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The cascade theory with collision loss
By H. J. Baasua, F.R.S. AND S. K. CHAKRABARTY

(Received 2 March 1942)

Electrons are assumed to suffer a constant energy loss 8 by collision, and the radiation
loss and pair creation are taken to be described by the formulae of Bethe and Heitler valid
for complete screening. With these assumptions a solution of the cascade equations is given
in the form of a series, and it is shown that the series is so rapidly convergent that in general
it is necessary only to calculate the first term. Collision loss enters into each of the terms in an
essential way, and as a result the first term alone gives to a very considerable degree of
accuracy the whole energy spectrum of electrons from the highest energy to energies far below the
critical energy. For thicknesses greater than 1-5 in the characteristic unit of length the
number of particles of energy E-increases monotonically with decreasing E, but the spectrum
gets flattened for energies below the critical energy. For thicknesses ¢ below 1-5, the spec-
trum has a very different shape, decreasing first as E decreases from the primary energy and
then increasing again to the smallest E, the flattening taking place now only for E < gt. It is
shown that neglect of collision loss sometimes causes the number of electrons of even the
critical energy to be as much as seven times too large. Tables of the spectra of cascade
electrons due to primaries of different energies are given for five typical thicknesses.

The solution is also valid when the energy of the primary electron starting the cascade is
comparable with or lower than the critical energy, and gives in a compact form the complete
solution of the problem of the absorption of a low-energy electron by collision loss and
cascade production.

It is generally accepted that the cascade theory put forward by Carlson & Oppen-
heimer (1937) and Bhabha & Heitler (1937) correctly describes all the general
features of the behaviour of the soft component of cosmic radiation. Moreover, it
appears to be in rough quantitative agreement with the observed absorption curve
of cosmic radiation in the atmosphere and the production of electron showers in
heavy materials by fast electrons. Nevertheless, a very exact comparison between
theory and experiment has not yet been made, due, on the one hand, to inaccuracies
in the theory introduced by the inexactness of the physical assumptions and
approximations in the mathematical treatment, and on the other hand to un-
certainties in the experimental data itself. A stage is, however, being reached when
the gradually increasing data on the atmospheric absorption curves at different
latitudes makes a more accurate knowledge of the theoretical behaviour of cascade
processes necessary in order that a more exact comparison between theory and
experiment may be made with a view to finding out whether experiment reveals
other processes besides those explained by the cascade theory, and to what extent.
The purpose of this paper is to give a more accurate theoretical treatment of cascade

-processes than has been done hitherto.

All the previous theoretical treatments of the subject have been inexact, first,
because approximations have been made in describing the physical processes which
play arole in the cascade theory, and secondly, because the mathematical treatment
has sometimes not been exact even on the basis of these physical assumptions. The
weakest feature in all the previous treatments has been their very inadequate
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consideration of the effect of the ionization or collision loss suffered by the cascade
electrons. In the paper of Bhabha & Heitler the concept of critical energy was
introduced, defined as the energy of an electron for which its radiation loss is equal
to its collision loss in the substance, and it was assumed that the collision loss would
not appreciably affect the cascade process above the critical energy, while it would
materially reduce the multiplication of electrons below the critical energy and lead
to an absorption of the cascade. But the collision loss was not treated quantitatively.
An attempt to calculate the number of electrons below the critical energy more
accurately was made by Arley (1938) on the basis of very rough physical assumptions.
The more accurate calculations of this paper show, however, that the figures he got
for the distribution of electrons below the critical energy are not even qualitatively
right for small thicknesses,* and give a justification for the very rough assumption
of Bhabha & Heitler that for all except extremely small thicknesses the number of
particles per unit energy range below the critical energy always increases slowly with
decreasing energy.

‘Carlson & Oppenheimer, and later Snyder (1938) and Serber (1938) have given
approximate formal solutions of the cascade equations with collision loss in the form
of double integrals in the complex plane. These expressions cannot be calculated
directly, and for evaluating the number of cascade electrons of energy K, they all
get in essence an infinite series in powers of B/E, where f is approximately the
critical energy. Closer analysis shows that these series are divergent for all values of E,
and the one which is based on the most accurate physical assumptions, namely,
Serber’s series, is essentially the formal solution given by equation (42) of this paper,
which we have rejected for the same reason. It will appear that this series cannot
even be considered as an asymptotic solution of the problem when E 5 g. It can be
shown that the divergencé of Snyder and Serber’s series is intimately connected
with the fact that their solutions do not satisfy the correct boundary conditions at
the surface of the layer. In our opinion the divergence of their series makes it
impossible to say that they satisfy the actual boundary conditions even approxi-
mately. Snyder and Serber have used ‘their solutions for ccalculating the total
number of particles of all energies at any depth, but the serious defects mentioned
above seem to us to throw doubt on the reliability of their numerical results. It is
also obvious that even without the above defects all these methods would com-
pletely fail to give the energy spectrum of electrons with energies in the neighbourhood
of the critical energy, which is a region of very great interest both theoretically and
from the experimental point of view.

Tt is clear that a solution of the cascade problem valid over the whole range of
energies cannot be obtained in the form of a series in powers of 8. For if the collision
loss be neglected, then the spectrum of electrons is of the form 1/E for small ¥ and

* Arley has completely neglected the production of electrons below the critical energy by
pair creation. This process is just the one that gives the most important contribution at small
thicknesses, as will be seen. in the last section of this paper. But his treatment of radiation
processes is also much too crude to claim any quantitative accuracy.
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hence tends to infinity as E — 0. The effect of collision loss at; depths which are not
too small is to cut the spectrum off for energies below the critical energy, and to
make the number of electrons finite as £ — 0. For low energies therefore the collision
loss does not introduce a small correction, but plays an essential part in the process,
and hence must enter in some essential way into the solution. In incorporating this
feature the solution of this paper differs essentially from all the previous treatments
of the problem, and may be regarded as an a,dv‘ance on all the previous work. ‘

In the present paper the collision loss is treated as a constant loss independent of
the energy of the electron. With this assumption a mathematical solution of the
cascade equations is given which allows the energy distribution of electrons to be
calculated for all energies, including those near and below the critical energy. The
solution is formally in the form of an infinite series, but this series is not strictly a
series in powers of #, since £ enters essentially into the expression for each term. The
first few terms of the solution can be evaluated without undue difficulty, and it can
be shown that the main contribution comes from the first term, the second being
always smaller than the first, and for all except the very end of a shower less than
30 9, of the first, even for electrons of energy near or less than the critical energy.
Moreover, the solution is valid irrespectively of how small the energy of the electron
starting the shower may be, in contrast with the work of the other authors mentioned
above. Indeed, for an electron of initial energy less than the critical energy it can
be shown that all but the first term of the solution are negligible, so that our method
incidentally also gives the complete solution to the problem of the absorption of a

~low-energy electron by collision loss with a very small accompanying cascade.
It also allows one to calculate the energy spectrum of electrons in a shower at small
thicknesses, that is, precisely in the region where the usual methods fail. It is found
that the energy spectrum at small thicknesses is quite different to what has been
usually supposed. We therefore.get, for the first time, a quantitative insight into
the effect of collision loss on the energy spectrum of cascade electrons at all depths.

For the' processes of radiation loss and pair creation, we take the exact cross-
sections calculated by Bethe & Heitler valid for extremely high energies where
screening is complete. The decrease of these cross-sections at energies so low that
screening is incomplete will not be considered. These, or cruder approximations
thereto, also underlie all the previous work. For this general problem a rigorous
mathematical solution has been given by K.S. K. Iyengar (1942), but his method is
not suitable for obtaining numerical results without laborious calculation.*

When the effect of collision loss is negligible, i.e. for energies large compared with
the critical energy, it appears that the figures of Bhabha & Heitler are not in general
in error by more than 30 9%,, and give the position of the maximum of the shower
correctly. The approximations of Carlson & Oppenheimer make the maximum

* An empirical method of allowing for incomplete screening has recently been given by
Corben (1941). But his treatment of collision loss follows that of Serber and therefore has the
same defects. Corben’s approximate method of allowing for incomplete screening could be
incorporated into the solution of this paper.
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number of particles appear at a depth which is too large by 30 %, to 60 %, and give
an energy spectrum which is incorrect at small thicknesses. Their figures are in
error by much more than 30 % even in the region where collision loss is negligible.

On the other hand, the figures given by Landau & Rumer (1938) are often in error
by a factor 30, due to the fact that these authors have failed to carry their elegant
‘method through to the end with mathematical rigour. For energies large compared
with the critical energy the figures of this paper are correct to within 5 %, and
hence are a considerable advance on all the previous work. But even for electrons
of energy near or below the, critical energy the figures for the energy spectrum of
electrons calculated in this paper by taking account of collision loss are accurate for
all but the end of a shower to within 30 9,, and are hence as accurate as those which
have been given hitherto for energies far above the critical energy where collision
loss is negligible. Moreover, the present calculations show that even for electrons of
the critical energy, the effect of collision loss is so large that the number of electrons
may be as low as one-seventh of what was previoysly supposed.

PHYSICAL ASSUMPTIONS AND THE GENERAL EQUATIONS

The effective differential cross-section for the emission by an electron of energy
E of a quantum of energy lying between E’ and E’+dE’ while passing through the
field of an atom of nuclear charge Ze have been calculated by Bethe & Heitler (1934)
and can be written in the form

f;( k ) log 183Z~* R(E, E') ng (1)
where" R(E,E') = ( :g,—i- : 5,22) (X1 +X2) — X2 (2)
and X1=%’ 2=q83}1%2—w;8§2z(%’ (3)
with p=%§ﬁ%%ﬁ, (4)

m being the electron mass. Here ¢, and ¢, are functions of p only, and are given in
the paper of Bethe & Heitler. ; and yx, decrease monotonically as p increases, and
take their largest value when p = 0, in which case y; = 1 and y, = (12log 183Z~%)~1,

Thus, even for the heaviest atoms y,/x; is less than 5 9%, when p = 0, and it becones
rapidly smaller as p increases, being alreaay less than 19, even for p = 0-5. It is
completely negligible for p > 0-8. Thus, if an accuracy of not more than 5 %, is aimed
at ¥, can be neglected altogether. Now p< 1, that is, by (4)

E(E—E'
—_—— 3

-
E'me? (5)
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corresponds to the case in which the screening of the nucleus by the surrounding
atomic electrons is complete, and then, introducing the values of y, and y, given
above for p = 0, (2) simplifies to

, E?
RO(E’E ) = 1—( +“)( E'z) (6)
o ~ 1
Wi %= 9log 1832+

This is the expression which will be used in the cascade calculations of this paper.
It depends only on the ratio E/E’, whereas the general expression (2) depends not
only on this ratio but on the absolute magnitudes of Z and E’. Moreover, the
properties of the atom only affect o which is about 0-06 for lead, and still less for
lighter ‘atoms, so that the expression (6) is practically independent of Z. To the
accuracy of the calculations of this paper a could equally well be neglected, but we
shall not do so since its inclusion presents no difficulty. V
The effective differential cross-section for the creation by a quantum of energy %
of an electron pair, one particle of which has an energy between E’ and E' +dE’,
while passing through the field of an atom of charge Ze has also been calculated by
Bethe & Heitler, and can be written in the form
2 4
4 127( ) log 1832 R(E', B)'%, (7)

with R given by (2). Here again, for very high energies, more accurately, for the
case of complete screening, R takes on the simpler form given by (6), and we shall
use this specialized form in the calculations of this paper.

Since in the calculations of this paper we use E, instead of R, it is important to
know the error which this introduces. R, given by (6) is accurate only when the
inequality (5) is satisfied. It therefore differs from the more general expression (2)
provided E — E’ is small enough, however large £ may be. But in practice, more
detailed considerations show that, except for very small values of £ — E’ which are
not important in our caleulations, the difference between R, and R is less than 20 %,
provided E is greater than 30 MeV in lead and 70 MeV in air. Now, as will be seen
below, the critical energy at which collision loss becomes important is 7MeV in
lead and 103 MeV in air. Thus the fact that the cross-section (6) is not the exact one
for low energies* restricts the accuracy of our calculations to 20 %, in lead even for
electrons above the critical energy, while in air the error is within about 10 9, above
the critical energy, and considerably less than 20 9, even for particles below the
critical energy, since the majority of these are produced by radiation loss and pair
creation by particles and quanta above the critical energy for which the formula (6)
is accurate to a much greater degree. It should be noticed that whereas the use of
(6) instead of (2) even for low energies introduces relatively small errors, the neglect
of collision loss completely alters the whole picture near and below the critical energy.

* An approximate allowance for this could be made here by following Corben.
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Moreover, as has already been mentioned, (6) is always greater than (2), so that the
use of B, instead of R, even when the inequality (5) is not satisfied, results in slightly
more multiplication than is actually the case.

The probability that in travelling a thickness da of a substance containing N
atoms of nuclear charge Ze per unit volume an electron of energy K emits a quantum
of energy E’, or a quantum of energy E creates a pair of which one particle has
an energy E’', is got by multiplying (1) or (7) respectively by Ndx. It is therefore
convenient to introduce a quantity ! of the dimensions of length, defined by

1= 42123];7( ) log 183Z-%. (8)
For substances containing several types of atoms one must take on the right-hand
side of (8) a sum of similar expressions, one for each type of atom. This quantity !
will be known as the characteristic unit of length for that substance. As in all the
previous papers, it is convenient to measure all lengths in a given substance in terms
of the characteristic length l and denote length so measured by ¢, so that {=x/l and
is a dimensionless quantity. The values of [ for different substances are given in the
first row of table 1.

TABLE 1
air H,0 Al Fe Pb
! in cm. 34,200 434 9-80 1-84 0-525
mean collision loss in MeV 3:03x10-3 2-64 567 14-1 13-2
per cm. = ( - a‘E'/am)coll.
B in MeV = i — 0E/[0%)q, 103-0 114-6 5556 25-88 6-927

The only other physical process which plays an essential part in the cascade
theory is the ‘ionization’ or collision loss of electrons. This loss is a minimum at
energies near twice the rest energy of an electron, and increases rapidly for lower
energies so that any electron whose energy has fallen as low as twice the rest energy,
i.e. about one million electron volts, can be regarded as completely stopped. For
higher energies the collision loss increases logarithmically with the energy, and in
the whole range from 5 to 150 MeV in which alone the collision loss plays a dominating
part, it rises by less than 50 %. It will therefore be treated as a constant loss in-
dependent of the energy. Hence, measuring length in the characteristic unit (8),

the collision loss is
), -
9 / conr. 0% | cont

where f is a constant independent of the energy. Since the collision loss is very
nearly proportional to ZN, while [ is proportional to Z—2N-1, it follows that £ is
very nearly proportional to Z—* and is independent of N. It has the dimensions of
energy. The second row in table 1 gives the mean values that are taken in this paper
for the collision loss — BE [02)son. in different substances, and the third row then
gives the corresponding values of £ as defined by (9).

I

B, (9)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on January 19, 2011

The cascade theory with collision loss 273
From (1) the total energy loss of an electron due to radiation is
oE B A E?dE
_(_8—5)1‘&:1. = Ejo R(E,E’) o (10)

Using (2) for R, it appears that the integral only increases logarithmically with &,
and for very large K, where in fact (2) tends to (6), it takes the constant value
(1+ }et)~ 1. Thus, for high energies,

——(?g) ~ E. (11)

The critical energy in a substance is usually defined as the energy at which the
radiation loss of an electron is equal to its collision loss. By equating (9) and (11) the
critical energy is seen to be very nearly §. For the purposes of this paper, in which the
collision loss is treated accurately, it is logical to define the critical energy as exactly
equal to B, for this is the physically significant quantity which appears in the

.equations. The critical energy § has therefore another physically significant inter-
pretation. It is the collision energy loss suffered by an electron in travelling the
characteristic unit of length in the substance. Hence.an electron whose energy has
fallen to the critical energy will at the most travel a distance of one unit before its
energy is reduced to zero.

For quanta of energy below 5MeV in lead and 25 MeV in air, the Compton effect
becomes larger than the pair creation. But even for energies down to 5MeV the
angular scattering of the quanta is small, and in consequence in each Compton
process a small fraction of the energy of the quantum is given to the electron. The
effect of successive Compton processes is therefore to reduce the energy of low-
energy quanta in a large number of small steps just as collision loss reduces the
energy of electrons, and indeed this energy loss can be taken into account in our
theory in the same way. Calculation shows that the resulting energy loss of a quan-
tum per unit length of path traversed is between one-eighth and one-tenth of the
collision energy loss of electrons. It can therefore be omitted altogether, since its
effect would be to modify the spectrum of quanta of energies below about one-tenth
of the critical energy.

Consider a layer of substances, upon the surface of which electrons and quanta
with a known energy distribution impinge normally. We wish to know the energy
distribution of electrons and quanta at some distance ¢ from the surface of the layer.
The problem may be treated as a one-dimensional one as far as calculating the
number of particles at a depth ¢ is concerned, since the angular deflexion of a particle
or quantum of energy Z resulting from a radiation or pair creation process is of the
order mc?/E, and is hence small. Denote by P(E,t)dE the number of particles
(electrons and positrons) whose energies lie between £ and £ + dE at a distance ¢ from
the surface of the substance, all distances ¢ being now measured normally from the
surface of the layer in the characteristic unit of length I. Let the corresponding
expression for the number of quanta be Q(¥,t)d E. Then, owing to the radiation, pair
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creation and collision processes given by (1), (7) and (9), this number varies with the
thickness, and the differential equations determining their variation can be written
down exactly as in the paper of Landau & Rumer. They are

aP(E 1) f py 2, 5 5y EE)dE" 'dE’
+2| Q(E’ t) R(E, E')dgl ﬁBPég,t)’ (12a)
aQ(E ) f P(E,t)R(E', E )Eg,lf' QE, t)f RE, )dg'. (12b)

The first two terms on the right-hand side of (l2a) give the change in the number of
particles of energy B due to radiation loss, the third term that due to pair creation
by quanta, and the last term that due to collision loss. Similarly, the first term on the
right-hand side of (12b) gives the increase in the number of quanta of energy & due
to radiation by electrons and the second term their decrease due to disappearance
by pair creation. In these equations R is strictly given by the general expression (2),
which depends not only on the ratio £/E’ but also on the value of E/mc?. For this
general problem no rigorous solution* can be obtained by the method of this paper
and the general method developed by K. S. K. Iyengar must be used. While his
method has the advantage of great generality and mathematical rigour, it is not so |
easy to derive numerical results from it. Moreover, it depends on an ingenious use
of the solution neglecting collision loss derived in this paper. But quite apart from
this, as the previous discussion shows, it is possible with considerable accuracy to
take for R over the whole energy range. the form (6) which it assumes for very high
energies, and which is only a function of the ratio £/E’. It is then possible to solve
the equations (12) by using the Mellin transformation. This method has the advan-
tage that it is suitable for obtaining numerical results.
Introduce two new functions p(s, ) and g(s,t) of a variable s defined by

plo.t) = [ B P(B. )0, (13a)
' 0
dont) = [ B QB0 dE. (130)
0
I+ then follows from the theory of the Mellin transform that
) 1 [otie . [
P(E,t) = 2—‘”;;J\a‘~iw H p(s, t) dS, (14a)
z 1 o'—}-iooE_s d
UBY) =5 [ B g(s.00ds, (148)

where o is such that when R(s‘) >0, p(s,t) and q(s,t) are analytic. The path of the
s integration is a line parallel to the imaginary axis and to the right of it.

* An approximate treatment can be given by following Corben.
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Following Landau & Rumer, multiply the equations (12) by E¢-! and integrate
with respect to £ from 0,to co. The last term on the right-hand side of (12a) then gives

ﬁJwEs laP(Et
0

on integrating by parts. It is obvious from the physics of the problem that
Es-1 P(E,t) must vanish at infinity, since initially there are only particles of finite
energy. Moreover, when collision loss is taken into account this expression also
vanishes at £ = 0 provided R(s)> 1. Thus the term on the left of the above equa-
tion just reduces to the second term on the right, which by (13a) can be written
as —f(s—1)p(s—1,t). The first term on the right of (12a) gives, if we interchange
the orders of the £ and K’ integrations,

i = ﬂ[Es—lP(E t)] ﬁ(s—-l)f B2 P(E, t)dE,

(E'— E) B+

© E' )
fo dE’ P(E',t) B's71 . dER(E',E' —E) T

Now if R is a function only of the ratio £/E’, as is the case if we take for it the
expression (6), then the E integral becomes a function of s only and is independent
of the value of E’, so that remembering (13) the double integral becomes p(s, )
multiplied by a function of s.* All the other integrals can be treated similarly and
the equations reduce to

apgst" t) = -Asp(s’ t)+ BSQ(S’ t) _JB(S"' 1)20(3"' ]-7 t): (15&)
BQ(S 0. Cp(s,8) — Dy(s, ), (15b)

where 4,, B, and OS are functions of s denfied by
1
A,= { —(t+a) (1 “)} (1—(L—ep-Yde
0

d
=(%+a){3*810gf(8)+7~1+81}+—§—;(£—ﬁ, (16a)
B,= fl{l-—(%+a)(e—62)}es‘1de
0
1 1
=+ ey (160)
! 11
CSEJO{I—(%+a)(E—g§)}€ de
=g_::._—+(%+05)(—%:-1—) (166)
and Ef {1—(4+a)(e -e2)}de.

* meg to the form of -R, the E mtegral dlverges when F = E’, and the first and second,
integrals in (12a) have to be taken together in the Cauchy sense to give a convergent result.
These together then give — A4 ,p(s, t).

Vol. 181. A, 19
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v is the Euler-Mascheroni constant. The equations (15) were given by Landau &
Rumer, but with the important omission of the last term in (15a) representing the
effect of collision loss.*

Differentiating (15a) with respect to ¢ and then eliminating ¢(s,t) by the use of
(15b) and then (150) we obtain the second-order equation

2

02
spP(s, )+ (4, + D)2 p

(s,t)+ (A, D — BC,)p(s, 1)
= —,3(8—1){%+D}p(8——1,t). (17)

From the definitions (13) it is obvious that p(2, ¢) gives the total energy carried by
particles and ¢(2,¢) that carried by quanta at the depth ¢, while p(1,¢) gives the
total number of particles at this depth. Adding (15a) and (15b) and putting s = 2,
we get

2 02,0+ 9(2,1)} = (Ca— 42 p(2, )+ (By—D)a(2, )~ Ap(L, 1),

Since the left-hand side of the above equation gives the rate of increase of the total
energy of the shower with depth, and the radiation and pair creation processes do
not change the total energy of the shower, the terms independent of £ on the right-
hand side of the above equation must vanish irrespective of the values of p(2,¢)
and ¢(2,t). It follows that the coefficients of these terms must vanish, and hence
that 4, = C, and B, = D, relations which can be verified directly from (16). The
above equation therefore reduces to

2 (32,0 +a(2.0) =~ fp(L0),

which expresses the physically evident result that the rate of diminution of the
total energy of a shower is equal to the rate of energy loss by collision. This equation
also shows that, since the left-hand side is always finite, the total number of particles
p(1,%) at a thickness t must always be finite when collision loss ts taken into account.
This is not so when collision loss is neglected (§ = 0).

CASCADES WITHOUT COLLISION LOSS

Tt is first necessary to give a complete treatment of the cascade problem neglecting
collision loss, that is, the solution of the equations (12), with £ = 0, since the work of

the next section is based upon it.
As has been shown by Landau & Rumer, the general solution of the equations

* With the approximations made by Carlson & Oppenheimer, we should have 4, = 2(1 —1/s),
B,=4/3s, C,=1/(s—1), D=2/3. Hence A, goes seriously wrong for s~ 1. Although their
values of A, are not in general in error by more than 50 %, since A appears in (32) in the form
exp (—A, t), the resulting error in the number of particles may be very large. See footnote
on p. 283.
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(15) when g = 0, and consequently of equation (17) neglecting the-right-hand side,
is of the form ‘

p(s,8) = aze "+ bge (18)
with a similar expression for ¢(s,¢), where a,, b, are arbitrary functions of s in-
dependent of ¢ which have to be chosen to satisfy the boundary conditions, and
A, and u, are the two roots of the quadratic

X2~ (4,+D) X+(4,D~ B,C) = 0,
whence A, + pt, = A+ D, a relation which will often be used later, and
As‘___ 3(4,+D)—${(4,- D)*+4B,C}, (19a)
= $(4,+D)+}.{(4,— D)2+ 4B,C,}. (190)

It follows from the definitions (19) that s, > A, when s is real and greater than 1.
Certain general results can be deduced at once from the form of the solutions (18).
Since, as was shown at the end of the last section, 4, = C, and B, = D, hence
A4,D— B,(, = 0, and the smaller of the roots A and # must vanish at s = 2. Hence
‘A = 0 when s = 2 and this is a consequence of the conservation of energy. It further
follows from (196) and (16) that

fa=CptD=1+}a+f—fo =+

Putting s = 2in (18) we see that the total energy of the particles or quanta in a shower
tends to a constant value since A, = 0 and the terms proportional to exp (— p,t)
become negligible for ¢>1/u, = 9/(16+ 3x). Thus, at large thicknesses, 9g(2,t)/o¢
vanishes, and it follows from (15b) that

p2t)_D_14-3x 17

9(2,0) " C, 184929

Hence, after a thickness of about one unit, the ratio of the total energy carried by
the particles to that carried by the quanta reaches a constant value, the quanta
carrying somewhat more than half the total energy of the shower. The energy is of
course carried by progressively more and more particles and quanta of lower energy.
This conclusion is altered if collision loss is taken into account, the energy carried
by the particles then being relatively less, especially at large thicknesses. The above
discussion also shows that the effect of conditions at the boundary does not make
itself felt for more than a distance of about one unit. This is the average range in
which ‘ transition effects” must take place when the shower passes from one substance
to another.

Now consider a shower started by one electron or positron of energy Z, entering
the surface of the substance unaccompanied by any quanta. The boundary con-
ditions at ¢ = 0 are then

P(E,0) = 8(E—E,), Q(E,0)=0. (20)

19-2
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From this, using (13), it follows that at ¢ = 0
p(s,0) = Eg, (21a)
9(s,0) = 0, (21b)
and from (15a) {'a% (s, t)}t=0 =—A B3 (22)

We have therefore to find a solution of equations (15) satisfying the boundary con-:
ditions (21) or of equation (17) with the boundary conditions (21a) and (22).
The conditions (21a) and (22) determine a, and b,, and give finally

p(s,t) = Eg"l{]/z ie"‘%’ji_fe—ﬂ‘}, (23)

where for brevity we have omitted the suffix s. Owing to singularities in 4,, B, or C,,
A, and u, are singular when s = 1, 0 or a negative integer. It should be noticed at
once that, although A, and y, are not, one-valued functions of s due to the appearance
of a square root in their definition, the functions p(s,?) and.q(s,?) are symmetrical
in the two roots A and x and are therefore one-valued everywhere in the s plane,
although a part of them, for example the part containing e, is by itself not one-
valued. This point is of importance in the general theory of the next section.

The number of particles of energy E at the depth ¢t namely P(Z,t) can be calculated
at once by using (14a) and is

o+i® D—-A ,u—-D u
PN - [ = = PR

(24) is the exact solution of the cascade equations for a shower started by an incident
_particle of energy E; if collision loss is neglected.
To proceed further it is necessary to know the dependence of 4, A and x on s.
‘This can be calculated at once by using (16) and (19). The values of A and x are given
in table 2 for real values of s from 1 to 6 at intervals of 0-1. The asymptotic form of
these functions for large s will also be required. From (16) and (19) it follows that
asymptotically for large s

Aswa'{logs+y,—1+§1§;+%, (25a)
B,C, 2
~D— i 2
A D A -D" ~D a's(s+1)logs’ (256)
B,C, 2
[LSNA +A DNA +m (250)

where we have written o’ = §+ « for brevity.
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TaBLE 2
D-2 d. (D- & (D-2
A W log (:“s — AZ) Al % log (/7——)() A) e log (————M —
— 00 + 00
~3-787 +4-712
~2-279 3-339  —0-6102  9:450 +0:043  —6542 —1:34
~1-569 2749 —0-6120 5410 —0:070 - —24-67 —0-941
-1125 2413 —06225  3-653 —0152  —12:47 —0-778
~0-8121 2200  —0-6414  2-691 —0225  — 17-400 —0-699
-0-5751 2054  —0-6672  2:091 —0294  — 4855 —0-665
~0-3876 1:951  —07005 1683 —0359  — 3422 —0-646
-0-2348 1-877  —07400  1-388 —0423  — 2539 —0-639
-0-1079 1824  —0-7844  1-165 —0487  — 1-960 —0-631
—0-0000 1-786  —0-8365 09904  —0-550  — 1-561 —0-621
+0-0915 1-760  —0-8944 08493  —0-610  — 1-275 —0-600
+0-1706 1743 —09577 07330  —0-669  — 1.060 —0-575
+0-2389 14734  —1029 06357  —0-725  — 08940  —0-537
+0-2982 1731 —1103 05681  —0-775  — 07615  —0-490
+0-3499 1733 —1182 04825  —0-821  — 0-6540  —0-433
0-3950 1740  —1268 04218  —0-861  — 05639  —0-372
0-4345 1-750  —1355  0-3693  —0-896  — 04882  —0-306
0-4689 1-763  —1446  0-3237  —0-921  — 04231  —0-226
0-4995 1778 —1539 02841  —0-944  — 0-3672  —0-174
0-5261- 1795  —1635 02500  —0-959  — 03220 —0-115
0-5496 1-815  —1683 02204  —0-967  — 02769  —0-0585
0-5703 14835  —1734¢ 01945  —0-970  — 02405  —0-0095
0-5886 1-857  —1786 01721  —0-968  — 02094  +0-0354
0-6048 1-879  —1840 01527  —0-964  — 0-1819  +0-0676
0-6192 1903  —1:895 01355  —0-955  — 0-1585  +0-0987
0-6321 1926
0-6436 1-950
0-6536 1-975
0-6628 1-999
0-6710 2:023
0-6785 2:048
0-6851 2:072
0-6910 2-097
0-6969 2-121
0-7019 2145
0-7061 2-169
0-7102 2-193
0-7143 2216
0-7176 2-239
0-7207 2-262
0-7239 2284
0-7266 2:307
07289 2-329
0-7318 2351
0-7335 2-372
0-7356 2-394
0-7372 2415
07389 2436
0-7409 2-456

0-7424 2-480
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It is convenient, as in the paper by Bhabha & Heitler, to introduce a variable y
defined by :

= log %9. (26)

It should be noted at once that when E > E; (24) vanishes exactly. For when
E > E,, y is negative, and the path of the s integration in (24) can be deformed into
an infinite semicircle to the right with the point o as centre. The expression in curly
Bi'ackets tends to zero on this semicircle, as also the term outside it, namely,
exp (—]y|s), so that (24) vanishes. This is, of course, necessary for the physical
interpretation.

Now consider (24) when E < E,. Since A <y, for real s>1, as is also shown
clearly by table 2, it follows that, except for very small ¢, the main contributions to
(24) come from the first term in curly brackets having A, in the exponent. Write
P(E,t) given by (24) as the sum of two terms P, and P, defined by

_ 1 [erie(E\sD-2A
A= 2iBly ) g \B) p—A

_ 1 o +i0 EO slu__D it
774 A (-E—) = e~Hds, (28)

It will now be shown that (27) can be evaluated by the saddle-poiht method with
an error well within 5 %,. Introduce a function ¥ such that e/ is equal to the integrand
of (27). Then, remembering (26),

: D—-2,
8)=ys — A g+ log—=7°. 29
Y(e) =ys— A+ log (29)

8

——— e Mds, (27)

Since C,— o0 as s— 1 it follows that A,——c0 and hence 3y —c0 as s— 1. Moreover,
it follows from (25) that {y—o0 as s—>oo0. Hence ¥ must have a minimum as s
increases along the real axis from 1 to co. Denote the particular value of s, where

o _
98

by s,. We shall call this the saddle-point. Hence, differentiating (29), 8o is deter-
mined by

d
y—/\;“t+(—~

| D—As)
ds

log = 0. (30)

Hs— Ag) s=s,
A dash affixed to a symbol will be used to denote differentiation with respect to s.
The value of s, dépends on the values of y and ¢. Now shift the contour of the in-
tegration in (27) to a parallel contour to the right or left so as to make it pass through
the point s,, in other words, take o = s,. This can always be done since the only
restriction on o is o> 1. Writing i7 = s — sy, by Taylor’s theorem

Y(s) = Ploo) =5 Vo) - (31)
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“We now make the usual approximation of the saddle-point method and replace yr
by the first three terms of its Taylor expansion, namely, the two terms on the right
of (31). Then

1 o]
= '//(so)—‘}‘fz [(EN]

P(E,1) o, f_ . e dr

3 e¥(so) I e ! D—Ag (324)
Eo«/{zﬂlh”(so)} Eo «/{2"¢ (80)}ﬂso so

. 2 —

.where, from (30) Y(8y) = —Ag t+ (; 510 g D ;s) (32b)
Ms— Ng/ =5,

It should be noticed that " (s,) contains ¢ explicitly but not y.

The approximation in deriving (32a) consists in replacing exp {{(s,+¢7)} by
exp {Y(s,) —'721//”(30) /2}. Now, owing to the symmetry of the contour of integration
in + 17, it is only the real part of exp ¥(s,+%7) which makes a non-vanishing contri-
bution to the integral (27). Hence to check the accuracy of the approximation, it
is necessary to compare the values of

R{exp(so+ir)}exp{—(so)} With exp{—72"(s,)/2).

This has been done for two examples, namely, y = 4, ¢ = 10 and y = 10, { = 10, the
corresponding values of s, being 2-84 and 2-03 respectively. The figures-are given in
table 3 for different values of 7, which shows that the error introduced by evaluating
(27) by the saddle-point method is about 2%, It appears, therefore, that the
accuracy of (32) depends on an accurate determination of the saddle-point s, from

equatlon (30). A; and — 7s (1ogﬁ ;) are given in the fifth and sixth columns of

table 2. Since s is given at intervals of 0-1 in the table, s, has been determined by

interpolation by using Newton’s formula. The method is described in another paper

by Chakrabarty (1942). In the seventh and eighth columns of table 2 are also
d?

given the values of A} and 75 (1ogD ;) which are required for calculating (32 b)'.

TABLE 3. ACCURACY OF THE SADDLE-POINT METHOD

‘ y=4,t=10 y=10,t=10
8o = 2:84, P(s,) = 1-06, Y”"(s,) = 3-789 s0= 203, Y(sy) = 916, Y(sy) = 14 06
R {exp ¥(so+17) R {exp Yr(so+97)
T —exp Y(s,)}  exp {—372Y"(s0)} —exp Y(s,)}  exp {—372Y"(s,)}

0-0 1-00 1-00 1-00 1-00

01 0-961 0-981 0-934 0-932

0-2 0-925 0-927 0-753 0-755

0-4 0-744 0-739 0-337 0-325

0-6 0-529 0-506 0-078 0-078

0-8 0-305 0-298 0-009 0-011
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‘Singe inaccuracies in the determination of the saddle-point s, cause large altera-
tions in the result (32a), the logarithmic term in (29) can in no circumstances be
neglected, as has been done by Landau & Rumer. Nor have these authors used the
reverse of the Mellin transform equation (14a) for calculating P(E,¢), so that their
numerical figures are in error by large factors, being sometimes thirty times larger
than those of this paper.

The second part P, given by (28) cannot be evaluated in the same manner. For-
tunately its order of magnitude can be accurately estimated, from which it appears
that it is small compared with P; except for very small ¢. To estimate the order of
magnitude of the integral (28) consider the path of integration moved to the right
$0 that & > 1. Then, everywhere on the contour we can approximately use the asymp-
totic forms of the functions 4, A and x for large s given by (25). For large s,
(#—D)/(p—A)—1, and neglecting terms of order 1/s? in the exponent, we get

1 o+iwo
2m tEo a:—'z',oo
e~ (y=D+3} fo+io

eys —pst dS

Pﬂ(E', )~

a't
A o g—a't
N T omil, a‘iwexp {ys 23} s—¥tds.
Writing s for ys the integral can at once be transformed into the well-known expres- -
sion for a Bessel function (Whittaker & Watson 1927, p. 359) and we get

L ympumin(2) ’
BB, )~ g () ey (33)

Calculation shows that the contribution of P, is comparable with P, only for small
t,as we should expect. For¢ > 4itisless than 2 % of P, andr may therefore be neglected
altogether. A method of calculating (24) when ¢ is small is given in the last section
of this paper. '

To get the total number of particles N(Z,t) whose energy is greater than K, one
must integrate (24) with respect to K from E to infinity. By interchanging the order
of the F and s integrations the E integration can be carried out first, giving

_ 1 [o+ie EO s=1-1 (D— A /,l, D —/d}
RERET IS e S S R

The integral (34) can be evaluated in the same way as (24). The only difference is
‘that on the right of (29) ys is replaced by y(s—1) and —log(s—1) is added to it.
Consequently, for determining the saddle-point, (30) must be replaced by

—-/\’t+(dloD A) -
Y= %"\ ds 8 50 sms 5—1

s

=0. (35)

To calculate the maximum value of N(E,t) for a given , and the value of ¢ at
which this maximum occurs, it is only necessary to consider the part in the curly
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brackets in (34) which is proportional to e~*, since the other part is negligible at
these thicknesses. The maximum of N therefore occurs when

0 1 [otie 1 D-2A

— T e e eY(s— 1) S —7( t — 36

5 V(E,) 2m.L T = As/\e ds = 0. (36)
This integral can also be calculated by the saddle-point method and it will vanish
when A; = 0. Now A, = 0 when s = 2. Hence, for a given y, the maximum will
occur at such a value of ¢ that the corresponding value of s, is 2. Calling this value
£, it follows from (35) that*

1 d. D—2A
_ ~1\ =1.01y—1-57. 7
t A,=y+(dl B, A)sz 1: 1-01y — 1-57 (37)

Evaluating (34) by the saddle-point method just like (32a), and then pufting S =2
and substituting for ¢,, by (37), the value of N at this point is

ey D
el ) @
- 0.137%0{1og%—1-31}_%. (38).

(38) justifies the formula obtained empirically by Bhabha & Heitler, namely,
Nyax, = 0:12(E,/E)*%, The lower power of the exponent in their formula has the
effect of roughly accounting for the variation of the logarithmic term in the denomin-
ator of (38). It appears that (38)is less than Bhabha & Heltler s approximate formula
by about 30 %, confirming the estimate of the error in their calculations made by
these authors. The numerical factors in (38) are of importance, for they show that
even at the maximum, the number of particles is about a tenth of E,/E, that is, the
number that would be obtained if the whole primary energy %, were divided equally
among particles of energy E. This is easy to understand. It is because there are a
number of particles and quanta with energy greater than £, while at the same time
a lot of the energy has already been degraded into particles and quanta of energy
lower than E.

It should be noticed that according to (30) s, increases for a fixed y, as  increases,
and the preceding discussion shows that s, = 2 at the thickness at which the maxi-
mum number of particles occur for this y. Hence the saddle-point lies at s, < 2 before
the shower has reached its maximum, and at s,> 2 after the maximum.

It is interesting to note that p(s, ) given by (23) and ¢(s, t) are finite for all real
values of s > 1 but tend to co as s— 1. Hence, writing s = 1 + & it follows from (13) that

P(1+4,1) =f°° B P(B,t)dE

* With the a.pproxxmatlons of Carlson & Oppenheimer (see footnote on p. 276) equation
(37) is replaced by = 1-25y — 1-92.

This equation makes the maximum lie at a depth which is too great by 25-40 9.
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is convergent for ¢ > 0, but becomes infinite for ¢ = 0. Hence P(Z,t) given by (14)
must tend to infinity as 1/E for small E. Thus the spectrum of particles and quanta
is of the form dE/E for very low energies. This is the result mentioned in the intro-
duction, that if collision loss be neglected then the spectrum of electrons is of the
form dE/E for small E. Collision loss completely alters the low-energy spectrum of
-electrons, as will be seen in the next section. The singularities in p(s,t) and ¢(s, ) at
s = 1 are due entirely to the singularity in C' at this point, as shown by (16). It can
be seen quite easily that this singularity in C comes from the fact that the spectrum
of quanta emitted by an electron as given by (1) is of the form dE/E for small K.
The creation of showers started by a quantum instead of by an electron can be
treated by the same method. In the boundary condition (20) P(Z,0) and Q(E, 0)
are now interchanged, from which it follows that p(s, 0) and ¢(s, 0) are interchanged
in (21), so that the coefficients of the terms proportional to e~ and e~# are different
functions of s. It can be easily shown that a result of this is to replace (D — A)/(x—A)
by B/(x— A)in (27). Since the maximum number of particles occurs when s, = 2, and
at this point A=0 and B, =D, it follows from (32a) that the number of particles at
the maximum is very nearly the same, the difference being due only to the difference
in ¥"(2) in the denominator of (32a). It can also be shown that the maximum of
N(E, ) always occurs at a thickness which is 0-82 unit greater than the corresponding
thickness for electron excited showers as given by (37). Detailed calculations have
been carried out in a paper by Chakrabarty, and numerical results are given there.
They show, as we should expect, that the curves giving the number of particles as
a function of the thickness ¢ are practically the same for a shower produced by an
electron or a quantum of the same initial energy, with the difference that the latter
curve is shifted to greater thickness by approximately one unit of length over the
whole of its range.

CASCADES WITH COLLISION LOSS

We now proceed to solve the equations (15) when 8+ 0. Consider a shower started
by an electron of energy E,. The boundary conditions at ¢ = 0 are then (20), from
which (21) can be deduced again. Substituting (21) into (15a) the boundary con-
dition (22) is now replaced by

{a% (s, t)}¢=o = Eg—l{As +—l% (s— 1)} : (39)

‘The problem can therefore be reduced to the solution of the second order equation
(17) with the boundary conditions (21a) and (39) at ¢ = 0.

One point should be noted immediately. Since p(s, ?) is proportional to E§~! and
on the right of (17) we have p(s — 1, ) it follows that in effect 8 only appears in equa-
tion (17) and the boundary condition (39) in the ratio 8/E,. Thus, if § be taken as
the unit of energy in every substance just as [ has been taken as the unit of length,
then the equations and the solutions are the same in all substances for initial energies
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which are the same multiples of 8 in each case. Just as there is a transformation of
the scale of length in going from one substance to another, so there is a transformation
of the scale of energy. In mathematical terms the number of particles with an energy
between fe and f(e+ de) produced by a primary of energy fe, at any given thickness t
is the same in all substances.

Since the right-hand side of (17) is smaller than the left by a factor of the order
B/B, it would appear possible to solve (17) by a perturbation method when E,> g.
This would give for p(s,t) a solution of the form

0 n .
pls.t) = B 3 () onle) e sy ey ], (40)
=0\t
where v,(s) and w,(s) are functions of s which must also depend on /3 in order that
the boundary . conditions (21a) and (39) may be satisfied. A solution of the type
(40) is nevertheless useless for getting numerical results, for in calculating P(Z, t)
from it by equation (14a), the nth term of (40) leads to an integral of the type

1 o+ico pis—n _ ) 5
i, "f —%—;{vn(s)e As—nt +w,, (s) e#s-nl} ds.

o—1i0

‘Writing s for s —» this can be written as

1 ﬂ n [fo—n-+iwo Eo s 2 .
27TiEo (E) fo’—-n-—ioo (E—) {’Un(é’ * n) o wn(s * n) o } ds’ (41)
and since the path of integration can be moved to the right it follows that we can
replace o —n by o in the limits of the above integral. In this integral n only appears
in the functions v, and w,, which do not alter the order of magnitude of the integral,
Thus in reality (41) leads to a solution for P(,¢) which is an infinite series in powers
of (8/E)™ in which the coefficients do not vary rapidly with n. Indeed, it can easily
be shown that
® no 1 fotie  I'(s+n)
P(E,t) = - £ i e L,
®0=5 ( | E) Sl f e 17
x{ (D= A)r(s) e
(As - /\s+1) e (/\s - As+n) (As - /1’s+1) wee (/\s - :a’s+n)
. (D - /'l’s)n ’LU(S) et }d&
(/"'s - As+1) e (/"'s - /\s+n) (/I’s - /I’s-i-l) e (/I’s - /"’s—f»n)

+ (42)
is an exact formal solution of equation (17) where v(s) and w(s) are arbitrary functions
of s which have to be chosen to satisfy the boundary conditions (21a) and (39).
They can be given as series in powers of 8/E,, the first terms of the series being
respectively E§~Y(D — A,)/(u,—A,) and E§~Y(u,— D)/(u,— A,), agreeing with the form
they have in (24). If the series for v(s) and w(s) be inserted in (42) and the terms.
properly bracketed to give a strict expansion in powers of £, then, as has been shown
by Iyengar, the ensuing series is absolutely convergent. The series (42) as written
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is however divergent for all values of E due to the appearance of I'(s+n), and as a
result the series for v(s) and w(s) are also divergent. Thus the series (42) is strictly
not a proper solution at all. Nor is it possible to look upon it as an asymptotic
solution of equation (17) valid for small 8, for the successive: integrals actually
increase as one goes from one term to the next when ¢ is large. The solution (42) is
therefore quite useless for obtaining any numerical results especially for £ <p.
The methods of solution followed by Snyder and Serber also lead for purposes:of
calculating the spectrum to series of the type (42) and indeed, Serber’s solution can
be transformed exactly into (42).

We shall therefore try and find a solution of the equation (17) by generalizing
(24), which is an exact solution of this equation when g = 0. Assume that an exact
solution of (17) when £ 0 can be written in the form
1 [o+io { E,

PED = g B (O

(43)
where ¢(s,t) and f(s, ¢, B) are functions of s and ¢, but not of E. Assume g to be in-
dependent of 5. Then f must be a function of f, and as will appear presently, is
expressible as a power series in f. We assume that o is such that for R(s) > o, g(s,t)
and f(s, ¢, f) have no singularities.

Assume further that f(s, ¢, §) satisfies the same boundary conditions at ¢ = 0 as
the corresponding function in curly brackets of (24), namely

fe0.p =1 [Sfsep) =4, (44

It can then be shown that in order that (43) should satisfy the boundary conditions
(20), g(s, t) must satisfy at ¢t = 0 the boundary conditions

96,0 =0, {Zo.n) =1 (45)

To see that (43) satisfies the correct boundary conditions at ¢ = 0, differentiate (43)
and write 5 for s. Then

[ P(Et]t 0 [2mE f a_H: {E+ﬂg(ﬂ, }”

o {_ Buftn,t, B) 99(n.2)  of (0.t f) }]
{E+pg(n,t)y ot ot ) fimo

B 1 o+io E\"( 9B

AL IR S
Multiplying this equation by B¢~ and integrating from 0 to co, we at once get (39).
Hence the function p(s, ) connected with (43) by (13a) rigorously satisfies the correct
boundary conditions (21a) and (39), provided g(s,t) and f(s,¢, f) satisfy (45) and

(44) respectively, so that (43) rigorously satisfies the boundary conditions (20)
at £ = 0.
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We now proceed to find the equations that g(s,t) and f(s,t, ) must satisfy in
order that (43) should be an exact solution of (17). Assume for the moment that
asymptotically for large s

g(s,t)~ , when a't>?2, (46a)

Ta log
and g(s,t)~ t, when a't<2. (46d)

It will be shown in the appendix that g(s,?), as determined by the equations given
below, has in fact this asymptotic form for large s. It will also appear that for R(s)
greater than some finite positive number, that is in the whole complex plane to the
right of some line parallel to the imaginary axis and to the right of it, neither g(s, £)
nor f(s,t, f) have any singularities.

If &'t > 2, then by (46a), g(s,t)—>0 as | s|—>o0. Since g(s,t) and f(s, ¢, 8) have no
singularities for R(s) >0, we can always move the contour of the integration in (43)
to the right and hence in view of (46) by m&kmg o large enough the path of integra-
tion can be changed into another line parallel to the i imaginary axis such that

E>|pg(s,t)| (47)

at every point of it. We can then expand (& + fg)~* at every point of this contour as
a series in ascending powers of g(s, ¢)/E. If a't < 2, then it follows from (46) that a
similar contour can be chosen such that on it (£ + fg)~* can be expanded as a power
series in Bg(s, ¢)/ B, provided E > ft. In order to find g(s, t) and f(s, ¢, #), the expansion
may be carried out formally even for E < ft. (A rigorous proof of the correctness of
the solution (43) is given in the paper by Iyengar.) If f(s, ¢, §) satisfies certain con-
ditions at infinity, then the series can be integrated term by term, and |

g 1 [rHe(B)e_T(s+n)  Bals, "
P& = B onm, w("E) r<s>r<n+1){" B }f‘s"’”")d& (48)

Writing 9 = s+ in this integral and shifting the path of integration again to the
left so that o+ is replaced by &, the (n+ 1)th term becomes

iz~ ) | (B) L= gy syt By,

o—1i0

Now calculate the function p(é, t) connected with P(Z,t) by the transformation
(13a). It at once follows from the property of the Mellin transform that this is

e L Y )

Honco  pia.t) = B fls,t,0)= (s~ 1) 066 = 1.OSGs=1,1,)

(8—1)2('8 2{/?9(81?‘ }f(s-z,t,ﬂ)-{-...:'. (49)
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From (49) it can be easily deduced that if f(s, ¢, #) satisfies the boundary conditions
(44), then g¢(s,t) must satisfy (45) in order that p(s,t) should satisfy (21a) and (39).
Conversely if g(s, ¢) satisfies (45) then f(s, ¢, £) must satisfy (44).

Now assume that f(s, ¢, §) can be expressed as a power series in £ thus

fnt ) = Flost)+ (B) S+ () Ftor00+ (50)

and that the coefficient of £ in this series is zero. It will appear presently that this
is possible. There are now sufficient conditions to determine g and f uniquely. Sub-
stituting (50) in (44) and equating the different powers of S to zero, it follows that
fo(s,t) satisfies the boundary conditions (44), while f,(s,t) for n>0 satisfies the
boundary conditions

Fus.0) =0, [Shunf_ =0 (51)

Introducing the series (50) into (49) and rearranging the terms to form a power
series in ascending powers of § we get

pls.t) = B i, t)——(s—l)g(s—-l £ fols—1,1)
H(E) [ - 20— 2 0+ 0) - |- o2
Write for brevity As_§t2+(A +D) 3t+(A D—-B.C,). (53)

Introducing (52) into (17) and equating the coefficients of the different powers of
B to zero, we get a set of differential equations which successively determine g(s, ¢)

and fn(s; t), thus
Afo(s,8) =0, (54a)

Afgls—10)fo(s—1, 1)) = ( +D) s 1.0 (545)

4o 0+ 07D g0 2,76 2.0)

(aa +D) {(s—=1)(s—2)g(s—2,8) fo(s — 2,1)}, (54¢)

.............................................................

Tt follows from (54a) and the boundary conditions (44) that fy(s,?) is precisely the
function we had in the case # = 0, namely,
 D-2 us—D
8,1) = St 48— e, 55
fo( »?) /‘s—/\s /‘a-/ls (55)
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Substituting this into (54b) we get at once
9(8 - ]-': t)fo(s - 1’ t) = hse_/\‘gl +-7 et

(L- ’\s 1) (D— —1) e eoat 4 (D—ps—y) Ms—i—

- e—ﬂs—li,
(/\s—l s) (/\s—-l ﬂs) (:”'s 1~ s—-l) (:”’s-—l e As) (/"s-1 - :”’s) Mg—1— As—-l

(56)

+

where we have made use of relatlons of the type
= (As+ D) /\s—l + AsD - Bso ( s—1" s) (As-—’lb'—ﬂs)'

Ag and pg are the functions of s defined by (19), and %, and j; are arbitrary functions
of s independent of ¢ which have to be determined so that g may satisfy the boundary
conditions (45). After some calculation we find

9(s.1) =[ T + (D= Agya)t e
(/"s - /\s) (/\s-i—l i As) (;”’s+1 - As) (/"s+1 . "'s+1) (As - /\s+1) (/'Ls - Aé+1)
S KGRNS5 TE)x AL
(5= As) sy —ts) Ws1—ts) (o1 — A1) (As — frr) (s — 1)
D2, po—D .}~1
x eMl 4 B8 g 57
{ﬂs ’\ /"s - As 57)

Since p, > A, for real s greater than 1, the terms proportional to e=# are negligible
for all except very small £, and then to a good approximation

D— As _ (D - ’\s+1)2 (/ts - As) e—As1—Agt
(As+1"" As) (:“s+1 - /\s) (-D - As) ,(/us+1 - As+1) (/”’s - As+1) (As+1 bl /\s) )

Since, further, A, , > A, for real s greater than 1, the second term tends to zero for
large ¢, and g(s, t) becomes independent of {. For all except small ¢ the second term
gives a small correction. The values of g(s, t) for t = 2, 4, 10 and co as calculated from
(58) are given in table 4. Fort = 2and 4and large s the figures are in error by 10 %,
as (58) is then not a good enough approximation to (57). This can be seen by com-
paring these figures with those of table 4B, which are calculated from (57). But just
for <2 the saddle-point s, usually lies near or below 2, and here the differences
between the figures of tables 44 and 4B are negligible. The ﬁgures for ¢ = 10 and o0
in table 4A are quite accurate. The general dependence of ¢(s, ) on ¢ for fixed s is
easily seen. From the boundary conditions (45) it follows that for small ¢

g(s, )~ (58)

g(s,t)~t, (59)

and it rapidly tends to some constant limiting value depending on s as £ co. This
limiting value is about 0-5 for s = 1-5, about 0-8 for s = 2, and about 1 for s between
2-5 and 3-0. This behaviour of g(s, ) is of physical significance, as will appear in the
next section. From table 4B and (46) it is clear that f_or large s the curves have a
‘dip’ near t~2/a’~ 3, which becomes more pronounced as s increases, until for
§->00 it becomes a sharp discontinuity at ¢ = 2/a’.
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TABLE 4B. ACCURATE VALUES OF ¢(s, t) FROM FORMULA (57)

1-0

0-4892
0-6309
0-7264
0-7738
0-8054
0-8317
0-8475
0-8630

H. J. Bhabha and S. K. Chakrabarty

TABLE 4A. VALUES OF g(s, t) FROM FORMULA (58)

(s, 2)

0-0000

0-5252

1-3

0-5113
0-7071
0-8298
0-9035
0-9545
0-9949
1-023

1-050

g(s, 4)

15

0-5174
0-7155
0-8759
0-9659
1-029
1-079
1-116
1-149

g(s, 10)

1-0835
1-0882
1-0946
1-0984
10944
1-0944

1-0895
1-0835
1-0817
1-0782
1-0675

1-0633
1-0559
1-0453
1-0406
1-0272
1-0198
1-0111
1-0021
0-9968
0-9876

2-0

0-5269
0:7705
0-9339
1-048
1-129
1-189

1-239

1-287

g(s, 00)
0-3099
0-3922
0-4673
0-5364

0-6008
0-6609

0-7167

0-7695
0-8186

0-8641
0-9061
0-9450
0-9807
1-013

1-043
1-070
1-095
1-120
1-141

1-160
1-179
1-198
1-209
1-226

1-240
1-253
1-268
1-283
1-202
1:304
1-315
1-326
1:339
1-350
1-360
1-375
1-378
1-383
1-386

40

0-5353
0-8009
0-9564
1-037
1-066
1-064
1-047
1-027

10-0

0-5364
0-8186
0-9993
1083
1-094
1-067
1027
0-9876
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If we wish to calculate the limiting form of g(s, t) for large s but finite ¢, it is neces-
sary to consider all the terms in (57) and (58), for the first and second terms and the
third and fourth terms in the numerator of (57) largely compensate each other as
§— 00, as also do the two termsin (58). The limiting form of g(s, ¢) as s = cois calculated
in the appendix and the result has already been given in (46) above.

The expression (57) for g(s,t) like f,(s, t) given by (55) and indeed, like f,(s,?) in
general, is symmetrical in A and . Hence, although A and x are themselves not one-
valued functions of s in the whole complex plane, g(s, ), fo(s t) and f, (s, t) are one-
valued functions of s throughout Moreover, since they contain e~* and e, it is
clear that the points in the s plane where A and z have singularities are essential
singularities of g(s, ), fy(s,t) and f,(s,t). Now A and u are singular whenever 4,, B,
or C, defined by (16) are singular, and this happens when s is equal to 1, 0 or a negative
integer. ,

. The functions fy(s, t), f3(s,¢), etc. can be calculated at once by solving (54¢) and
the succeeding equations of the set. All these equations are of the same type, in
which the right-hand side is known, and the unknown function is on the left-hand
side. The general solution of equations of this type is given in the appendix. But
(54c¢) can also be solved directly. We get

f2(s: t) = g‘Em—l)é&i:2—){g(s"" 2: t)}2f0(8 - 29 t)

0
5 +D
+ = A {(8— 1) (8—- 2) 9(8—'2, t)fo(s"' 2, t)}
s .
+kgeAst 41 e nst, (60)

(56) shows that the term in curly brackets in (60) just contains ¢ in four exponentials,
and the operator outside the bracket is to be taken in the sense

0
‘ 52+D
A

Agyl — D—-2s4 At
s T RGN AT
The arbitrary functions &, and I, which are independent of ¢, have to be determined
to make fy(s,?) satisfy the boundary conditions (51) at ¢ = 0. It is clear from (60)
that f,(s,t) will contain terms proportional to e—2s-#, e~%-1, e=A, and a similar set
of three terms with x4 instead of A. Now it will be shown below that for Z,> 8, an
appreciable contribution to F,(Z,t) only comes from the term proportional to
e~s—, except for very small t. Hence it is not necessary to determine k, and lA
explicitly. The effect of the two terms containing them is largely to cancel the effectk
of the e~%-+ term at small ¢, and thus to make the total contribution of f, to the
series (50) quite negligible for small ¢, as will be seen in the next section. The term

Vol. 181, A. 20
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proportional to e—%s-2! in fy(s,t) can be calculated quite easily, remembering (56)
and (58). We find

_ (D - /\s— )3 .
f2(s’ t) B (8 B l) (8 B 2) (ﬂs-—2 - As—z) (/\s—l - /13—22)2 (:us—l - /\3—2)2 ’

% {(7\3'_1 = Aga) (M1~ Asp) _ 1} e—Rseal
(/\s - /\s—z) (/'Ls - /\3—2) 2

+ng e~ts—1f + terms containing e~ and e, (61)

The coefficients of the other terms can be calculated easily.

The functions fy(s,t), etc., can be calculated explicitly by the method given in
the appendix. It is therefore clear that an exact formal solution of equation (17)
with the boundary conditions (21a) and (39) can be written in the form (43) with the
function g(s, t) given by (57) and.f(s,t, 8) given by the series (50). Now correspond-
ing to the series (50) for f(s,t, 8), P(H,t) given by (43) can be written as a series

P(E,t) = Py(E,t)+ Py(B, 1) + By(E, 1) + ... (62)
h PyE,t) = —— "”w{ o Vs, )d 63
where A0 = i o T ) 0% )

- i B lachiafsons oo

and so on. It should be noted that the series (62) is not a simple series in powers of
J since, owihg to the appearances of £ in the denominator of the integrand of each
term, each term by itself is a function of # which may be expanded as a power series
only in certain circumstances.

We now proceed to calculate (63). The function f(s, ) given by (55) is the same as
the function in curly brackets of (24). The only difference between (63) and (24) is
the appearance of K + fg(s, t) in place of E. As in (24) the contribution to (63) which
comes from the term proportional to e+ in fy(s, t) is negligible compared with the
contribution which comes from the term proportional to e=* for all except very
small ¢. Thus to a very good approximation for all except small ¢, we may write

1 o+1i0 EO SD,—/\s Al
R ey o e (%)

In view of the properties of g(s, t) discussed above and its asymptotic behaviour for
large s, it is clear that (65) can again be evaluated by the saddle-point method and
indeed with the same degree of accuracy. The effect of replacing E in (27) by
E + fg(s,t) in (65) is therefore to give E a larger effective value depending on the
position of the saddle-point s,. The position of the saddle-point s, which depends on
E and ¢ is shifted to somewhat greater values by the presence of g(s, ), as compared
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with the corresponding values it had in (27). In calculating:(65) it is convenient to
introduce a variable y, defined by

E,
Yo = 10g7),9. (66)
Writing the integrand of (65) again in the form e#® we find
D—A, E
Y(s) = yps— At +log ﬂs_‘/\s—slog {F +g(s, t)} . (67)

This differs from the ¥ of (29) only by the addition of g(s, t) in the last term. The rest
of the procedure of finding the saddle-point s, and then evaluating (65) follows the
method of the last section closely. In fact, by using tables 2 and 4 it is no more
difficult to evaluate (65) than (27).

The qualitative effect of fg(s, ) in the denominator of (63) can be seen at once. It
follows from {59) that K+ fg(s,t) = E + ft for small ¢, so that the effect of this term
is to shift the whole spectrum to lower energies by an amount ff corresponding to
the energy lost by collision by each particle in the thickness ¢. For all but very small
t, however, g(s,t) ~ 1, as shown by table 44 and hence K+ fg(s,t) ~ E + . In other

~words, instead of the number of particles tending to infinity as £ —0, as it did in
(24), the spectrum becomes flat for £ < £ and tends to a finite value as £ — 0. Thus
for all but small ¢ the effect of collision loss is to flatten out the spectrum for energies:
below the critical energy. We see that our present calculations justify the original
assumption of Bhabha & Heitler concerning the effect of collision loss on the
energy spectrum of a shower. The finer features of the energy spectrum will be
discussed in the next section.

We now proceed to calculate Py(E, t) inserting in (64) only the term proportional
to e~%s-2 'of the expression (61) for f,(s,¢). Writing s+ 2 in the integrand in place of
s and moving the resulting contour again to the right, i.e. bringing it back from
o—2 to o, we get

PZ(E’ t) =

1 o+t EO s ﬂz g
2miBy ) o-iw {E +B9(s+ 2, t)} (E+pBys+ 2,0 2 ds.  (68)

m, denotes the coefficient of exp (—d,_,f) in (61). K, appears here in precisely the
same way as in (65) and ¢ also appears in an exponential multiplied by the same
coefficient A,. (68) now differs from (65) first in having g(s+2,¢) in place of g(s, ¢).
Table 4 shows that for s between 1-5 and 3-0, g(s + 2, ¢) ~g(s, t), so that the effect of
‘this difference alone would be to make (68) only slightly different from (65). The
other difference between (68) and (65) is that the integrand of the former is

[ B -2 ~

{E+ Bes+2, t)} DA, M2 (69)
times the integrand of the latter. Even for £ assmall as f/e and s less than 2-5 this
factor is less than }. This extra factor decreases as s increases and hence always
shifts the saddle-point of (68) to somewhat smaller values compared with (65).

20-2
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But since the saddle-point is precisely the point at which the value of the integrand
is stationary, this shift does not greatly affect the value of the integral. Thus, (68)
will be smaller than (65) roughly by the factor (69). We now see the great advantage
of putting E + fg(s, t) instead of E in (43) for it multiplies the nth term of the series
(62) by a factor f{E + Bg(s+n,t)}~", instead of the factor (6/E)* which occurs
in (42). This factor is always less than or of the order unity however small £ may be,
whereas f/E becomes very large for small E, and makes the successive-terms in
(42) increase rapidly.

It is also clear now why the term proportional to e~%-if in (61) would make a
contribution to Py(K,t) small compared with (68). For on introducing this in place
of f,(s,t) in (64), one would have to write s+1 instead of s to bring the exponential
‘to the form e~ as in (68) and this would give an integral like (65) but with the
extra factor

B s Ps—As
EyE+pfg(s+1,t)D-2, Mat1

in place of (69). Since E,> £ in the cascade theory this is small compared with unity
and hence the contribution of the e~s— terms in (61) to Py(Z, ) is quite negligible
provided E,> . For smaller E, the effect of these terms is actually to compensate
(68) and make the total contribution of F,(%,¢) to the series (62) still smaller.

In order to compare the contribution of the second term P,(X,t) of the series (62)
compared with the first Py(Z,t) we have worked out (68) accurately by the saddle-
point method for ¢ = 10, and y, ranging from 4 to 10 at intervals of 1, and for the
two cases where K is equal to £ and f/e respectively. The results are given in table 5.
The first and second rows in each case give the values of SPy(E, t) and SPy(E, t) with
the corresponding positions of the saddle-point. The third row gives the corre-
sponding figures for SP,(E, t) given by (27) of the previous section, in which collision
loss is neglected completely. The table shows clearly that the contribution of P, is
always considerably smaller than P,, and for large y, it is about one-fifth. Now the
thickness ¢ = 10 is approximately that at which a particle of initial energy corre-
sponding to y, ~ 12 produces the greatest number of particles, while for y, = 4 it
corresponds to a position far beyond the maximum, when the shower is getting
absorbed by collision loss. We should therefore expect P, to give a greater relative
contribution for the smaller values of y, in table 5, as indeed the figures show. Even
s0, the table shows that the figures calculated by using the first term Py(#,¢) alone
of the series (62) will not differ from the true figures by more than about 30 %, except
when E ~ e. On the other hand, the figures for the number of particles calculated
by neglecting collision loss altogether are three to five times too large for electrons
of the critical energy (£ = f), and eight to seventeen times too large for £ = g/e.

When E < f3/e, the factor (69) becomes practically equal to unity and then Fy(X, )
becomes nearly as great as Py(H, t). We should then expect that the higher terms of
the series (62) would make an appreciable contribution and that it would be quite
insufficient to stop at the first term. The range of energy COncern'ed‘is small com-
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pared with the critical energy, so that the region is not important as far as the total
number of particles is concerned.

TABLE 5. COMPARISON OF Py(E, t) AND P,(H, t) For t =10

Yo 4 5 6 7 8 9 10
S 3-19 2:86 2:63 2:46 2:32 2.21 2:12
BPJ(E,t) 00819  0-456 2:155 8822  32:37 1005 306-0
BE=p S 278 2:53 2:36 2:24 2-15 2:06 200
BPy(E,t) 00374  0-1614 0-585 1-944 5-842 15-00 4072
BPy(B,t)  0-591 2-84 114 407 130-0 377-0 1012
S 3-10 2-80 2:59 2:43 2:30 2:19 2-10
PBPL(E,t) 02560  1-209 5472  21-90 7897 247-2 715-8
E=ple ls 2-66 2:45 2:30 2:19 2:11 2:02 1-95
APy(E,t) 01994  0-7820 2:789 8782 2499 6517 1575
BP\(B,t) 172 30-9 110 354 1024 2751 6912

Since the second term P, of the series (62) is of the order 42, it might appear that
stopping at the first term means.a total neglect of terms of the order #2. This is,
- however, not so, since the integrand of the first term given by (63) itself contains g
in an expression which can be expanded as a power series in £, as has been done in
(48). To compare the contributions to the term of order 2 in P(H,t) which come
from Py and P, respectively, calculate P(X,t) by using the transformation (14a) on
the series (52)! We get*
1 o+io (|1

P(B,1) - (—) [ s.00= 5 (5= 106 =1, als 1,1

27nE o—io

+(Il§0) {(8 1)2(3 2){ —2,0)12fy(s— 2, ) +falss t)} :I (70)

In this series the term independent of 3, and the term of order £ are entirely due to
the first term Py(H,¢). Of the contributions to the term of order §? the first part in
curly brackets in (70) is due to Py(H,t) while the second is due to F,(¥,?). To get an
idea of the relative magnitude of the two terms in curly brackets in (70) consider
that part of both which has e~ as a factor. Using (58), (57) and (61), and writing
s for s — 2 for convenience, this part becomes

' (As+1 s) (/"s+1 s) }:I
1+{ -1
l: ( s+2 7 s) (/'Ls+2 s) :
multiplied by a function of s which we have not written explicitly for brevity. The
term in curly brackets is the contribution of fy(s, t). The expression in curly brackets

* The same result could be obtained after some elementary manipﬁlation by introducing
the series (50) into (48). '
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is 0-52 for s = 1:5, 0-40 for s = 2 and 0-32 for s = 2-5. Using (25) it can be shown
that it tends to zero as s—>c0. It is clear from this that at least two-thirds of the term
proportional to 42 in the strict expansion of P(K,?) as a power series in £ comes
from P,, while P, only contributes less than 35 9%, to this term. We see therefore that
the first term P, of the series (62) already contains the Who'le contributions to P(E,t)
of the terms indepen’dent of 8, and proportional to B, and the major part of the
contribution of the term proportional to $% and probably the important pa,rt of
the contribution of higher powers of §. The terms F,, F;, etc., then only give small
corrections to the terms proportional to 4% and higher powers of 4.
- We have therefore established that (62) is an accurate formal solution of the
equations of the cascade theory taking collision loss into account. The convergence
of the series (62) has not been proved, but this is not necessary since we have shown
that in general it is sufficient to take only the first term, the second being small com-
pared with the first, even for energies below the critical energy, so that it is possible
to look upon (62) as an asymptotic solution of the problem should the series (62)
‘not converge.* '
- Values of P(E,t) have been calculated by the saddle-point method for y, between
3 and 10 at intervals of 1, and three values of E equal to ¢, -and f/e respectively.
Table 6 gives the figures for ¢ = 2, table 7 for ¢ = 4, and table 8 for ¢ = 10. The
corresponding values of s, are given in table 7 as an indication. The figures for P,(E, t)
are those given by formula (27) where collision loss is neglected completely. T'he
tables clearly show that for large t and small y, the figures given hitherto, neglecting
“collision loss altogether, are too large by a factor two even when E is e times the
critical energy, and for E equal to the critical energy, the old figures mneglecting
collision loss are sometimes too large by a factor seven. This is as we should expect,
for it is just for relatively large ¢ and small y,, that is after the shower has passed its
maximum, that collision loss has the greatest effect. In this region our calculations
-show that the previous theories in which collision loss was neglected{complefoely
‘cannot claim accuracy even for energies which are two or three times the critical
energy.

ENERGY DISTRIBUTION OF THE CASCADE ELECTRONS

Small thicknesses. First consider the energy distribution of cascade electrons in
a shower as it appears after passing through a very thin layer of substance such that
t<1. (62) is still a correct solution, but in fy(s, t), fa(s, t), ete., it is no longer possible
to neglect the terms containing e~#. For {<1 it is therefore simpler to start directly
from the expression (43) and to insert in it for g and f the expressions they assume for
very small ¢. Since f, satisfies the boundary conditions (44) it follows from (54a) that

02
{-éi-zfo(s, t)}t=0 = Ag-*‘ BsC's. .

* The éonvergence has been proved in the paper by Iyengar (1942).
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TABLE 6. t=2

Yo 3 4 5 6 7 8 9 10
E=ef  BPyE,t) 0259 0503 0753 1-12 1-62 2-18 2:86 3-84
BP,\(E,t) 0391 0619 0955 1-39 1-91 2:59 345 453

E=§ BPy(E,t) 0831 1519  2:27 3-34 456 6-19 816  10-7
BP\(E,t) 168 2:60 378 5-19 705, 937  12:3 15-3
BE=pfle PPyE,t) 187 3-14 4-97 714 989 136 179 23-5
BP\(E,t) 705  10-3 141 192 255 335 41-6 49-7

TABLE 7. t=4

Yo 3 4 5 6 7 8 9 10
E=fe s, — 2:63 2:24 2:01 1-86 1-75 1-67 1-61
BP|(E, t) — 0-333 . 0989 239 4-90 941 166 28-3

80 2:96  2-39 2:10 1-92 1-79 171 1-64 1-58
BP(E, t) 0-171  0-609  1-60 3-52 688 130 21-1 360

E=p P 3-00 2-43 2:13 1-94 1-81 172 1-64 1-59
BPy(E, t) 0-385  1-29 3-61 800 16:3 30-3 52-0 87-9
% 2-39 2:10 1-92 179 171 1-64 1-58 1-54

BP\(E; t) 1-65 4-34 9-57 187 35-2 57-3 97-7  160-0

E=ple s, 284 237 2-09 1-92 179 171 1-64 1-58
BP|(E, t) 0931 311 813 185 358 674 1160  189-0
P 2:10 1-92 1-79 171 1-64 1-58 1-54 1-50

BP\(E; t) 11-8 26-0 50-8 95-8 155-8 266-0 4350 671-0

TABLE 8. ¢t =10

%o 4 5 6 7 8 9 10

E=fe  BP(E,t) 00138  0-0870 0-471 2:04 7-89 261 80-6

BP\(E,t) 00379 0217 1-05 418 15-0 47-9 139-0

E=§ BP(E,t) 00819  0-456 2:15 8-82 32-4 100-0 306-0
BPy\(B,t) 0591 2-84 114 40-7 1300 3770 1012

E=ple pPyE,t) 0256 121 547 21-9 79-0 247-0 716:0
BP\(E,t) 712 30-9 110-0 3540 1024 2751 6912

This togetheér with (44) shows that for small ¢
Sfo(s,t)~ 1 — A b+ 5(A2+ B,C;) 12+ 0(t3) (1)

as could be derived after some caleulation from (55). Further, in view of the boundary
conditions (44) and (45), it follows from (54b) that

62
{a_t2 g(s, t):t=0 = As - 48-}-1'

Hence for small ¢ g8, t) vt —$(A gy — Ag) 12+ 0(83). (72)

By using the boundary conditions (44), (45) and (51) it can then be deduced from
(54c) and the subsequent equations that 02/0t%f,(s,t) = 0 for all n > 0, so that f,(s,?)
is of order #3. All the following terms in (50) are therefore negligible compared with


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on January 19, 2011

298 H. J. Bhabha and S. K. Chakrabarty

fo for small ¢. It follows from this that for small ¢ all the terms in (62) except the first
are of order 3 and negligible compared with P,(E,¢). Hence, inserting (71) and (72)
into (43),

1 o+iw

( E,
R R e e

}s [1—A,¢+ 1A%+ B,C,) 2] ds.

Correct to terms of order ¢* this may equally well be written after some elementary
transformations

P = g [ (5

8 . Ps—1

JER— — — 1(42 24 7 T - 2

il )i\ Tt ﬂt) [1 A+ 3(A%+ B,C,) 2+ B 2 (4, As_l)t]ds.
(73)

After inserting the expressions (16) for 4,, B, and C, in (73) the resulting integral
can be evaluated exactly. We give only the result here. It is convenient to intro-
duce a quantity y' defined by

" EO
= 10gE’+ﬂt' (74
The 1 in the square brackets in (73) gives as nsual
0By — E — pt). (75)

This, of course, just represents the original electron which has lost an. energy St
by collision.

The term proportional to ¢ in the square brackets in (73) only contains 4,. It is
obvious from the way that equation (15a) was derived from (12a) that 4, represents
the effects of radiation loss only, so that the spectrum of electrons created in a very
small thickness is due to one radiation process only. The term proportional to ¢ in
the square brackets in (73) gives

’ ’ ¢ a’ . o
—-({.%K—(Z +%)}t3(E0-—E-*/))t)+-E;(“e‘g,—_—i+1—€ y), (76)
YdZ
where K=f0—z—.

k is therefore an infinite constant which multiplies the ¢ function. The spectrum
reaches a finite value as E -0, increases with increasing E, and tends to inﬁnity
ag B — E,— pt, that is as y’ — 0. This form of the spectrum is quite understandable,
for the spectrum of low energy quanta given by formula (1) is of the form dE'/E’,
so that the probability is greatest for the electron losing a very small part of its
energy. The § function in (76) diminishes the & function in (75) corresponding to the
removal of the initial electron by radiation loss. The diminution is, however, infinite,
just because the total chance of a quantum being emitted is infinite according to (1).
Both the singularities in (76) are due entirely to a failure of the Bethe-Heitler formula
(1) for quanta of very low energy, and here, as has been shown by Bloch & Nordsieck
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(1937), we have to consider the simultaneous emission of a large number of quanta
involved in a transition to the classical theory. (76) could of course be derived by
a direct integration of (12a). The resulting electron spectrum is given in the third
column of table 9 for { = 0-1. 4

TABLE 9. ENERGY SPECTRUM OF ELECTRONS AT DIFFERENT THICKNESSES FOR
Yo=log Ey/f=5. y=log(&/p)

(76) (77) (78) Total
Y . .
E/p 7\ 01 0-1 0-1 01 0-3 2:0 4.0 10-0
037 -1 0-1001  0-0274  3-259 3-387 20-94 736-95 1206-0 179-4
~ ’ : (2094) (7539) (4582)
1 0 0-1003  0-0231 1-356 1-479 11-74 337-3 535-4 67-67
. (560-3) (1420) (421-7)
2.72 1 0-1007  0-0185  0-5035 . 0-6227 4-669 111-7 146-8 12-91
(141-7) (287:0) (32-20)
7-39 2 0-1022 00137  0-1709 - 0-2868 1-920 33-83 33-24 2:063
20-1 3 0-1078 00090  0-0512  0-1680 0-8583 7-865 3-443 —
54-7 4 0-1424 00042  0-0121  0-1587 0-5739 — — —
— 4-8 06315 —0-0862  0-0019  0-5472 1-139 — — —

The figures in brackets are those neglecting collision loss. All the other figures represent E,Py(E, t).

The first term proportional #2 in the square brackets in (73) has a part proportional
to A3, representing the spectrum created by two successive radiation processes,
which merely results in a spectrum of the general form (76) but still more flattened
out. It gives

(' —o' +3)2t28(EBy— E — ,Bt)—f-E[ ( +1—e“”)log(1—-e“”)

+;‘ecx'2 +14+(1- 2a)e—y}y+ %) + (' (l—e"y)] (77)

ev' —
The resulting spectrum is given in the fourth column of table 9 for ¢ = 0-1. The other
part is proportional to B,C,. It is obvious from the way these quantities were
derived that C, represents the ¢reation of quanta by radiation, while B, represents
the creation of pairs by quanta, so that this part represents the electron spectrum
produced by the original electron through the intermediary of one quantum. The
resulting spectrum due to this part is '

a'?

2
; [ 'D(e¥ — e~ %) + (l a'+ ) (I—e¥)—a'y'(1+e¥)|. (78)
(]
It tends to zero as y’— 0, i.e. B — E,— ft,and increases monotonically as £ decreases,
reaching its maximum value when F — 0. This is again what we should expect, for
the spectrum of low, energy quanta being of the form dE’/E’, the spectrum of
electrons created by these quanta rises to a maximum as £ — 0. It should be noticed
that owing to the appearance of e¥’ in (78) its order of magnitude is in general much
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larger than (76) or (77). The spectrum due to (78) is given by the fifth column of
table 4 for ¢ = 0-1.

The last term in square brackets in (73) is proportional to £. Tt can be written

Bt ) t [otio g o
—Eéz’ (1._6'—‘11){__27”:E0J ) eVs A ds> E2(1 —2“-—6' y). (79)

0 —10

The expression in curly brackets is just equal to (76) and is the spectrum created by
one radiation process only. The meaning of the term (79) is then the following. In
(76) the spectrum proportional to ¢ has been shifted down to smaller energies by an
amount S, as if all the electrons had lost this amount of energy by collision. This is
obviously incorrect, since some of the electrons are created at some intermediate
point of the layer and hence lose less energy than ¢ by collisions. The purpose of
the expression (79) is to correct for this error. Moreover, the energy of the primary
particle is not K, as it appears in (76), at every point of the layer, but less than this
by the amount lost by collision. This also introduces a slight correction to the
spectrum (76), and this correction is included in (79). It should be noticed that since
E, > pt always, (79) is of order ¢, and is hence small compared with 1 for small ¢. Tt
is always small compared with the sum of (76), (77) and (78). In the fifth and sixth
columns of table 9 we have given E, times the resulting spectrum, namely, ¥, times
the sum of (76), (77), (78) and (79) for ¢ = 0-1 and ¢ = 0-3, and y, = 5. The spectrum
is quite different from what has been generally supposed. There is, as has been
shown above, a 8-function at B = E,— ft, the height of which decreases as ¢ increases.
A more detailed investigation by K. S. K. Iyengar in which terms of all orders i in¢
have been considered shows that for ¢>1/a’ this §-function at E = E,— fjt com-
pletely disappears and the spectrum then decreases monotonically as E increases
from zero. In particular it shows that the spectrum given by Arley for small thick-
‘nesses is not even qualitatively correct. This is mainly due to his neglect of the
electron spectrum produced through the intermediary of one quantum. But quite
apart from this, his assumptions about the collision and radiation loss are too
artificial to have any claim to physical reality.

Formulae (75) to (79) could be derived for small ¢ from a direct integration of the
equations (12). Thus every part of the expression (73) has a direct physical meaning
and this affords another verification that the solution (43) is correct for small ¢. In
deriving expression (73) from (43), no assumption was made about the magnitude of
E,. Indeed, (43) is also valid when E, < 3. As mentioned in the first section, collision
loss alone would prevent the electron from penetrating to a thickness ¢ greater than

E,/B, which in this case is small compared with 1. Hence, for E,< f, (43) automatically
reduces to (73), and this is therefore the complete solution of the problem of the
absorption of a low-energy electron by collision loss and cascade production.

Large thicknesses. For large thicknesses the solution (43) can be calculated in the
form (62), where as was shown in the last section, the major part of the contribution
comes from the first term alone, and it is possible in general to restrict oneself to this
term. The form of the spectrum can be obtained from tables 6-8. In table 9 the
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spectra for ¢t = 2,4 and 10 have again been given for y, = 5. The figures in brackets
give the spectra that would have been obtained if collision loss had been neglected.
Even for energies near the critical energy, the figures neglecting collision loss are
sometimes six times too large. It is clear from the correct figures that the effect of
collision loss is to flatten the spectrum for E < g provided ¢ is not too small. The
spectrum of electrons in a shower never falls off for £ < # as has been suggested by

Arley.
The calculation of the total number of particles in a cascade as a function of

E, and ¢ has been carried out by us on the basis of (62) in another paper (1942).

APPENDIX
Consider the function

X(s,8) = J : Fols,t=¥) ¥(s,v)dt, (80)

where fy(s,t) is the function defined by (55) which satisfies the equation (54a) and
the boundary conditions (44) at ¢ = 0. Then

t
5 X6 = Y+ [ 2 il t—t) Yia.0)at,

g—;X(s,t) = Y(s t)—-4 Y(s,t)+f 82fo(s t—t") Y(s,8')dt'.

Hence, remembering that f, satisfies (45a),
4, X(s,t) = (%+D) Y(s,¢). (81)

Hence, if a function X(s, t) is to be found satisfying an equation of the type (81) in
which the right-hand side is given, the particular integral is at once given by (80).
To it may be added the complementary function satisfying the left-hand side of
(81) equated to zero, in order that X may satisfy the given boundary conditions
at ¢t = 0.

Now all the equations (54) are of the form (81). Hence, from (54b),

g(S-— 1, t)fo(s“ lat) = J‘:fﬂ(s’ t"'t,)fo(s"‘ 1, tl) dt’. (82)

This already satisfies the correct boundary conditions (45) at ¢ = 0. It leads at once
to (57). The subsequent equations may be solved in the same way, where the direct
method given in the text fails for n > 2.

To calculate the asymptotic forms of f,(s,f) and g(s, ¢) for large s we notice that
according to (25), as s 00,

2
D-— AS *9;;;2————10g8 . (830,)
while YR Y. (83b)

a's®log s
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Hence, together with (25), for large s
1 o
fo(s, t)*me"th—sTwe*(“ Yo'+t (84)

fo therefore tends to zero quite differently depending on whether «'t is less than
or greater than 2, for in the former case the second term, in the latter the first term,
of (84) becomes the dominant one as s—o0.

‘ Now calculate the asymptotic form of g(s, t) given by (57). The first two terms in
the numerator must be taken together, and in view of (83b) writing

e Asi1— Ay 1 — (As+1 - As) 2
these then give |

et [ (D—A,)? _ (D= 2Aen)? (D= 2Ag1)* Agyy— As)‘t]
s+1 -A (/"’s s) (/’Ls+1 - As) (:us+1 - As+1) (/’Ls - As+1) (ﬂs - /\s+1) (/’Ls+1 - )ts«i—l) '

The last term in the above square brackets is of higher order, and the first two give,
neglecting terms of a higher order, '

2D -2, |
e~Dt 8+1 ]l\/ T [—I-——————] 85) .
(Il’s s) (/'Ls+1 332(10g 8)3 ( )
The third and fourth terms in the numerator of (57) must also be taken together.
In view of (25)

r

Msy1— P> -8—

for large s, so that writing
é_(l‘s-)-l"'/‘s)t_) 1— (1“84-1 __lus) t’

the third and fourth terms of the numerator of (60) then give
[ (45— D)? Wora=D)2 | (Mo = D) (s 1 = 1ts) t].
Mgy1— Ms (/’Ls s) (:us s+1) . (/'Ls+i - /\s) (:us—f-l - s+1) (Il’s+1 - As) (Iu’s+1 - ’\s+1)

The last term is of order (441 — ) t, while the first two combine together to give
a term of higher order. Hence, as s— o0 the above expression reduces to -

e—Hst

te—tst > i e~/ (y—D+3}¢,
8(!"
Adding this to (85) and dividing by (84) the asymptotic form of g(s, #) for large s is

14
i e—Dly o~ (y—D+i}i
a’3s2(log s)? + ot .

2 .
a'%.s*(log s)?

g(s,t)—~

- : (86)
—Dt 4~ o~/ ly=1)+3}¢
+Sa’te a(y~1)+%

Depending on whether o't is greater or less than 2, the first or the second terms in
the numerator and denominator of (86) dominate, leading to (46a) and (46b)
respectively.
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A magnetic study of the two-phase iron-nickel alloys. II
By K. Hoserirz ANp W. SucksmitH, F.R.S.
H. H. Wills Physical Laboratory, University of Bristol
(Received 1 April 1942)

The method of using measurements of magnetic saturation intensity of annealed iron-nickel
alloys for the determination of the equilibrium phase boundaries, as demonstrated by Pickles
& Sucksmith, has been extended. The phase diagram of the system has been determined
accurately between 525 and 365° C. The mechanism of phase segregation from the single-phase
a-state has been studied, where it was found that contrary to the usual case, one of the phases
crystallizes out in its equilibrium concentration whilst the residue of the alloy progressively
and uniformly approaches equilibrium composition. It was possible to study and express
quantitatively the rate of attainment of equilibrium, and on evidence obtained in this way
the view is based that the lower practical limit of temperature where the equilibrium diagram
can be studied by annealing experiments has been reached.

INTRODUCTION

In a recent paper Pickles & Sucksmith (1940) described an investigation of the
magnetic properties of the two-phase iron-nickel alloys. Magnetic measurements
showed the existence of a two-phase field and the phase diagram above 450° C
was determined. The relations between the magnetization temperature curves and
phase changes suggested that the magnetic method of investigating the phase
diagram was capable of being extended to lower temperatures, if a method could
be evolved which allowed the extrapolation to equilibrium conditions from inter-
mediate stages of phase segregation. It was therefore the object of the present
work to study the mechanism and kinetics of phase changes in the iron-nickel
system and to extend the phase diagram so far as possible to lower temperatures.
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