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ABSTRACT

A mechanism is proposed that can sustain unstable equatorially trapped westward-propagating low-frequency
modes in the tropics. The roles of evaporation-wind feedback and wave-CISK (convergence feedback) in
modifying the n = 0 equatorially trapped modes are studied. It is shown that the convergence feedback by itself
cannot make the waves unstable but can modulate the instability introduced by evaporation-wind feedback.
We show that the evaporation-wind feedback introduces a new westward-propagating n = 0 mode in addition
to dramatically modifying the dry mixed Rossby-gravity (MRG) mode. The new mode is generally damped
for mean background easterlies but can be nearly neutral for moderate strength of evaporation-wind feedback
and strong convergence feedback. The evaporation—-wind feedback makes the MRG mode unstable in a westward-
propagating low-frequency regime and in an eastward-propagating high-frequency regime. If the background
mean winds are easterlies, the gravest low-frequency mode resembles the westward-propagating mode with
period of about 4 days and wavelength of about 7000 km observed over the central and western Pacific. The
evaporation-wind feedback also makes the meridional structure of the eigenfunctions of these modes frequency
dependent. The low-frequency waves are more tightly trapped around the equator as compared to their high-
frequency counterparts. It also introduces a meridional propagation for the mode. The sensitivity of the char-
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acternistics of the gravest low-frequency mode to variations of the strength of the two feedbacks is discussed.

1. Introduction

In recent years, the modifications of the equatorial
Kelvin wave by moist processes have been studied ex-
tensively to explain the eastward-propagating 30-60-
day oscillations in the tropics (Madden and Julian
1971, 1972; Knutson and Weickman 1987; Murakami
and Nakazawa 1985; Madden 1986; L.au and Chan
1986; Krishnamurti et al. 1985; Weickman et al. 1985).
It was Parker (1973) who first suggested that this east-
ward-propagating intraseasonal oscillation may be re-
lated to the equatorial Kelvin mode. However, a dry
Kelvin wave in an inviscid atmosphere cannot explain
the observed period, as its period with observed spectral
structure would be only about ten days. Following ob-
servational evidence that this oscillation is associated
with deep convection, many recent studies ( Takahashi
1987; Lau and Peng 1987; Yamagata 1987; Hendon
1988; Miyahara 1987; etc.) have involved Kelvin wave
with various forms of wave-CISK. In general, intro-
duction of wave-CISK feedback slows the eastward
propagation of the Kelvin wave. Another mechanism,
known as evaporation-wind feedback, is based on the
recognition that mean winds in the equatorial region
are mostly easterly. In the presence of mean back-
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ground easterlies, the Kelvin response to the east of an
equatorial heat source enhances the evaporation on
the eastern side of the heat source, while the Rossby
response to the west reduces evaporation on the western
side of a heat source. This process makes the heat source
slowly move eastward. Emanuel (1987), Neelin et al.
(1987), and Lau and Shen (1988) have shown that
with mean easterlies, eastward-propagating Kelvin
waves with intraseasonal period may be unstable when
the moist static stability is everywhere neutral.

The studies just cited were all aimed at explaining
the eastward-propagating equatorial 30-60-day oscil-
lations. As a result, all these analytical studies examined
the modification of the equatorial Kelvin wave by
wave-CISK and evaporation-wind feedback. To our
knowledge, no one thus far has examined how the
mixed Rossby—gravity (MRG) wave is modified by
these feedback processes. However, the MRG wave
plays an equally important role in tropical dynamics.
Therefore, in this study we have concentrated only on
the modification of the MRG wave by wave-CISK and
evaporation—-wind feedback. We are further motivated
by recent observations of westward-propagating waves
in the tropics whose sources have not been adequately
explained. For example, Takayabu and Murakami
(1991) report observations of westward-propagating

. waves, with period of 3-4 days and wavelengths of the

order of 6000 km, embedded within eastward-propa-
gating super cloud clusters (SCC) in the western Pacific.
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They also examined objectively analyzed global winds
and geopotential height fields for the period concurrent
with the SCC observations. Associated with the west-
ward-propagating waves in the SCC, the analyzed fields
show oscillations mainly in the lower troposphere.
Moreover, the fluctuations in the same frequency range
on the meridional velocity show maximum amplitude
over the equator, while those on the zonal wind show
maximum amplitude around 7.5°N and 7.5°S. This
indicates that these waves may be MRG waves. How-
ever, the source of energy for these waves remained
unclear. In another recent study, Liebmann and Hen-
don (1990) examined spectrally eight years (1980-87)
of initialized wind analysis at the European Centre for
Medium Range Weather Forecasting and OLR data.
They found significant power in the frequency range
with periods between 3.5 days and 6 days over the
western Pacific and Atlantic. These are westward-
propagating waves with wavelengths between 6000 and
7000 km. They also show that the maximum amplitude
of these westward-propagating synoptic waves is in the
lower troposphere. Their analysis also indicates that
these may be equatorially trapped MRG waves. In this
study we indicate a source for these observed westward-
propagating MRG waves and show that the evapora-
tion-wind feedback can drive the MRG wave unstable
and that the convergence feedback (wave-CISK) in-
fluences the magnitude of this instability. For reason-
able strengths of the convergence feedback and the
evaporation-wind feedback, the growth rate has a
maximum with a period between 3 and 6 days, having
a wavelength around 8000 km.

2. Model equations and method of solution

We use the shallow-water equations describing the
horizontal structure of the first baroclinic mode in this
study. The basic equations, used in many studies of
intraseasonal oscillations in the tropics (Davey 1985;
Lau and Shen 1988; Davey and Gill 1989), may be
written as

2
‘Z_*:_ =%Z—(%%—Ru, (1)
2

where u, v are the zonal and meridional perturbation
velocities in the lower layer, § the midlevel perturbation
potential temperature with = H and 6, representing tro-
popause height and midlevel mean potential temper-
ature. Q represents perturbation heating while R rep-
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resents a Raleigh friction coeflicient. Although, in gen-
eral, the Raleigh friction and the thermal damping
coeflicient (or Newtonian cooling coeflicient) may be
different, we shall restrict ourselves to the case when
they are equal. For the major part of our discussion,
we shall consider the frictionless case (R = 0) and later
show how small friction would modify these results.
Equation (4) describes the evolution of the perturba-
tion moisture content g in units of mass of precipitable
water per unit area with g, representing the saturated
moisture content. In Eq. (4) E and P represent per-
turbation surface evaporation and precipitation, re-
spectively, both in units of mass per unit area per unit
time.

The physics of our system is contained in the terms
0, E, and P. First we discuss parameterization of the
heating rate Q. Here we follow arguments given by
Gill (1982), Davey (1985, 1989), and Lau and Shen
(1988). In general, we can conceive two different re-
gimes in the tropical atmosphere, a “convective” re-
gime where the atmosphere remains saturated and a
“nonconvective” regime where part of the converged
moisture goes into moistening the atmosphere. For
simplicity we assume that the tropical atmosphere is
always near saturation and hence always in the con-
vective regime. In this case, the moisture gained by
convergence and evaporation is depleted by precipi-
tation, and we can write

(5)

If we assume that the latent heat released during pre-
cipitation is distributed uniformly over the lower at-
mosphere of depth H, the heating rate, Q, may be
written as

LP
0= (6)

where p, is the density of air, L the latent heat of con-
densation, and ¢, the specific heat at constant pressure.

Our next step involves parameterization of pertur-
bation evaporation., Following arguments similar to
ones given by Neelin et al. (1987), we can write

E=—au, (7)
with o = p,CpAg;, where Cp is the drag coefficient and
Ag; represents the saturation relative humidity differ-
ence between the sea surface and the anemometer level.
In Eq. (7) « depends on the sign of the mean zonal
wind # and has been chosen in such a way that « is
positive for mean easterlies and negative for mean
westerlies. Since u is mostly easterly over the tropics,
o will be considered positive in our study. Thus, sub-
stituting Egs. (5)-(7), Eq. (3)'may be written entirely
in terms of 8, u, and v, closing the set of equations
(1)-(3). We define the following length scale Ly, time
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scale T, velocity scale Cy, and a scale for the potential
temperature perturbation ©:

Co = {(dbo/dz)/g60}"*H
Lo = (Co/2B0)'"?

To = (2CoBo)~"*

© = Hdby,/dz

(8)

Here 8, is the north—south gradient of the Coriolis pa-
rameter at the equator.

Equations (1)—(3) can be written in nondimensional
form as

du af
Et-_ﬂH—Ru_Ec’ (9a)

v a

—+fu+Ru=—

3 Ju+ Ru o’ (9b)
a6 ou ov
——-D—+=—|+Au+RO=0, 9
ar F( ax ay) " (9)

where
r=1-2 p-glo
erit Gerit
db
a* =°a_, Gerit = PanHzg_i/_df—)- (10)
Pw Lp,

In Eq. (9), R = R*T,, f = By with 8 = %2, and *
represents the dimensional quantities. We note that
desi: TEPrEsents a critical value of liquid water content
(expressed in units of length ) and I" the reduced static
stability parameter. Here I' = 1 represents the case
without convergence feedback, and I' = 0 the moist-
neutral case. The standard parameters used for the
model atmosphere are (e.g., see Davey and Budin
1989) 6y = 310 K, dfp/dz =389 X 10 Km™!, H
=17000/7 m, p, = 1.225 kg m~3, p,, = 10> kg m~3,
and Cp = 1.5 X 1073, With these parameters, the speed
of the dry gravity waves, C, is approximately 60
m s™!. With 8, = 2.28 X 107" m™! s7!, our length
scale, Lo, is approximately 10 deg and our time scale,
Ty, is approximately 0.22 days. Using these parameters,
deq: In our model is found to be about 6 cm and the
scale for potential temperature perturbation is about
30 K. Assuming a variation of Ag; between 0% and
10%, a variation of the nondimensional strength of
evaporation wind feedback (A) between 0 and 2 is
considered.

Let us assume a solution in the form of wave prop-
agating in the east-west direction, so that we may write

x,y,t) = &y)expliltkx — wt)},  (11)

where £ represents any of the variables u, v, or 8; k is
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the wavenumber in the zonal direction and w the fre-
quency. Substituting Eq. (11) in Egs. (9), we get

ou— ifo + ké = 0, (12.1)
0
av+ifu—ij—y=0, (12.2)
00+f‘u—iI‘£9=O, (12.3)
dy
where
c=w+iR, I'=Tk+iA. (12.4)

In Eq. (12), u, v, and # now represent only the y-
dependent parts. Eliminating # and 8 from the Eqgs.
(12.1)~(12.3), we can derive an equation for v, which
may be written as

d*v dv
MO NP =0, (13)
where
My =-& (14.1)
ol
and

cr ookt YL
N(y)—I“[a2 fP-Tk I‘a'dy}. (14.2)

First, making a dependent variable transformation
given by

v(y) = V(3) exp[—% | M(y)dy] (143)

and then making an independent variable transfor-
mation given by ¥ = C;'/*y, Eq. (13) may be rewritten
as

%+(CZC1“’2—\I/2)V=O, (15)
where
C, =BT {1 + A%/(40°T)} (16.1)
and
C, = T7'{¢? — Tk? — iAk}
— Bo'T™N(Tk+iA/2). (16.2)

Since we shall be restricting ourselves to the equatorial
waves only, we demand boundary conditions such that
V = 0 as ¥ - +oo. With these boundary conditions,
Eq. (15) has solutions in the form

V(¥) = Ce ¥ ?H,(¥), (17)

where H,(¥) represents Hermite polynomial of or-
der n.
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These equatorially trapped (v = 0, as y = £0)
plane waves, governed by Eq. (9), follow an energy
integral constraint. Defining an energy of the wave
perturbation by E = (u? + v? + 6?/T')/2 and making
use of periodic condition in the zonal direction, an
energy integral equation can be derived from Eq. (9).
For the nondissipative case (R = 0), this equation may
be written as

) A
5 (B> =~ Cub),

where () represents an integral over one wavelength
in the x direction and between *oo in the y direction.
It is clear from this equation that in the absence of
evaporation-wind feedback (A = 0), there is no source
of energy for the waves to grow. However, in the pres-
ence of evaporation-wind feedback and if phases of u
and 0 are shifted in such a way that {u#6) is negative,
the wave can grow exponentially in time. Physically,
this can be understood as follows. If the region of pos-
itive potential temperature perturbation coincides with
easterly wind perturbations, the wind perturbations
enhance evaporation, hence enhancing the convective
heating over that region. This further increases a pos-
itive @ perturbation leading to growth of the wave as a
whole.

3. The dispersion relation
The solution given by Eq. (17) is possible only when
GG V2 =2n+1, n=0,1,2,---. (18)

With Cy and G, as defined in Eq. (16), Eq. (18) rep-
resents the dispersion relation for the equatorial waves
modified by the feedback processes.

In the absence of the feedback processes, Eq. (18)
contains for n > 1 the westward-propagating low-fre-
quency Rossby waves and pairs of eastward- and west-
ward-propagating high-frequency inertia gravity (IG)
waves. For n = 0, it contains the westward-propagating
Rossby~gravity wave that merges with an eastward-
propagating IG wave at wavenumber k& = Q. It also
contains a westward-propagating Kelvin-like wave
whose eigenfunctions are unbounded and, hence, is
not allowed. Apart from these normal modes, Eq. (12)
also allows an eastward-propagating Kelvin mode with
v = (. Several authors (Neelin et al. 1987; Emanuel
1987; Lau and Shen 1988) studied the effect of the
feedbacks on the Kelvin mode. Thus, we shall not re-
peat these results. The other mode that plays an im-
portant role in the tropical dynamics is the » = 0 mixed
Rossby—gravity mode. Therefore, in this study we shall
examine in detail the modification of the » = 0 modes
by the feedback processes described earlier. In studying
the dispersion relation we shall follow the convention
where we assume the frequency w to be positive definite
and solve for the wavenumber k, which may be com-
plex (Pedlosky 1979).
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Using the definitions of C; and C, given in Eq. (16),
for n =0, Eq. (18) may be reduced to a pair of quadratic
equations (one with 4™, the other with A7) in wave-
number k given by

2, | @B (A RB
k +{w2+R2+’(r peael 1L
+ A+ A4,=0, (19)
where
1 2 .
Ao = T [w R[R + 2@l + Rz)}
. ABw
+ z[2wR a2 +R2)”’ (20a)
8 )
+ = —— — —
A 21‘(0:2 I Rz) {S3w + S4R I(S3R S4w)},
(20b)
and
A" = s {Ss0 — S4R — i(S3R + Syw)}
2I'(w? + R?) ’
(20c)
with
S =[(A+8))/21"%, Sy =[(A— S)/2]'2,
(20d)
and
A= ‘(S,2 + S,%)12,
S; = 4(w? — R*)?+ A%, S, =8TRw. (20e)

The pair of quadratic equations in Eq. (19) can give
us four roots in general. Thus, the feedback processes
create a situation where new modes may be introduced.
Since our primary objective is to study the modification
of the free traveling waves by the moist processes, we
shall consider the nondissipative case first.

With R = 0, Eq. (19) reduces to a single quadratic
equation in k given by

B  iA

k* +{—+ =tk

o)

1 2 '3 2 241 lﬁA ‘

— w2~ — (A2 +4Tw?)'2 - =1 =0. (21

T [w %0 (A w*) %0 0. (21)
It is clear from Eq. (21) that in the absence of the
evaporation-wind feedback (A = 0), all the coefficients
of the equation become real and the solutions may be
written as

L
2w 2
Thus, it is clear that the wave-CISK by itself cannot
make the mixed Rossby-gravity mode unstable. How-

k=-— (B/w — 2w/T'7?). (22)



15 OCTOBER 1991

ever, it can modulate the degree of instability set in by
the evaporation-wind feedback mechanism. We also
note that Eq. (21) allows two branches of solutions. In
the dry case, one of the branches (westward-propagat-
ing Kelvin-like mode) is not allowed as it becomes
unbounded. However, in the presence of the evapo-
ration-wind feedback, both these branches are allowed.
As we show clearly in section 4, the eigenfunctions
corresponding to both these branches are bounded.
Thus, evaporation-wind feedback introduces a new
normal mode in the moist tropical atmosphere.

We note that solutions of Eq. (21) may have non-
trivial imaginary components of wavenumber k;. From
Eq. (11), this represents a spatially growing or decaying
component given by exp(—k;x). However, spatial
growth depends on the direction of phase propagation
of the wave. For example, if a westward-propagating
mode (k, < 0) has k; > 0, it would appear to decay in
the positive x direction in space. Since the wave is
propagating in the negative x direction, the wave in
fact is growing in the direction of propagation. There-
fore, we can represent the spatially growing part in
terms of an equivalent temporally growing part given
by exp(—+t), where the growth rate v is given by ¥
= —k;k,w/(k,* + k;*). Thus, the modes with opposite
signs of k; and k, are the ones that are temporally
growing.

a. General solution of the dispersion relation

Since 8 = ', the general solution of Eq. (21) may
be written as

L1 iA
= -] — 4 —
k 2(2w P)
I[ 1 40> A* 1, N
2[2"0—24' T — — —=(A*+ 40°T) ] .

-+

2 oo
(23)

Let us denote the quantity within the square bracket
by D. We note that D is always real, but could be pos-
itive or negative. When D is positive, the solutions can
be written as

iA

k=[——l—iD”2/2]———-. (24a)
4w

2r
On the other hand, when D is negative, the solutions
may be

4 2 2

We note from Eq. (24a) that when D is positive in the
low-frequency domain, D'/? will be less than 1/(2w)
and thus, both the modes will be westward propagating,
one with &, large (short wavelength ) and the other with
k. small (long wavelength). Both of these waves will
be damped and have the same damping rate. On the

k=——1—+i<—-A—+l |D|'/2). (24b)
W
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other hand, when D is positive in the high-frequency
regime, D'/? is larger than 1/(2w). Thus, in the high-
frequency range, one solution is eastward propagating
(k. > 0) while the other is westward propagating (k,
< 0). We can also see that the eastward-propagating
wave is unstable while the westward-propagating wave
is damped. The growth rate of the unstable wave is
equal to the damping rate of the stable wave. We also
note that for reasonable values of A and T', D is always
positive in the high-frequency regime.

For any reasonable combination of A and T (e.g.,
A ~ 1 and I' between 0.01 and 1), there always exists
a range of w in the low-frequency range for which D is
negative. The solutions, in this case, are given by Eq.
(24b). Referring to the two solutions as branch 1 and
branch 2, we note that, in this frequency range, the
two branches correspond to two distinct westward-
propagating waves with same k, but with different ;.
We also note that if | D|!/? is greater than A/T, one
of the westward-propagating low-frequency waves
would be unstable.

With these preliminary remarks, both the solutions
of Eq. (23) are computed for a typical tropical atmo-
sphere with I' = 0.5 and A = 0.5. The real parts of
these solutions are shown in the top panel of Fig. 1 by
thin solid lines where the two solutions are denoted as

Branch 2

Branch | k Branch 2

wQOsH-
04 D
0 { 1 | 1
-0.6 -0.4 -0.2 o) 0.2 Q.4 0.6

Growth rate

Fi1G. 1. Dispersion curves for the standard case (I' = 0.5, A = 0.5,
R = 0). Upper panel shows the variation of real wavenumber k, with
frequency (thin solid line). The thick solid line répresents the MRG
mode for the dry atmosphere (I' = 1, A = 0) and the thin dashed
line represents the unbounded solution for the dry atmosphere. The
growth rates, vy, for both the branches are shown in the lower panel.
All variables are in nondimensional units.
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branch 1 (DABC) and branch 2 (EABF). The thick
solid line in this panel represents the MRG mode in
the dry atmosphere with I' = 1 and A = 0. The thin
dashed line represents the solution of the dispersion
relation in the dry atmosphere that is unbounded
(hence not allowed). We note that both branches col-
lapse to one between A and B. The corresponding
growth rates (v ) for the two branches are shown in the
lower panel of Fig. 1. We note that branch 1 is always
damped. Branch 1 is the new solution allowed in the
moist atmosphere. However, as it is always damped,
it may not be observed. We shall show later that for a
certain range of forcings, this branch could be nearly
neutral. Branch 2 represents the modified MRG wave
in the presence of moist processes. We note that the
evaporation-wind feedback makes the MRG wave un-
stable in two frequency regimes. One unstable regime
is in the low-frequency range, while the other is in the
high-frequency range. It is of interest to note that the
growth rate curve has a maximum in the low-frequency
regime. This indicates a maximally growing mode that
may be observed. For the set of parameters considered
here (I' = 0.5, A = 0.5, R = 0), the maximally growing:
low-frequency westward-propagating mode has
= 0.45, k, = —0.56, and k; = 0.16. This corresponds
to a wave with period 3.3 days and a wavelength of
about 12.3 thousand kilometers with e-folding time of
about 1.8 days.

4. The eigenfunctions

Here we study the structure of the eigenfunctions
for the n = 0 modes in the absence of dissipation (R
= (). Thus, ¢ = w. Combining Eqs. (14.3) and (17)
and making use of Eq. (14.1), we may express the
mendional velocity as

| j A
v(\Il)=exp[ z(l—zm)‘lﬂ]. (25.1)

From Eq. (12), making use of the transformation ¥
= C,'*y, we can write u(¥) and 6(¥) in terms of
v(¥)as

u(¥) = lrk{“’yv C“’“I‘k; } (25.2)
and
o(\If)=_[ ——I_PZ[FW C,"*Tw ;_‘;]]' (25.3)

In writing Eq. (25), we have made use of the fact that
Hy(¥) = 1. The expressions in Eq. (25), together with
Eq. (11), may be simplified to give the eigenfunctions
as

v(x, y,t) = cos¢ exp(—k;x — C;"?y%/2), (26.1)
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u(x, y,t) = —(U,cos¢ + U, sing)y
X exp(—kix — C,'2y?*/2), (26.2)
f(x, y, t) = (8, cos¢p — 0, sing)y
X exp(—kix — C1'?y%/2), (26.3)
where
¢ = k,x — wt + Ay*/8wT, (27.1)

Uy = Aw/4 + TC V2 (kA — kiAg)
— MAk; + Arky)/ 4w (27.2)

Uy = Arw/4 + TC' 2 (kAg — kidy)
— A(Agk; + Arky) /4w (27.3)

@1 = A]F(k,-/4 + Cl”zw) + AR(F]C,/Z + A/Z)/Z,

—

(27.4)
0: = A(Thi/2 + 4/2)/2 = ApT(ki/ 4 + €)' %),
(27.5)
with
Ag = [0 — T(k? — k) + Ak;]
X {[w? — T(k?* — k?) + AK]?
+(2Tk; + A)’k*} ™ (27.6)
and
= [(2Tk; + A)k,]
X {[w? = I'(k? — k) + AK;]?
+ (2Tk; + A)k2}71 (27.7)

Several points may be noted from Eqgs. (25) and (26).

(i) First, the meridional wind is symmetric about
the equator, while the zonal wind and potential tem-
perature perturbations associated with this mode are
antisymmetric about the equator with maxima away
from the equator.

(ii) We also note that due to the existence of the
evaporation-wind feedback (A > 0), the singularity in
the zonal wind and potential temperature eigenfunc-
tions 1s removed. As mentioned in the previous section,
this introduces the possibility of a new mode in the
moist tropical atmosphere.

(iii) The term exp(—C,'/?y? 27!) represents the
exponential decay of the eigenfunctions with latitude.
Since C; = (1 + A%/4w?T")/4T reduces to just % in
the dry atmosphere, the e-folding distance in the me-
ridional direction for the dry atmosphere is 2 Ly. Both
wave-CISK (T') and evaporation-wind feedback (A)
increase C; and hence reduce the e-folding distance.
Thus, the MRG waves are more strongly trapped
around the equator in the moist atmosphere. Moreover,
the evaporation-wind feedback makes the e-folding
distance frequency dependent. The low-frequency
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waves are more strongly trapped than the high-fre-
quency waves in a moist atmosphere.

(iv) Another significant modification of the MRG
wave eigenfunctions due to the moist processes is the
introduction of wavy structure within the exponentially
decaying envelope. Comparing Eqgs. (26.1) and (27.1),
it is easy to see that the meridional velocity will have
nodes in the meridional direction when Ay?/4wT
= nx /2 is satisfied. However, it is not so easy to see
the nodes for the zonal wind and potential temperature
perturbations. This indicates that the moist processes
introduce a certain amount of complex meridional
phase propagation in the n = 0 waves. However, this
meridional phase propagation cannot be described in
terms of a simple plane wave propagation.

Following these general comments, we examine in
detail the basic structure of the eigenfunctions for the
two branches. By basic structure we mean the structure
of the eigenfunctions given by Eq. (26) without the
exp(—k;x) term, as this term represents only the
spatially (or equivalently temporally) growing (or
damped) part. We examine this at two frequency re-
gimes, one in the low-frequency regime where one of
the modes is maximally growing (w ~ 0.45 in Fig. 1),
and another in the high-frequency regime (around w
~ 1.0). The two pairs of solutions selected in this
manner from the standard case (I' = 0.5, A = 0.5, R
= () are

(i)w =045, k =-056, k =—1.17
and v = —0.175;
(ii) @ = 0.45, k, = —0.56, k; =0.16
and vy =0.12;
(ili) w = 1.033, k, =0.836, k = —0.50
and vy = 0.453;
(iv)w=1.033, k =—1.324, k, =—0.50
and vy = —0.34.

The first one is a westward-propagating low-frequency
damped wave, while the second one is a westward-
propagating low-frequency growing wave. Similarly,
the third one is an eastward-propagating high-frequency
growing wave while the fourth one is a westward-prop-
agating high-frequency damped wave.

The basic eigenfunctions for (i) the low-frequency
westward-propagating damped wave are shown in Fig.
2. In the x direction the eigenfunctions are plotted for
one wavelength. The important point to note is that
there exists a strong positive correlation or a nearly in-
phase relationship between the zonal wind and poten-
tial temperature perturbations. This is consistent with
the energy constraints for a damped wave, as discussed
in section 2.
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Figure 3 shows the basic eigenfunctions for the sec-

ond wave (ii), i.e., the westward-propagating low-fre-
quency unstable wave. The meridional scale of this

4

e ——————

e = ~
- -

~
J

FIG. 2. Structure of the basic eigenfunctions [ without the exp(—k; x)
term] for a damped low-frequency westward-propagating wave for
the standard case with @ = 0.45, k, = —0.56, k; = —1.17, and v
= —0.175. This is in the region (Fig. 1) where the two branches
overlap. Each eigenfunction is normalized with respect to its maxi-
mum value and the contour interval is 0.25. Positive regions are solid
and the negative regions are dashed lines. The thick solid line rep-
resents zero contour.
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wave is very similar to that of the damped wave for
the same frequency (Fig. 2). However, the significant
difference between this and the damped wave is evident
in the phase relationships between the zonal wind and
potential temperature perturbations. For this unstable

FIG. 3. Same as in Fig. 2 but for the growing mode with the same
frequency and k,. This mode has w = 0.45, k, = —0.56, k; = 0.16,
and v = 0.12.
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wave a negative correlation or a nearly out-of-phase
relationship between u and 6 fields is clearly seen.
Figures 4 and 5 show the basic eigenfunctions for
(iii ) the high-frequency eastward-propagating unstable
wave and (iv) the high-frequency westward-propagat-
ing damped wave for the same frequency. Again, we
note that the unstable wave (Fig. 4) has a negative
correlation between u and 6, while the damped wave
(Fig. 5) has a positive correlation between u and 6.
Moreover, as discussed earlier in this section, the me-
ridional scale of the high-frequency waves (Figs. 4 and
5) is much larger than the meridional scale of the low-
frequency waves (Figs. 2 and 3). Also, the positive and
negative phases within the decaying envelope in the
meridional direction at a given longitude, introduced
by the moist feedbacks, are clearly seen in these figures.

5. Sensitivity of the modes to changes in the strengths
of feedbacks

In this section, we show how splitting of the MRG
waves into two branches and the associated growth (or
decay) rates depend on the strength of the feedback
processes. As discussed in section 2, the wave-CISK
(or convergence feedback) by itself cannot cause the
splitting and growth of these waves. However, in the
presence of evaporation-wind feedback (A), it can
modulate the splitting as well as the growth rates. Here
T' = | represents the no-wave-CISK case while I' = 0
represents the moist neutral case. Thus, we shall con-
sider 0 < I < 1. Similarly, we shall vary A between 0
and 2; A = 2 represents a strong evaporation-wind
feedback case. In Fig. 6 we show how the two branches
of MRG waves evolve with four values of the strength
of the evaporation wind feedback (A = 0.15, 0.6, 1.2,
and 2.0) when there is no convergence feedback (I’
= 1) and no dissipation (R = 0). The top panel shows
the real part of wavenumber k, and the lower panels
show the corresponding growth rates, y = —k,k;w/(k,?
+ k;?), as a function of frequency w. The first thing we
note is that the growth rate of the low-frequency west-
ward-propagating mode increases with the increase of
the strength of the evaporation-wind feedback. The
maxinium growth rate for the low-frequency westward-
propagating wave tends to occur at a slightly higher
frequency (lower period) with the increase of evapo-
ration—wind feedback. The high-frequency and low-
frequency regimes of these results withI' =1, R =0
are consistent with the discussions for these limits made
in section 3a. It is of particular interest to note the
nearly equal growth rates and damping rates for the
two branches in the high-frequency limit. Another in-
teresting point to note is that the range of frequencies
over which the two branches collapse increases rapidly
with the increase of the evaporation-wind feedback.
As an example, for the weak strength of the evapora-
tion-wind feedback considered here (A = 0.15), the
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———

o=

~-1.324, k;

FIG. 5. Same as Fig. 2 but for an eastward-propagating high-fre-

quency damped mode. For this mode, w = 1.033, k,

-0.503,

1.033, k, = 0.836, k;

FIG. 4. Same as in Fig. 2, but for an eastward-propagating high-

frequency growing mode with

—0.503, and v = —0.34.

=0.453.

and v
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FIG. 6. Sensitivity of the dispersion relation to the strength of
evaporation-wind feedback (A) in the absence of wave-CISK (T
= 1.0). The four sets of curves labeled 1 to 4 correspond to A = 0.15,
0.6, 1.2, 2.0, respectively. The top panel represents a variation of real
wavenumber X, as a function of w. The lower two panels show the
growth rates () for branch | and branch 2, respectively. As in Fig.
1, all the variables are in nondimensional units.

two branches overlapped over the region denoted by
AA, while for the strong evaporation-wind feedback
considered here (A = 2.0), the range increases to DD.
This is also associated with an increase in the unstable
range for the low-frequency regime (lowest panel,
Fig. 6).

In Figs. 7 and 8 we show the evolution of the new
mode and the modified MRG wave with increased
strength of the convergence feedback. Figure 7 is a rep-
etition of Fig. 6 but with I" = 0.1, while Fig. 8 is a
repetition of Fig. 6 but with I' = 0.01. Two important
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points may be made from these figures. First, the max-
imum growth rate for the low-frequency westward-
propagating mode occurs at a lower frequency for
higher strengths of convergence feedback. Second, for
higher strength of the convergence feedback the first
branch becomes nearly neutral for nearly all frequen-
cies even with moderate strength of the evaporation—
wind feedback (e.g., I' = 0.01, A = 0.6). Moreover,
we note that the range of frequencies over which the
two branches overlap for a given strength of evapora-
tion-wind feedback increases considerably with the in-
crease of the strength of the wave-CISK.. For example,
the range denoted by BB over which the two branches
overlap for moderate strength of evaporation-wind
feedback (A = 0.6) corresponds to a frequency range

Lo 1 2 2 1
L i /
/
BT+
w 0.8~ Branchl - Branch 2
o4 ~
Lo B L
2 A |
ol ==——0xg 1 h Y [ |
-6 -4 -2 o 2 4
kr
1.6 [~ 1 Branch | 3.4
1.2 o
w08
04 [—
0 t ' 1 1 1 1
-03 -028 -02 -0k -010 -005 (¢}
Growth rate
Branch 2 4 3
1.6
1.2~
w 08
0.4—
0 L 1 ! | T R
-06 -04 -02 [o] 0.2 0.4 0.6 0.8
Growth rate

FIG. 7. Same as in Fig. 6 but for a moderate strength of wave—
CISK (T" = 0.1). All other conventions are same as in Fig. 6. Here,
the curves 3 and 4 are out of range in the top panel.



15 OCTOBER 1991

Branch | A Branch 2

04

3.4
161 Branch | 2’\\&

w 08 !

04r
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0.10 0.08 0.06 0.04 0.02 o]
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Branch 2

0 | 1 1 t 1
-0.6 -04 -0.2 o} 04 0.6

Growth rate

FiG. 8. Same as in Fig. 6 but in the presence of a strong wave-
CISK feedback (T' = 0.01). All other conventions are same as in Fig.
6. Here, the curves 2, 3, and 4 are out of range in the top panel.

3, of about 0.45 with T' = 1.0 (Fig. 6). For I' = 0.1 it
increases to about 1.0 and for I' = 0.01, it goes beyond
the range of frequencies shown in Fig. 8. Comparing
Figs. 6-8, we also note that for the same strength of
evaporation-wind feedback, an increase in wave-CISK
increases the unstable range for the low-frequency
westward-propagating unstable mode.

So far we have confined our discussion to the non-
dissipative case. To understand how the presence of a
small amount of dissipation would modify these waves,
we solved the general dispersion relation [Eq. (19)]
for specified strengths of convergence feedback and
evaporation-wind feedback (I' = 0.01 and A = 0.5)
for three values of dissipation (R = 0.01, 0.05, 0.08).
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These represent dissipation time scales of 22, 4.5, and
2.75 days, respectively. These results are shown in Fig,
9. The most interesting point is that the splitting be-
tween the two branches becomes clear in the presence
of dissipation. The region over which the two branches
overlapped in the absence of dissipation becomes sep-
arated (top panel of Fig. 9). The gap between the two
branches increases with increasing dissipation. More-
over, the second branch becomes eastward propagating
at very low frequencies as well as at high frequencies.
It is also of interest to note that the dissipation increases

3 |
L5 2| 2 /3
- 1
-
1.0
w ( Branch.i
Branch
r -2
0.5
<k —}
-4.0 -30 -2.0 1.0
| 2 3
1.0+ Branch-2 n
0.8+
w
i 3
0.4 L— — [
0 | L 1 L {
-0.3 -0.2 -0.1 (o] 0.4 0.2
Growth rate
1.6
t.2= Branch- |
w 0.8
04
-
L1 I i \ 1
-0.03 -0.02 -0.0! 0
Growth rate

FIG. 9. Role of dissipation in the dispersion relation for the n = 0
waves. The curves 1, 2, and 3 in this figure correspond to R = 0.01,
0.05, and 0.08, respectively; the strengths of the feedbacks for this
case are I' = 0.01 and A = 0.5. Other conventions are similar to
those of Fig. 6.
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the growth rate of the low-frequency westward-prop-
agating unstable mode.

The characteristics of the maximally growing low-
frequency westward-propagating mode are summarized
in Table 1 for different strengths of the feedbacks.

6. Discussions and conclusions

The modification of the n = 0 modes by evapora-
tion-wind feedback and wave-CISK is studied in
detail. The moist processes introduce a new westward-
propagating mode, in addition to dramatically modi-
fying the dry MRG mode. The new westward-propa-
gating mode is damped but could be nearly neutral for
strong wave-CISK feedback and moderate strength of
evaporation-wind feedback. The major new result is
that the evaporation-wind feedback modifies the dry
MRG wave and drives it unstable over two frequency
regimes. One unstable region is in the low-frequency
domain while another unstable region is in the high-
frequency domain. The low-frequency unstable MRG
waves are westward propagating and are of considerable
practical interest. The range of unstable frequencies
and the growth rate, as well as the frequency at which
maximum growth rate occurs for the low-frequency
westward-propagating unstable mode, increase with the
increase in the evaporation-wind feedback for a given
strength of wave-CISK. As the strength of the wave-
CISK increases, the maximum growth rate for the low-
frequency westward-propagating unstable MRG mode
occurs at a lower frequency for a given strength of the
evaporation-wind feedback.

The moist processes also introduce two significant
modifications in the eigenfunctions of the MRG mode.
The meridional decay scale for the dry MRG waves is
given by exp(—y?/4) and is the same for the low-fre-
quency as well as the high-frequency waves. In the
presence of evaporation-wind feedback, this decay
scale becomes frequency dependent and varies in-
versely with frequency. Thus, the low-frequency waves
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are more tightly trapped around the equator than the
high-frequency waves in a moist atmosphere. The other
qualitative modification the evaporation-wind feed-
back introduces is a rather complex meridional phase
propagation of the mode. This manifests in the eigen-
function as positive and negative phases in the merid-
ional direction within the decaying envelope at a given
longitude. This further reduces the effective meridional
scale of these waves.

From Table | we note that for reasonable strengths
of wave-CISK and evaporation-wind feedback the
maximally growing low-frequency westward-propa-
gating mode has period of about 4.5 days and wave-
length of about 8000 km (e.g., for A = 0.25,T = 0.1).
(The corresponding phase speed of the wave is about
12 m s™'.) Depending on the strengths of the feedbacks,
the period can vary from 3 to 7 days while the wave-
length can vary from 14 000 km to 5600 km. The cor-
responding variation of the westward phase speed is
between 5.5 ms™! and 29 ms™!.

Takayabu and Murakami (1991) find that there are
two westward-propagating waves with period around
4 days, in the cloudiness as well as in the lower tro-
pospheric winds in the western Pacific. One wave has
faster phase speed of about 14-19 deg day™' with
wavelength of about 6000 km, while the other has
slower phase speed of about 6-10 deg day ! and wave-
length of about 2500 km. The long-wave, faster, west-
ward-propagating mode has meridional velocity max-
imum around the equator and zonal wind maximum
and cloudiness maximum about 7.5 deg away from the
equator ( Takayabu and Murakami 1991, Fig. 4). Sim-
ilarly, Liebmann and Hendon (1990) identify a west-
ward-propagating mode with period of about 4 days
using eight years of analyzed meridional winds and
other fields in the lower troposphere. They also find
that this westward-propagating mode in the western
Pacific has a wavelength of about 6700 km and a phase
speed of about 18 m s~! (approx. 15 deg day'). Their
analysis of other fields indicates that this is also an
equatorially trapped MRG-type wave. Thus, this mode

TABLE 1. Characteristics of the maximally growing westward-propagation low-frequency mode for different strengths of the feedbacks.

r=0.1 I'=0.01
Period Wavelength Phase speed E-folding time Period Wavelength Phase speed E-folding time
A (days) (10° km) (ms™") ' (days) (days) (10° km) (ms™) (days)
0.05 4.8 8.3 —11.4 7.1 7.2 5.6 -29.1 34
0.15 4.8 8.3 -12.3 2.8 5.4 7.4 —18.1 2.1
0.25 4.3 9.3 —10.6 2.0 4.8 83 -15.2 1.7
0.35 39 10.0 -9.0 1.7 4.3 9.3 -12.5 1.5
0.45 3.6 11.0 -7.7 1.5 39 10.0 -10.3 14
0.55 3.6 11.0 -8.1 14 3.6 11.0 -8.5 1.3
0.65 33 12.0 -6.9 1.3 33 12.0 ~7.1 1.3
0.75 33 12.0 -7.2 1.2 33 12.0 -7.4 1.2
0.85 3.1 13.0 -6.0 1.2 3.1 13.0 -6.2 1.1
0.95 3.1 13.0 -6.3 1.1 3.1 13.0 -6.4 1.1
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is consistent with the long-wave, fast propagating mode
found by Takayabu and Murakami (1991). Liebmann
and Hendon (1990) also find a similar westward-prop-
agating wave with period of about 4 days in the Atlan-
tic, but it has somewhat shorter wavelength (~4500
km) and slower phase speed (~14 m s™!). To our
knowledge, no theory has so far explained the period
and scale selection for these westward-propagating
waves. Results of our study provide an explanation for
the longer wavelength, westward-propagating wave
observed in the central and the western Pacific. As dis-
cussed in the previous paragraph, the evaporation-
wind feedback-driven, maximally growing, westward-
propagating MRG wave has period of about 4.5 days,
wavelength of about 8000 km, and phase speed of about
12 m s~! for modest strengths of the feedbacks. Con-
sidering the simplicity of our model, the agreement of
the period and the wavelength with observations is re-
markable. However, the phase speed given by our
model is somewhat low. This is probably understand-
able as we have assumed a resting basic state. If we
consider a mean easterly of about —10 m s~ and as-
sume a simple Doppler shifting of the phase speed, we
get a phase speed of about 22 m s™! which compares
very well with the observed phase speed. We also note
that there is a considerable amount of variability of
the period, wavelength, and phase speed of the maxi-
mally growing westward-propagating mode with the
variation of strength of the feedbacks. Another inter-
esting feature emerges from our study of the sensitivity
of the properties of the » = 0 modes to the various
forcing parameters. While the appearance of a maxi-
mally growing westward mode is a relatively stable fea-
ture in the sense that it does not critically depend on
the range of values of parameters, the various char-
acteristics of the mode, in particular its period and
wavelength, vary with the strengths of the feedbacks.
Since the strengths of these feedbacks depend on the
background conditions (such as sea surface tempera-
ture) which vary from region to region, our theory of-
fers a natural explanation also for the observed quasi-
periodicity of these tropical westward-propagating
oscillations.

Holton (1972) showed that a heat source antisym-
metric about the equator with maximum heating
around 6-7 deg away from the equator with a period
of about 4-5 days can force the observed MRG wave
in the equatorial lower stratosphere with a period of
about 5 days and wavelength of about 10 000 km.
However, the source for the antisymmetric heat source
with periodicity of about 4-5 days was not clear. Since
the convergence for the low-frequency (4-5 days) un-
stable MRG mode discussed here occurs around 7 deg
away from the equator, it offers a natural explanation
for an antisymmetric heat source with desired period
for forcing the observed MRG wave in the equatorial
stratosphere.
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In the formulation of evaporation-wind feedback it
is assumed that the background mean winds are east-
erlies (A > 0). While this is true over the equatorial
Pacific and Atlantic, it is not true over the Indian Ocean
during Northern Hemispheric summer. In a future
study, we show that the evaporation-wind feedback in
the presence of mean westerlies modifies the n = 0
modes in such a way that it may explain the observed
quasi-biweekly oscillations over this region (Krishna-
murti and Bhalme 1976; Murakami 1976; Krishna-
murti and Ardunay 1980).

One weakness in our study lies in the simplistic pa-
rameterization of the convergence feedback process.
We have assumed that positive perturbation heating
occurs in the regions of wave convergence, while neg-
ative perturbation heating occurs in the regions of wave
divergence. Thus, the essential character of the positive-
only heating associated with the wave convergence
needs to be taken into account. However, it cannot be
done in a simple analytical model. Another weakness
may lie in the assumption of a single-mode vertical
structure. How the horizontal structure of the different
vertical modes would be modified by these feedbacks
should be examined. Also, a prognostic equation for
humidity with temperature dependence of g, taken into
account must be included to discuss the above findings
in a more general situation,
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