum positive temperature perturbation, the
maximum positive ocean u-current perturbation and maximum negative zonal wind
perturbations coincide (the sign of the atmospheric wind is opposite to that of ocean
current since in the model positive U represents upper level wind). But the convergence
field and the negative § perturbation fields are ahead by a little less than half a cycle.
This arrangement helps in the sustenance of the instability since it is such that winds
drawn into the convergence field from both sides overlie positive low-level wind
perturbations to the west of the convergence maximum and very weak positive low-
level wind perturbations to the east. This results in an eastward movement of the
perturbation. Also, the convergence in the atmosphere coincides with the positive
maximum thermocline depth anomaly in the ocean. ‘

The structure of the maximally unstable eastward propagating and westward
propagating (EM and WM) modes is very different from that of the UH mode and it
can be seen from figures 13 and 14 that they possess higher meridional structures. As
discussed earlier, these modes are all coupled modes and as a result their meridional
structure may not resemble that of any neutral normal mode.

Since the new eastward and westward propagating waves remain eastward and
westward propagating respectively even when qs is increased (figure 4), their
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Figure 12. Non-dimensional eigenfunctions for the UH mode for g, =08 at k=015. 09,

0-6, and 0-3 of the maximum values are contoured for all the variables except the upper level

convergence denoted by C. C is calculated using the normalized values of U and V. For C

the minimum contour is 0-02 and the contour interval is 0-02. The zero line is thick solid,
~ positive lines are thin solid and negative lines are dashed. ~

eigenfunctions also remain similar. However, as g, increases, the UH mode changes its
character (figure 3). Therefore, the structure of the UH mode in the westward
propagating regime (k = 015 and g, = 0-95) is also shown in figure 15. In this case, the
maxirum positive anomaly of ocean temperature coincides with the maximum
anomalous atmospheric convergence and the maximum negative 8 perturbation. The
collocation of these variables helps in the maintenance and growth of the instability.
But the maximum positive anomalous oceanic zonal current u lies behind by about a
quarter of a cycle and the low-level positive atmospheric zonal wind U lies behind by
about half a cycle. This arrangement results in westward propagation.
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16 24-24

Figure 13. Same as in figure 12 for the WM mode.

5. Conclusions

Itis argued that the convergence feedback (or wave-CISK) is important in determining
the atmospheric heating in the tropics and that it introduces some significant effects on
the coupled tropical normal modes. First of all, the growth rate of the only unstable
mode, that was present in the absence of convergence feedback, increases drastically
with the increase in the strength of convergence feedback. The phase speed of this most
‘unstable eastward propagating mode (UH mode) decreases with increase in the
strength of convergence feedback until it becomes stationary at ¢, ~ 0-8. Beyond this
value of ¢, it becomes westward propagating. This is significant, as it may explain why
some ENSO anomalies propagate slowly to the east while some others propagate
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Figure 14. Same as in figure 12 for the EM mode.

slowly to the west. Moreover, in the absence of the convergence feedback, the
maximally growing UH mode has a wavelength of about 10,000 km (H86), nearly twice
as large as that of the ENSO anomalies. With reasonable strength of convergence
feedback, the maximum growth of the UH mode occurs for wavelengths 5000—-6000 km
(figure 3). This agrees much better with the observed ENSO anomalies. Additionally,
several new unstable modes are introduced if the strength of convergence feedback
exceeds a critical value. Some of these modes are eastward-propagating, while some
others are westward-propagating. For moderate values of the strength of convergence
feedback (g, < 0-95), the growth rates of the new modes are smaller than that of the UH
mode but their growth rates can be even larger than that of the UH mode when the
atmosphere is close to the moist neutral state (g, ~ 1-0). In the absence of convergence
feedback these modes are neutral interannual modes with periods greater than one
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Figure 15.  Same as in figure 12 for gs =095,

year. The convergence feedback increases their real frequencies and makes them
intraseasonal modes for reasonable values of g,. It is also shown that these modes are
basically ‘advective’ modes that are partially influenced by upwelling.

The new unstable modes would basically introduce a background ‘noise’ in the
system as their growth rates do not selectively depend on a particular scale. As long as
the largest growth rate of the UH mode is greater than that of these modes, it would be
possible to identify this dominant signal (i.e., the ENSO signal). Since the dimensional
g depends nonlinearly on the background mean SST, the non-dimensional g, would be
much closer to unity in the western Pacific while it would be much smaller in the eastern
Pacific. Thus, we expect the new unstable modes to be present in the western part of the
Pacific but they would be absent or very weak in the eastern Pacific,
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These results may also explain some of the differences between individual warm
events. The growth rates of individual warm events are quite different (e.g., figure 1-18 of
Philander 1990). For example, the 1982-83 event was triggered sometime during the
middle of the calendar year but grew explosively. Itis to be noted that the growth rate of
the UH mode depends rather sensitively on the strength of the convergence feedback
(or on mean SST). Thus, the differences in growth rates of the warm events may be due
to differences in the mean SST distributions prior to the triggering of such events. These
results may also explain aspects of variabilities of some more complex coupled models.
For example, the coupled model of Zebiak and Cane (1987) simulates many features of
the ENSO variability including the dominant periodicity embedded in an aperiodic
background. Recently, Goswami and Shukla (1991b) showed that aperiodicity in the
standard version of the Zebiak and Cane’s model arises primarily due to the
convergence feedback. In view of these results it is possible that the aperiodicity in the
Zebiak and Cane’s model is due to the rather broad band and relatively weak unstable
modes introduced by the convergence feedback. It is also hypothesized that the
aperiodicity of the observed ENSO cycle may be due to the interaction between the
dominant ENSO mode with weakly unstable broad band modes generated by the

convergence feedback.

Appendix. Rational for selection of basis functions and truncation

The basic equations (8) and properties of parabolic cylinder functions demand thatif U,
0, u, h, T are expressed with symmetric parabolic cylinder functions, ¥ and v must be
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Figure 16. Dependence of the real and imaginary frequencies on N (Number of parabolic
cylinder functions) of the UH, EM and' WM modes for g5 = 0-98 at k=015. The scale for
the imaginary frequencies is highly expanded.
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expressed in terms of antisymmetric ones and vice versa. In our study, we have
expressed U, 0, u, h, T by symmetric and V, v by antisymmetric functions. We also
examined whether any of the modes with antisymmetric U, 8, u, h, T and symmetric V, v
are unstable. It is found that these modes are always stable. Hence our choice of
symmetric basis functions for U, 6, u, h, T and antisymmetric basis functions for -'.V
and v.

Although the series was truncated at N = 20 for the results presented here, a test of
convergence was carried out to evaluate the degree of convergence of the low-frequency
modes of interest as N is increased beyond 20. As shown in figure 16, the real and
imaginary frequencies of these modes at low wave numbers do not change appreciably
after N = 20. Note that the scale for the imaginary frequencies is highly expanded. This
provides a rationale for truncation at N = 20.
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