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ABSTRACT

The nonlinear convectively coupled character of the summer monsoon intraseasonal oscillation (ISO)
that manifests in its event-to-event variations is a major hurdle for skillful extended-range prediction of the
active/break episodes. The convectively coupled character of the monsoon ISO implies that a particular
nonlinear phase of the precipitation ISO is linked to a unique pattern of the large-scale variables. A
methodology has been presented to capture different nonlinear phases of the precipitation ISO using a
combination of a sufficiently large number of dynamical variables. This is achieved through a nonlinear
pattern recognition technique known as self-organizing map (SOM) involving six daily large-scale circula-
tion indices. It is demonstrated that the nonlinearly classified states of the large-scale circulation isolated at
the SOM nodes without involving any information on rainfall are strongly linked to different phases of
evolution of the rainfall ISO, including the active and break phases. While a lower SOM classification
involving 9 different states identify the composite phases of the rainfall ISO, a higher SOM classification
involving 81 states can identify different shades of composite phase of the rainfall ISO. The concept of
isolating the nonlinear states, as well as the technique of doing so, is robust as almost identical phases of
precipitation ISO are identified by the large-scale circulation indices derived from two different reanalysis
datasets, namely, the 40-yr ECMWF Re-Analysis (ERA-40) and the NCEP–NCAR reanalysis.

The ability of the SOM technique to isolate spatial structure and evolutionary history of nonlinear
convectively coupled states of the summer monsoon ISO opens up a new possibility of extended-range
prediction of summer monsoon ISO. This knowledge is used to develop an analog technique for predicting
different phases of monsoon ISO. Skillful four-pentad lead prediction of rainfall over central India is
demonstrated with the model using only large-scale circulation fields. A major strength of the model is that
it can easily be used for real-time extended-range prediction of monsoons.

1. Introduction

Vigorous intraseasonal oscillations (ISOs) in the
form of active and break episodes are integral part of
the Indian summer monsoon (see Goswami 2005 for a
review). Prediction of the active and break episodes 2–3
weeks in advance is of great importance as sowing, har-
vesting, and water management for agriculture within
the season depends crucially on the rainfall associated
with these phases of the monsoon ISOs. Initially de-
scribed in terms of rainfall (Ramaswamy 1962; Rama-
murthy 1969) over India, the mean spatial structure of
rainfall and circulation fields associated with active and

break conditions (Krishnamurti and Subrahmanyam
1982; Krishnamurti et al. 1985; Webster et al. 1998;
Krishnan et al. 2000; Annamalai and Slingo 2001; An-
namalai and Sperber 2005; Goswami 2005) have very
large spatial scale extending far beyond the Indian con-
tinent. One important character of these intraseasonal
spells is the repeated northward propagation of the
zonally oriented cloud band from south of equator to
about 25°N in this region (Sikka and Gadgil 1980; Ya-
sunari 1979). Further, the nonlinear relationship be-
tween the rainfall and the large-scale circulation indi-
cates that the active–break spells are related to a con-
vectively coupled oscillation consistent with theory
(Goswami and Shukla 1984; Jiang et al. 2004; Wang
2005). This underlying large-scale spatial pattern to-
gether with relatively slow evolution has led to the op-
timism for extended-range prediction of these phases of
the monsoon ISOs (Goswami and Xavier 2003; Web-
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ster and Hoyos 2004). However, these subseasonal fluc-
tuations have considerable event-to-event and year-to-
year variability that limits the predictability of the ac-
tive and break phases. The event-to-event variability
(i.e., the variability of rainfall intensity and duration
over a large region) of these phases is a result of the
quasiperiodic nature of the monsoon. The quasiperi-
odic character, in turn, is a manifestation of the non-
linearity of the convectively coupled ISO. Our recogni-
tion that the monsoon ISO is nonlinear is based on the
observation that the monsoon ISO is quasiperiodic. In
other words, it has a broadband spectrum with two ma-
jor periodicities around 15 and 40 days but appreciable
power at all frequencies with periods between 10 and 80
days. This broadband nature of the frequency spectrum
may be due to nonlinear interaction between the dom-
inant periodicities [for which different physical models
of scale selection exist, e.g., Chatterjee and Goswami
(2004); Goswami and Shukla (1984)] and higher and
lower periodicities. The linear prediction techniques,
such as regression (Goswami and Xavier 2003; Webster
and Hoyos 2004), use the averaged spatial structure and
averaged evolution of the oscillatory component and
fail in predicting the event-to-event variability of the
quasiperiodic oscillation. Improvement of the skill of
prediction of the active and break spells can come only
if one could objectively identify and characterize differ-
ent shades of each phase of the oscillation (e.g., active
and break conditions) and their evolution. Such an ob-
jective method is presented in this study.

The primary manifestation of the Indian summer
monsoon ISO being the rainfall fluctuations (active–
break cycles), it can be described by a rainfall index
[precipitation (PR) index] constructed from rainfall
[India Meteorological Department (IMD) high-resolu-
tion gridded data, Rajeevan et al. (2006)] averaged over
the monsoon trough region (15°–25°N, 70°–85°E). The
normalized PR index for two arbitrarily selected years
is shown in Fig. 1. A standardized anomaly of the PR
index greater (less) than �1 (�1) is associated with
active (break) situations. The state vector of the atmo-
sphere associated with each phase of the nonlinear con-
vectively coupled monsoon ISO would generally have
large dimension. To isolate the distinct phases of the
nonlinear oscillation, therefore, a number of atmo-
spheric parameters would be required. To achieve this
goal, we identify a large number of dynamical indices
that are related to the monsoon precipitation ISO.
First, three such indices are obtained from the fact that
the dominant monsoon ISO has large spatial scale such
that both the intraseasonal and interannual variability
of the seasonal mean are governed by a common spatial
mode of variability (Ferranti et al. 1997; Goswami and

Ajaya Mohan 2001; Sperber et al. 2000; Lawrence and
Webster 2001). The seasonal-mean Indian summer
monsoon and its variability are often described by cer-
tain large-scale circulation indices, such as based on
vertical shear of zonal wind [the WY index (Webster
and Yang 1992)], vertical shear of meridional wind [the
GO index (Goswami et al. 1999)], and meridional shear
of zonal wind [the WF index (Wang and Fan 1999)]. As
a result of similarity between the spatial structures of
the seasonal mean and the dominant ISO mode, the
large-scale indices of the seasonal mean could also be
used as indices of the dominant ISO mode (e.g., Flatau
et al. 2001). We use the daily values of these indices to
represent the monsoon ISO except that the area aver-
aging for the GO index has been extended to 10°S,
keeping in mind the meridional extent of the dominant
ISO mode (Goswami 2005). These three indices seem
to represent the large-scale low frequency component
of monsoon ISO, namely the 30–60-day mode. How-
ever, a significant part of monsoon ISO variance is con-
tributed by the 10–20-day mode having relatively
smaller spatial structure (Chatterjee and Goswami
2004). To capture this component of ISO variability, we
introduce three other indices of local character. They
are chosen from mean sea level pressure (MS index),
specific humidity (SH index), and geopotential height
(GP index). The averaging regions for the last three
indices are chosen (Table 1) based on a high simulta-
neous correlation with the PR index during the summer
monsoon period (1 June–30 September). The indices
used in the study and their averaging areas are shown in
Table 1. These indices constructed from daily reanalysis
[the 40-yr European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis (ERA-40);
Uppala et al. 2005] during the summer monsoon season
(1 June–30 September) and normalized by their indi-
vidual standard deviation are shown for two summers
in Fig. 1. For a linear convectively coupled oscillation,
the PR index and the circulation indices should have
high linear correlation between them (maybe with
some lead or lag) and the phase relationship between
the two should remain fixed for all events. As seen from
Fig. 1, while there is a linear correlation between PR
and circulation indices, it is weak and the phase rela-
tionship between them changes from event to event.
This is further illustrated in Fig. 2 where scatterplots
between the circulation indices and the PR index are
shown. The mean of scatter for each bin of PR increases
linearly but tends to flatten and saturate for larger val-
ues of PR. This clearly indicates a certain degree of
nonlinearity in the relationship.

Based on the evidence of nonlinearity in the relation-
ship between precipitation and circulation, we propose
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that the monsoon ISOs are nonlinear convectively
coupled oscillations. Such a quasiperiodic or nonlinear
monsoon ISO could be described by a sinusoidal oscil-
lation, each phase of which has a spread. In other
words, each phase, such as the active or break phases,
has a different shade. The evolutionary history of each

shade of a given oscillation may be different. As a long
history of the IMD daily rainfall over India as well as
large-scale daily circulation data [e.g., National Centers
for Environmental Prediction–National Center for At-
mospheric Research (NCEP–NCAR) reanalysis and
ERA-40] are currently available, an effective analog

FIG. 1. Time series of all the indices of summer monsoon during the summers (1 Jun–30 Sep) of 1986 and 2000
(the years are arbitrarily chosen). The mean sea level pressure and the geopotential height are multiplied by �1.0
to make them comparable with other indices.
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prediction for monsoon ISO could be developed, if dif-
ferent shades of each phase and their evolutionary his-
tory could be characterized uniquely. The convectively
coupled character of the oscillation indicates that each
shade of a given phase is characterized by a unique
relationship between the circulation indices that, in

turn, would be uniquely related to that shade of the PR
index. Based on this conceptual framework, a method-
ology is presented in this study to identify different
shades of active and break (as well as other) phases of
the monsoon ISO entirely from large-scale circulation
indices, and it is demonstrated that they are uniquely
and strongly connected to shades of the rainfall index.
This is accomplished by using a classification scheme
based on unsupervised learning artificial neural net-
work technique known as self-organizing map (SOM)
(Kohenen 1990). The technique essentially brings out a
series of nonlinearly coupled states described by differ-
ent unique combinations of the large-scale indices. We
believe that the technique and methodology presented
in this study will establish a strong base for real-time
prediction of active and break spells of the Indian mon-
soon. The data used in the study is described in section
2, and the SOM algorithm and how it is applied for this
study is described in section 3. In section 4, we show
that, even with a limited number of degrees of freedom
in the classification scheme based only on the large-
scale circulation fields, it is possible to identify different
phases of monsoon ISO in rainfall in a quantitative way.
In section 5, we show that, with increased degrees of

FIG. 2. Scatterplots of the large-scale circulation indices of monsoon ISO for the 22 summers of ERA-40 data
(1980–2001) vs the PR index from the IMD rainfall data for the same period.

TABLE 1. List of all indices and the corresponding regions used
to define these area-averaged indices.

1 PR index: rainfall (15°–25°N, 70°–85°E)
2 GO index: V850(10°S–30°N, 70°–110°E) � V200(10°S–30°N,

70°–110°E)
3 WF index: U850(5°–15°N, 40°–80°E) � U850(20°–30°N,

60°–90°E)
4 WY index: U850(0°–20°N, 40°–110°E) � U200(0°–20°N,

40°–110°E)
5 MS index: MSL (15°–25°N, 65°–95°E)
6 SH index: SH850 (15°–25°N, 65°–95°E)
7 GP index: GP500 (10°–20°N, 65°–95°E)
8 U-shear index: U850(15°S–5°N, 100°–140°E) �

U200(15°S–5°N, 100°–140°E)
9 Omega (vertical velocity at 500 mb) index: �500(0°–7.5°N,

50°–115°E) � �500(10°–20°N, 80°–150°E)
10 Mean sea level pressure shear index: MSL(10°–20°N,

110°–150°E) � MSL(15°S–5°N, 40°–60°E)
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freedom in the classification scheme, different shades
of each phase of ISO could be identified and the com-
posite evolutionary history of each shade is constructed
from the 54 yr of NCEP–NCAR reanalysis data (1951–
2004). Using this knowledge, an analog technique for
real-time prediction of rainfall over central India is de-
scribed in section 6 and skillful prediction up to the
fourth pentad in advance is demonstrated. The results
are summarized in section 7.

2. Data

The six indices used in the SOM classification (num-
bers 2–7, Table 1) are constructed from the ERA-40
(Uppala et al. 2005; additional information is available
online at http://www.ecmwf.int/research/era/) dataset
for a period of 22 yr (1980–2001). To train the SOM
nodes corresponding to different shades of the active
and break phases a large sample size is desirable. For
this purpose, we use the NCEP–NCAR 54 yr (1951–
2004) of data (Kalnay et al. 1996). The NCEP–NCAR
reanalysis data is also used because the latest ERA data
is not available (after 2002) and to develop an opera-
tional prediction scheme the NCEP–NCAR reanalysis
data, which is updated regularly, is more suitable. The
IMD daily gridded high-resolution rainfall data based
on observations from about 1803 rain gauge stations
between 1951 and 2004 (Rajeevan et al. 2006) is used
for comparison and validation purposes. The rainfall
index (PR index) is constructed based on this data. The
spatial pattern associated with different phases of the
PR index is also obtained from this dataset. Climate
Prediction Center (CPC) Merged Analysis of Precipi-
tation (CMAP) pentad rainfall (Xie and Arkin 1997)
data without model enhancement, interpolated to daily
values, is also used to see the evolution of large-scale
rainfall patterns associated with the SOM nodes. Daily
anomalies of the variables involved in different indices
are obtained with respect to the corresponding daily
smoothed climatology. The daily climatology is calcu-
lated based on the length of data used, namely 22 yr for
ERA-40 data, 54 yr for NCEP–NCAR reanalysis data,
and so on. The smoothed daily climatology is obtained
by applying a 5-day running mean to the daily clima-
tology. Then we constructed the daily standardized
anomaly of each of the six indices based on the daily
mean and standard deviation for both ERA-40 and
NCEP–NCAR reanalysis data. We use the ERA-40 cir-
culation data to develop the SOM technique and to
demonstrate its strength in identifying different phases
of monsoon ISO in precipitation. The robustness of the
technique is further established when we show that the

results are independent of the reanalysis data used and
that almost identical results are obtained even with the
NCEP–NCAR reanalysis dataset. For the prediction
purpose, we also constructed three more indices (last
three indices in Table 1) from NCEP–NCAR reanalysis
data. The reason for choosing these three indices and
their application will be described in section 6.

3. Methodology

The SOM algorithm in brief

The self-organizing map is basically a pattern recog-
nition technique or cluster algorithm based on unsuper-
vised learning neural networks (i.e., the learning pro-
cess without prior knowledge of the data domain or
human intervention). This method is similar to stan-
dard iterative clustering algorithms such as k-means
clustering (see, e.g., Gutiérrez et al. 2004 for more de-
tails). In this study we will use the Kohenen model
(Kohenen 1990) of SOM which belongs to the class of
vector coding algorithms (Haykin 1999, chapter 9).
Given an N-dimensional (N-D) data space consisting of
cloud of data points (input variables), the SOM algo-
rithm distributes an arbitrary number of nodes (or clus-
ter centers) in the form of a 1D or 2D regular lattice in
such a way that it is the representative of the multidi-
mensional distribution function, thereby facilitating
data compression and easy visualization. Mathemati-
cally speaking, this is a process of a topology conserving
projection from an original higher dimensional data
space into the lower dimensional lattice (Haykin 1999,
chapter 9). Each node is uniquely defined by a refer-
ence vector (or code vector) consisting of weighing co-
efficients. Each weighing coefficient of the reference
vector is associated with a particular input variable. The
essential part of SOM is to adjust the reference vectors
to the N-D data cloud (input vector) through some un-
supervised learning process. This is achieved through a
user-defined iterative cycle adapting the reference vec-
tor in accordance with the input vector. This adaptation
is the minimization of Euclidean distance between the
reference vector for any jth node Wj and the input data
vector X, that is, to find

min �X � Wi � .

For a particular data record only one node wins and is
called the “winner node.” An “optimal” mapping will
be such that the winner node also changes the neighbor
nodes as defined by the user. This inclusion of the
neighborhood makes the SOM classification nonlinear
since each node has to be adjusted relative to its neigh-
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bor. This training cycle may be continued for n times
and may be mathematically described as

Wj�n � 1�

� �Wj�n� � c�n��x�n� � Wj�n�� , j ∈ Rj�n�

Wj�n�, otherwise.
�1�

Here Wj(n) is the reference vector for the jth node for
nth training cycle; x(n) is the input vector; Rj(n) is the
predefined neighborhood around the node j; and c(n) is
the neighborhood kernel, which defines the neighbor-
hood. The neighborhood kernel may be a monotonic
decreasing function of n (0 	 c(n) 	 1, called the
“bubble”) or it may be of Gaussian type:

��n� exp�� �rj � ri �
2

2�2�n�
�, �2�

where 
(n) and �(n) are constants monotonically de-
creasing with n. Here 
(n) is the learning rate that de-
termines the “velocity” of the learning process and �(n)
is the amplitude that determines the width of the neigh-
borhood kernel. The rj and ri are the coordinates of the
nodes j and i in which the neighborhood kernel is de-
fined. In the present study we have used a Gaussian
neighborhood. The free software for SOM (available
online at http://www.cis.hut.fi/research/som-research/)
has been used in this study.

The SOM reference vectors span the data space and
each node represents the position approximating the
mean of the nearby samples in the data space. The
other important advantage is that the smaller (larger)
number of SOM nodes are allocated when the data is
sparse (dense), see Fig. 1, (Hewitson and Crane 2002),
and also SOM arranges the distribution of nodes in
such a way that similar nodes are located close together
and dissimilar nodes are farther apart. In an artificial
example, the above features are clearly documented by
Hewitson and Crane (2002). Are these features equally
apparent in real 2D atmospheric data? To test this we
construct the 2D dataset comprising the spatial mean
and spatial standard deviation of each of the 122 days of
the summer monsoon season (1 June–30 September)
from 54 yr of IMD rainfall data over central India
(12°–22°N, 72°–85°E). Thus we have 122 � 54 � 6588
data points. We wish to map such a big sample on 10 �
10 or 100 nodes. The number of nodes are chosen ar-
bitrarily (as we shall see, the choice depends on the
physical requirements of the problem in question). In
Fig. 3a we plotted the scatterplot of the mean versus
standard deviation (smaller points) for 6588 points and
then mapped SOM nodes onto the data points (black
circles). It can be seen that the nodes are placed con-

tinuously and densely in the region with more data
points (between 0 and 10 units along abscissa) and
sparsely where there are few data points (above 15
units along abscissa) and also indicates the nonlinearity
in the data preserving the topology. Thus, it is demon-
strated that the advantageous features of SOM are in-
tact for real atmospheric data. Using the SOM routine
one can also find out the dates clustered at each node
and plot the input variable (here the mean or the stan-
dard deviation) on those dates for any nodes. Such a
plot may be used to visualize a “pattern” of any vari-
able associated with each node.

The SOM algorithm has been used in various disci-
plines (e.g., Palakal et al. 1995; Chen and Gasteiger
1997). In meteorology, the SOM is used for synoptic
classification of weather states (Cavazos 1999; Hewit-
son and Crane 2002), climate study and downscaling of
seasonal forecasts (Malmgren and Winter 1999; Gutiér-
rez et al. 2005), cloud classification (Ambroise et al.
2000), ENSO variability and diagnostic studies (Leloup
et al. 2007), and so on. The SOM technique is different
from other statistical analysis tools like EOF and mul-
tiple regressions. In SOM, the clustering of each node
(which has a specific pattern) is based on the Euclidean
distance among the reference vectors associated with a
node and the input data vector. Here, largest are the
distances among any two reference vectors, more dif-
ferent are the two nodes and so are the patterns asso-
ciated with the nodes. In EOF or extended EOF analy-
sis, the data is classified in terms of variance. However,
the “orthogonality” property of the EOF modes makes
it logically unsuitable to analyze a quasiperiodic oscil-
lation like the ISO. The shortcomings of EOF and vari-
ous conventional techniques are discussed by Goulet
and Duvel (2000). Also, in multiple regression (linear
or nonlinear) a functional relationship is computed be-
tween predictor parameters and a predictand. How-
ever, in SOM the lattice is first chosen and then the
patterns are obtained at each node through an iterative
process without seeking (explicitly) any functional re-
lationship between the parameters involved. In a way,
the SOM technique is analogous to (but more complex
than) nonparametric regression techniques (Heskes
and Kappen 1995).

The aim of this study is to exploit SOM to identify a
set of well-separated and distinguishable patterns from
the input samples of dynamical parameters (defined in
Table 1) so that the days associated with a given pattern
represent a particular phase of the convectively coupled
oscillation of rainfall (e.g., active, break, or normal situ-
ations and their transitions) without using the rainfall
data. The basic steps for implementation of SOM in the
present study are as follows:

1554 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65



1) DECIDING THE NUMBER OF NODES

Distinct phases of ISO will be identified by a lattice
of 3 � 3 SOM nodes. The choice of the 3 � 3 nodes was
based on the fact that, on one hand, nodes should be
kept a minimum and should have the least distortion
and sufficiently low quantization error (a measure of
error due to reduction in output dimension), while, on
the other hand, it should produce maximum informa-
tion of the important known phases of the oscillation
(e.g., active states, break states, normal states). Let us
consider the mean spatial patterns associated with ac-
tive, break, and normal conditions (Krishnamurthy and
Shukla 2000; Webster et al. 1998; Goswami and Ajaya
Mohan 2001) as the “base” states (say A, B, and C).
Each base state in turn can have “normal” (ensemble
mean, A0), “above normal” (A�), and “below normal”
(A�) substates. Similar substates can be obtained for
the states B and C. These substates of any base state

could be characterized either by an east–west or north–
south shift of the dominant spatial pattern or by an
increase or a decrease of the intensity of the pattern
due to the movement of the monsoon trough. Thus, a
minimum of nine [3A(0,�,�), 3B(0,�,�), and 3C(0,�,�)]
states is required to have a more detailed idea of re-
gional patterns and their transition from one phase to
another (similar to a nonlinear curve fitting problem
where it typically requires at least eight or nine points
to trace a full nonlinear curve). Therefore, based on
consideration of mathematical optimization and the
physical requirement of identifying distinct patterns, a
configuration of 3 � 3 states is chosen.

2) PREPARATION OF DATA

The standardized anomaly for the six circulation in-
dices is now arranged to be used as input in the SOM
routine. To determine whether a particular day (target

FIG. 3. (a) A simplified example of SOM clustering demonstrating the distribution of SOM nodes and data points
in a 2D space. (b) The efficiency in capturing the rainfall patterns by SOM. The daily 10–80-day filtered area-
averaged (15°–25°N, 70°–85°E) rainfall anomaly for June–September obtained from the IMD rainfall data is shown
for two contrasting years, 1987 and 1988 (dashed line), together with the SOM-classified anomaly (solid line).

MAY 2008 C H A T T O P A D H Y A Y E T A L . 1555



day) from each of the 122 days (starting from 1 June)
and for each of 22 (1980–2001) yr is associated with a
particular node of the 3 � 3 lattice, the target day,
previous three days, and forward three days are con-
sidered. Thus we have data for seven days for each of
the six indices, that is, 6 � 7 � 42 input values for any
target day. Also for each target day we take the 1 May
value of all six indices for the corresponding year of
the target day (i.e., adding another six input values).
The information for 1 May is added to make the refer-
ence vector “informed” (initialized) to a premonsoon
condition of each variable for each year. Finally, the
Julian day variation of six parameters is introduced
as a variable (input value) according to (Cavazos 1999)
sin[(2
t /365) � 
/2], where t is the target day. It is
introduced as a parameter to represent the annual
cycle. Thus the input vector has 49 (42 � 6 � 1) com-
ponents (input values) for each target day. Similarly the
associated reference vector has 49 weighing coeffi-
cients. Although in total there are 122 � 22 � 2684
days, for the training purpose we have selected 2074
samples collected from first 17 yr (17 yr � 122 days
from 1 June to 30 September for the years 1980–1996).
The NCEP–NCAR reanalysis dataset is sampled in a
similar way.

3) RANDOM INITIALIZATION AND TRAINING

After determining the number of nodes and con-
structing the dataset, each reference vector of the nine
nodes is initialized with some random values with the
condition that none of the nine initial reference vectors
are identical. The input vectors (having the identical
dimension as the reference vector) are then broadcast
parallel to each of the nodes. If the Euclidean distance
between the input vector, x(n), and initial code vector
at any of the nine nodes is minimum, it is the winning
node. The code vector of this winner node is changed
according to Eq. (1). The iteration is continued as many
times as the total data record that we wish to train. This
process is also repeated for many times (many training
cycles) starting from a large number of neighbors and
high learning rate until it is fine tuned to a single near-

est neighbor and learning rate converging to zero. Thus,
finally, the weight vectors for the nodes are arranged
nonlinearly (because of the inclusion of neighborhood)
into distinctly separated nodes. After this initialization
and training of the reference vector (based on 17 yr of
data) we classify the full sample (22 yr). Since each
input vector has to be associated with a particular node,
the corresponding target day will also be associated
with that node. The dates clustered at each node are
identified. If the summer monsoon ISO is a convec-
tively coupled oscillation, the actual value for different
variables (indices) on those dates clustered at a node
corresponds to the commonality among various input
parameters, and each pattern should be strongly related
to a phase of the precipitation oscillation. In particular,
one of the nodes should correspond to the active pat-
tern, while another should correspond to the break pat-
tern.

4. Results and discussions

a. Some basic statistics of ISO derived from SOM

Once we obtain the classification using the SOM al-
gorithm, the dates from the 22 yr of ERA-40 data are
collected at each node. To test whether these SOM
nodes based on circulation data (without involving ob-
served rainfall data) are related to organized rainfall
anomalies, composite IMD rainfall anomalies averaged
over central India (15°–25°N, 70°–85°E; hereafter CI)
corresponding to the dates associated with each of the
3 � 3 nodes are shown in Table 2a. A strong positive/
negative rainfall anomaly associated with the circula-
tion states described by SOM nodes (1, 1)/(3, 3) testifies
that these circulation states correspond to a strong ac-
tive and an intense break condition, respectively. The
values of area-averaged anomalies of rainfall corre-
sponding to other nodes indicate that [(2, 1) and (1, 2)]
represent less intense active states and [(2, 3) and (3, 2)]
represent less acute break states, while near-neutral/
normal states are represented by [(2, 2);(3, 1);(1, 3)]. In
Table 2b we show the mean days per ISO event present

TABLE 2a. Values of area-averaged anomalies of rainfall from
IMD data over central India for all 3 � 3 SOM nodes.

(1,3) (2,3) (3,3)
�0.32 �1.38 �3.43

(1,2) (2,2) (3,2)
1.11 0.09 �1.73

(1,1) (2,1) (3,1)
4.14 1.96 �0.59

TABLE 2b. Mean days per ISO event (bold), percentage fre-
quency of days (parentheses), and probability of no transition
(braces) at each node over central India.

(1,3) (2,3) (3,3)
3 (10%) {68} 3 (9%) {63} 9 (22%) {88}

(1,2) (2,2) (3,2)
2 (8%) {57} 2 (5%) {47} 2 (8%) {59}

(1,1) (2,1) (3,1)
8 (20%) {87} 3 (8%) {63} 4 (10%) {74}
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in a node, the frequency of days clustered at each node
in percentage (in parentheses), and the probability of
no-transition (braces) from one node to the other. The
three values are calculated from the 22 yr of ERA-40
data. Here the number of “events” is determined by
counting the total number of times the data records are
mapped consecutively to a particular node without any
break. Mean days per event is defined by dividing the
total number of days mapped onto a SOM node by the
number of events counted for that node. Frequency of
days is defined as the number of days clustered in a
particular node divided by the total number of days
used in the classification (22 yr � 122 days yr�1). The
probability of “no transition” (also expressed in per-
centage) is the probability that, when an input vector
corresponding to a particular day is mapped to a node,
the next day will be mapped again to the same node.
Thus, for the active state (1, 1), out of the total projec-
tion onto the node, 87% of the cases are projected
successively (i.e., without any break). Similarly, it is of
the same order for the node (3, 3) and is lowest for (2,
2). This implies that, when a day is attached to an active
(1, 1) or break (3, 3) node, the next day has the highest
probability of clustering at the same node, and for the
node (2, 2) the chance is least. Thus, SOM can give a
simple visualization of the time evolution of the nodes
and, hence, the ISO (the spatial propagation of ISO will
be described in the subsequent sections). Further, it can
be seen that mean days per event is highest for the
active (8 days) and break (9 days) nodes and the cor-
responding percentage frequency of days clustered at
these nodes is also higher. Assuming that one full cycle
of ISO (active–break–active) is an episode, the total
number of days per episode (obtained by summing the
days at all nodes) is 36, which corresponds to the aver-
age periodicity of a low frequency ISO event. This im-
plies that the “mean” repetition frequency of a break
state (or an active state) is 36 days with unequal distri-
bution of the days at each node. Thus, the above results
verify the quantitative estimate of the ISO within a
season available in various sources and allows for fur-
ther application of the SOM to study the ISO.

As discussed above, if the large-scale circulation
states clustered at the SOM nodes are associated with
rainfall anomalies over CI, they could be used to con-
struct the low frequency components of the latter. This
is illustrated in Fig. 3b, where the area-averaged value
of the 10–80-day filtered rainfall anomalies over CI
from the IMD data is plotted together with the area-
averaged value of the rainfall composite for each class
for the years 1987 and 1988 that are mapped onto the
SOM nodes. The filtering is done using a standard
Lanczos filter (Duchon 1979). It may be seen that the

rainfall anomaly for each class is actually following the
rainfall anomaly from the observed data. A similar
match is found for the other years (plot not shown).
The temporal correlation for the rainfall mapped at
each SOM node and the corresponding filtered rainfall
for the 122 � 22 days is 0.58, which is significant at
99.9% confidence level. It is clear that the SOM tech-
nique, through the use of a number of large-scale cir-
culation parameters, is able to capture the low-
frequency subseasonal variability of rainfall over CI.

b. Classification of precipitation states

In this section, the strength of the SOM technique is
further illustrated, and it is shown that the large-scale
circulation-based SOM nodes not only give us the area-
averaged rainfall anomaly over central India, but also
provide a detailed spatial pattern of different phases of
the rainfall oscillation. The composite rainfall anoma-
lies over the Indian continent corresponding to the
dates of each of the SOM nodes based on 22 yr of
ERA-40 data are shown in Fig. 4. While the nodes (1, 1)
and (3, 3) reproduce the well-known active and break
patterns, respectively, with considerable regional de-
tails, the other nodes represent different phases of
northward and eastward propagation of the dominant
ISO mode. The northward and eastward propagation of
the small positive anomaly in the southeastern corner
of India in node (3, 3) can be seen if we follow the
panels counterclockwise in Fig. 4. These composite
rainfall anomalies in Fig. 4, identified from large-scale
circulation parameters only, have good correspondence
to the lag composites based on the rainfall index over
central India using the IMD data.

The northward and eastward propagation of the rain-
fall anomaly over India is actually a part of the north-
ward and eastward propagation of the large-scale rain-
band or the tropical convergence zone (TCZ) (Sikka
and Gadgil 1980; Goswami 2005). Are the phases of
rainfall oscillation identified by the large-scale circula-
tion SOM nodes (Fig. 4) linked to the evolution of the
TCZ? To examine this, composites of daily CMAP
rainfall between 1980 and 2001 corresponding to the
SOM nodes from ERA-40 circulation data are con-
structed and shown in Fig. 5. The composites in this
figure clearly demonstrate that the large-scale circula-
tion-based SOM nodes identify the evolutionary phases
of the northward propagating rainband similar to ones
obtained from rainfall data (see Goswami 2005; Waliser
et al. 2003). Thus, the regional rainfall anomalies over
India derived from the high-resolution rainfall data and
identified by the SOM nodes (Fig. 4) are an integral
part of the large-scale northward propagating rainband.
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Hence, the SOM technique can identify the phases of
summer monsoon ISO in rainfall through the use of
only large-scale circulation parameters. It may, how-
ever, be argued that the specific humidity at 850 hPa
over central India from ERA-40 (SH index), used as
one of the indices may contain some information on
observed rainfall. To test whether the SH index is cru-
cial for identifying the phases of rainfall ISO (as in Fig.
4), we removed the SH index from the variables used
for calculating SOM nodes. In place of the SH index,

we introduced another circulation index, namely the
kinetic energy (KE) of the low level jet (LLJ) defined
by the KE of 850 hPa winds averaged over 5°–15°N,
50°–70°E (KELLJ). This index is also known to be re-
lated to the seasonal mean monsoon rainfall as well as
ISO activity over India and the Bay of Bengal (Gos-
wami and Xavier 2005; Ajayamohan and Goswami
2007). The SOM nodes were again calculated using 22
yr of ERA-40 data including the KELLJ index instead
of the SH index. Composite rainfall anomalies over In-

FIG. 4. The spatial distribution of anomalous precipitation (mm day�1) associated with SOM-classified
patterns, obtained by compositing the IMD daily rainfall anomaly corresponding to the days clustered at the
respective SOM nodes. To get the anomaly, the daily long-term means are constructed from the 54 yr of
IMD rainfall data. The states (1, 1) and (3, 3) are the most active and break nodes.
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dia constructed from the dates corresponding to SOM
nodes thus derived are found to be almost identical to
the ones shown in Fig. 4 (figure not shown). Thus, dy-
namical information (circulation indices) is sufficient to
accurately identify the phases and evolution of the rain-
fall ISO. However, a minimum number of large-scale
circulation variables are required to capture accurately
the phases of the convectively coupled monsoon ISO.
In this study we found that reducing the number of
indices below six results in weakening of the active and
break patterns [node (1, 1) or (3, 3) in Fig. 4].

How close are the patterns of rainfall anomalies cor-
responding to different SOM nodes to the phases of the
rainfall ISO defined from rainfall itself? To test this,
active and break composites obtained from the SOM
nodes [(1, 1) and (3, 3) in Fig. 4] are compared with
those obtained from rainfall index (PR index) in Fig. 6.
The top (bottom) rightmost panel is the break (active)
composite from 53 yr of IMD rainfall data (1951–2003)
obtained from the composite number of days when the
standardized anomaly of rainfall in CI (the PR index) is
less (greater) than one standard deviation. Further, to

FIG. 5. As in Fig. 4 but constructed from CMAP global data. The CMAP pentad data is interpolated to
daily values prior to construction of composites. It is clear that starting from any node [say, (3, 1)] there is
a large-scale northward propagation of rainfall anomaly (follow the nodes counterclockwise).
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test the robustness of the SOM technique, the SOM
nodes are also constructed using the same large-scale
indices shown in Table 1 from NCEP–NCAR reanalysis
for the same period. The composite rainfall anomalies
corresponding to the active and break nodes obtained
from the NCEP–NCAR reanalysis circulation data are
also shown in this figure (middle panels). The similarity
between the patterns of rainfall derived from only dy-
namical inputs of the ERA-40 data and the NCEP–
NCAR reanalysis data and those obtained from the
precipitation index is striking. Correlations between
different patterns are 0.9 or larger (Table 3). Two
things are clear from the figure. First, both reanalysis
datasets are dynamically consistent in capturing the ac-
tive and break patterns. This implies that large-scale
dynamics is equally well captured in both of the re-
analysis data, at least in the intraseasonal scale. Second,

active and break spatial patterns of rainfall can be ac-
curately identified by the large-scale indices. The dates
clustered at each node are reflections of the closeness
(commonality) in the sequence of temporal evolution
of these indices. This implies that these dates (at any
node) represent similar phases in the time series and
different nodes represent different phases of northward

TABLE 3. Spatial pattern correlation for the dry and wet pat-
terns of rainfall classified by SOM from various datasets. The
spatial correlation is defined for the region over the Indian
landmass.

ERA-40/
NCEP–NCAR

ERA-40/
IMD

NCEP–NCAR/
IMD

Dry pattern 0.97 0.93 0.94
Wet pattern 0.94 0.87 0.93

FIG. 6. Comparison of SOM-classified (top) driest and (bottom) wettest patterns of rainfall using the
large-scale indices from (left) ERA-40 with those derived from (right) rainfall. (middle) SOM-classified
pattern of rainfall using large-scale indices for NCEP–NCAR reanalysis.
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movement of the ISO pattern (rainband). Although the
gross spatial feature matches quite well, the intensity of
the active (break) composites from IMD rainfall data is
at least 2–4 mm higher (lower) during the active
(break) state than the SOM-captured intensity at the
nodes from both ERA-40 and NCEP–NCAR reanalysis
data over central India. This is due to the fact that the
SOM technique based on large-scale dynamics from the
ERA and NCEP–NCAR reanalysis data identifies only
the low-frequency intraseasonal component of rainfall
variability and is not expected to capture the extreme
day-to-day precipitation fluctuation pattern, which is
pronounced in the IMD daily data and results in larger
composite values for active composites. However, the
spatial pattern of rainfall from the large-scale dynamics
and actual rainfall (using IMD data) during the active
and break phases are close to each other, providing
strong support for the convectively coupled nature of
the monsoon ISO.

The large-scale patterns of some other dynamical
variables associated with active and break phases iden-
tified by the SOM technique are noted in Fig. 7 where
the composite anomalies of vector winds at 850 hPa,
mean sea level pressure, and specific humidity at 850
hPa from dates collected at active and break SOM
nodes [node (1, 1) and node (3, 3) in Fig. 4] using ERA-
40 data are shown. This figure indicates that SOM-
classified patterns of wind anomalies, sea level pres-
sure, and humidity anomalies at these nodes are oppo-
site to each other and are dynamically consistent with
rainfall patterns at the same nodes. To get an idea as to
how the six indices are configured at all of the different
SOM nodes, the standardized anomaly of the six indi-
ces for days collected at the nodes is shown in Table 4.
It may be noted that the values of the indices are nearly
equal but of opposite sign at the active and break nodes
[node (1, 1), and (3, 3)] and are arranged in a regular
fashion similar to the strength of the rainfall (Table 2).

FIG. 7. Composite spatial plot of ERA-40 data for the (top) break and (bottom) active nodes for (left) wind
(m s�1) at 850 mb, (middle) mean sea level pressure (hPa), and (right) specific humidity (g kg�1) at 850 mb. The
composite technique is similar to Fig. 4. To get the anomaly, the daily long-term means are constructed from the
22 yr of ERA-40 data for all variables. The patterns of rainfall in Fig. 4 are well reflected in these parameters.
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5. The different “shades” of the active and break
states

In the previous section, the low-order SOM classifi-
cation (e.g., 3 � 3) identifies nine distinct ensemble
mean phases of the monsoon ISO. Such ensemble mean
phases of ISO could be identified using other tech-
niques as well (e.g., phase composite or lag regression
with respect to a reference time series). The strength of
the SOM technique lies in the fact that not only can it
identify the ensemble mean phases, but it also can iden-
tify the event-to-event variability or different “shades”
of any phase of the ISO together with their evolution-
ary history. This can be achieved by going over to a
higher-order SOM classification.

As we introduce higher-order SOM classification
with many more nodes, the SOM will identify that
many patterns. However, in this case the patterns asso-
ciated with the nodes may not be as well separated as in
the lower 3 � 3 classification. Some of these patterns
may be similar to one of the nine nodes of 3 � 3 clas-
sification, but differ slightly in their spatial structure
and/or temporal evolution. In other words, with the
increment in the number of nodes, we get other differ-

ent shades of a particular pattern associated with one of
the 3 � 3 previously classified nodes. We demonstrate
the existence of different shades using a higher-order
(9 � 9) SOM clustering. The classification is made on
the basis of six large-scale dynamical parameters (as
used before) taken from 54 yr of NCEP–NCAR re-
analysis data (1951–2003). The other procedures are
exactly similar to an earlier one using ERA-40 data.
The area-averaged rainfall anomaly over central India
is shown for the 9 � 9 nodes in Table 5, similar to Table
2a. We then calculate the correlations between patterns
associated with each of the 3 � 3 nodes and those as-
sociated with each of the 9 � 9 nodes. This is shown in
Fig. 8. Each of the nine panels in the figure corresponds
to one of the 3 � 3 nodes and each panel consists of two
circles. The largest outer circles (without shading)
within a panel are 81 in number and arranged as 9 � 9
nodes. The spatial correlation is represented by the in-
ner circles (filled or open), the magnitude of which is
proportional to the area of the circle. The positive
(negative) correlation is indicated by filled (open)
circle. If the diameter of the inner circle (filled or open)
is equal to the outer one, the correlation is �1 (�1). As
can be seen, some nodes have spatial correlation very
close to �1. The spatial patterns for the three active
and three break nodes having largest spatial correlation
are plotted in Fig. 9. As earlier, the spatial plots are
made by plotting the rainfall anomalies (IMD high-
resolution data) from the dates clustered at each node.
As can be seen, the top left and bottom left panels are
identified with the active and break nodes of the 3 � 3
SOM nodes [node(1, 3) and node(3, 1)]; the other pat-
terns are slightly different shades(variants) of the in-
tense active and break patterns. Similarly, all of the 9 �
9 nodes, having different spatial correlations with one
of the 3 � 3 nodes, are different shades of one of the
3 � 3 nodes and represent different spatial patterns of
ISO. These different shades of rainfall are also associ-
ated with different spatial patterns of large-scale dy-
namical parameters. The spatial patterns of all the pa-
rameters used in the clustering (wind at 850 and 200

TABLE 5. Area-averaged rainfall anomalies over central India from the 9 � 9 nodes constructed from 54 yr of NCEP–NCAR
reanalysis data (1951–2004). Positive and negative values are clustered in opposite corners, shown in bold.

1.03 1.39 1.77 1.93 1.65 1.27 4.61 4.15 6.21
�0.11 0.53 �0.52 0.08 �0.25 0.49 1.75 1.41 4.38
�1.40 �0.97 �0.97 �0.70 �1.22 0.41 0.62 1.81 4.82
�2.30 �2.45 �2.39 �1.97 �2.08 �1.07 0.76 5.25 4.86
�2.15 �3.07 �2.61 �3.40 �1.48 0.65 0.77 2.63 3.59
�2.93 �4.16 �3.89 �3.41 �2.86 �0.83 1.87 0.44 3.21
�2.99 �3.85 �3.79 �2.73 �2.50 0.88 �0.68 0.91 1.11
�3.04 �3.94 �3.71 �2.37 �0.70 1.31 0.43 0.31 0.52
�3.34 �3.02 �2.97 �2.31 �0.98 �0.57 �0.96 �0.87 �0.82

TABLE 4. Standardized anomalies of six indices for nine nodes
obtained from the SOM classification.

Indices

WY GO

0.71 0.19 �0.98 �0.09 �0.37 �0.69
0.85 0.30 �0.59 0.17 �0.09 �0.33
0.74 0.20 �0.20 0.72 0.63 0.28

WF GP

�0.09 �0.47 �0.96 �0.65 0.11 0.79
0.34 0.05 �0.23 �0.53 0.24 0.51
1.14 0.39 0.04 �0.86 �0.09 0.37

SH MS

�0.66 �0.65 �0.92 �0.45 0.30 1.03
0.14 0.18 0.03 �0.66 0.08 0.62
1.09 0.72 0.56 �1.14 �0.27 0.26
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mb, mean sea level pressure, geopotential height at 500
mb, specific humidity at 850 hPa) show differences in
the spatial structures (plot not shown) for different
shades. This implies that all of the large-scale param-
eters used in the study reflect different behavior of the
rainfall ISO.

Can there be distinct shades of temporal evolution
too? To answer this question, first we construct an evo-
lutionary history of each of the 9 nodes of 3 � 3 clas-

sification. This is done by constructing a composite evo-
lution of CI area-averaged rainfall anomaly from 30
days prior to 30 days after each of the clustered days at
all the nodes. Similar evolutionary history of each of the
9 � 9 SOM nodes is also obtained by constructing
acomposite around the clustered days at all 81 nodes.
Like the spatial pattern correlations as computed in the
previous paragraph, we make the temporal correlation
for each of the 3 � 3 nodes with each of the 9 � 9

FIG. 8. Spatial anomaly correlation of each of the 3 � 3 nodes with each of the 9 � 9 nodes is shown. Each of the nine
square panels represents one node of the 3 � 3 cluster, and each panel consists of 81 pairs of concentric circles arranged
in a 9 � 9 array. The diameter of the filled or the open circles inside the larger circles is proportional to the strength of
the anomaly correlation. Positive (negative) correlations are represented by filled (open) inner circles. Completely filled
(open) circles have correlation �1 (�1).
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nodes. Not surprisingly, we get different temporal vari-
ants or shades similar to the spatial shades discussed in
the previous paragraph (not shown). At least one of the
nodes in 9 � 9 clustering has exactly similar temporal
evolution with one of the 3 � 3 nodes. The other pat-
terns are different shades of any of the 3 � 3 nodes.

Thus, using SOM we have identified different shades
of active–break cycles (or ISO) that have different spa-
tiotemporal evolution. This property of SOM is used to
develop an analog prediction scheme and will be dis-
cussed in the next section.

6. A real-time extended-range prediction scheme
for CI rainfall using the SOM

As mentioned in the introduction, skillful prediction
of active and break spells of monsoon 3–4 weeks in
advance would have tremendous utility for farmers and
water resource managers. The potential for such ex-

tended-range prediction has been indicated in several
recent studies (Goswami and Xavier 2003; Xavier and
Goswami 2007; Webster and Hoyos 2004; Jones et al.
2004). Most of these studies use some form filtering of
the data and suffer from the “end point” problem when
applied to real-time prediction. Also, almost all studies
of extended-range prediction of ISO phases use linear
technique (e.g., regression) and hence capture only the
ensemble-averaged phases of the dominant oscillation
and fail to capture shades of different phases of the
oscillation. The SOM technique being nonlinear and its
ability to identify shades of different phases of the os-
cillation and their evolutionary history opens up a
whole new possibility for extended-range prediction of
active–break phases of the summer monsoon.

Here we present a scheme for the prediction of rain-
fall over central India four pentads in advance. The
technique, based on SOM classification of pentad data
of large-scale circulation indices (Table 1) constructed

FIG. 9. The different spatial shades of rainfall active and break patterns. The top (bottom) left panel is the
plot for most dry (active) node obtained from 9 � 9 classification. These two patterns have also the
maximum anomaly pattern correlation with the driest and wettest patterns of the 3 � 3 classification. The
other patterns are different shades of the most active and break patterns.
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from NCEP–NCAR reanalysis, does not involve any
filtering and, hence, is ideal for real-time prediction.
For the training purpose, data for the years 1951–99 are
used, while skill of the model is evaluated from hind-
casts of independent IMD rainfall data during 2000–04.
After a certain amount of experimentation, we decided
to use SOM clustering with 15 � 15 nodes to include
more shades of temporal evolution. Using data for the
pentad 31 May–4 June, the first four-pentad lead fore-
cast each year is made for the pentad starting with 20
June (i.e., 20–24 June, when the monsoon is well estab-
lished over central India). In this manner, four-pentad
lead forecast is made for 17 pentads during the summer
season every year.

The prediction scheme is based on the following
premise. The SOM classification on the training period
extracts 15 � 15 patterns and their evolutionary history
and stores them in the “reference” vectors. Time his-
tories of the patterns are saved on the dates clustered at
each node. For prediction from a given date, a “fore-
cast” vector is created with current and past data for
nine days for all the large-scale variables. This essen-
tially contains the pattern and its evolutionary history
at the initial time. If we could find an analog of this
pattern and its evolution in the past from the reference
vectors corresponding to different nodes, we could
make a four-pentad prediction from the evolutionary
history of the analog. In practice it is done as follows:

We normalized the data for each day and for each
variable as

X�i � � Xmin

Xmax � Xmin
,

where X is any variable for ith day: Xmax and Xmin are
the maximum and minimum values of the variable ob-
tained for the period 1951–99. For a given day, the data
for the day itself and the past nine days data of six
large-scale dynamical indices are used to construct the
SOM input vectors. Using these input vectors, SOM
clustering is obtained for 15 � 15 nodes. Each node
now consists of a reference vector (see section 2) iden-
tical in dimension to the input vectors and dates that
depict individual shades of ISO. Similar to the input
vectors constructed for the past data, forecast vectors
are constructed for the starting day of the forecast and
for the past nine days using the same six large-scale
dynamical parameters. The Euclidian distance between
the forecast vector and the reference vector attached to
each of 15 � 15 nodes is calculated. The node for which
this difference (distance) is least is considered the true
analog of the forecast vector of that particular day. To
account for uncertainty in the temporal evolution of the

initial condition (forecast vector), we decided to con-
struct ensemble mean forecasts based on a number of
slightly poorer analogs in the neighborhood of the true
analog. Through a series of experimentation, the opti-
mum neighborhood criterion for four-pentad forecasts
was found to be those reference vectors for which the
difference between Euclidian distance lies within
�25% of the minimum distance. Since each node also
has information of the dates clustered at the nodes, the
four-pentad forecast for any day in the forecast period
is the average of four-pentad value ahead of the days
clustered at the closest node and the nearest neighbors.
The amplitude of the forecasted rainfall for a given day
of the year is corrected by a factor determined by the
ratio of variance of observed rainfall over central India
on that day to the variance of the four-pentad predicted
rainfall for the same day during the training period. The
observed variance for a particular day during June–
September is determined from the period 1951–99. To
make the forecast for the next day, the process is re-
peated. In this case some other node will be selected
along with its nearest neighbors. This process is contin-
ued for all 17 pentads for each of the 5 yr selected for
prediction (2000–04).The correlation between four-
pentad lead forecasts and verifications of the area-
averaged standardized CI rainfall anomaly for all of the
85 pentads (17 pentad yr�1 � 5 yr) is 0.55 with stan-
dardized rms error (RMSE) of 0.88 (Fig. 10a). This
correlation is well above 99.99% confidence level.

While the correlation between four-pentad forecast
and observed rainfall at the same lead time using six
large-scale indices is highly significant, it still leaves a
large fraction of variance unexplained. It appears that
the six large-scale parameters are inadequate to delin-
eate some aspects of the nonlinear convectively
coupled monsoon ISO. It may be partly due to the fact
that some of the patterns associated with some of the
15 � 15 nodes may not be quite distinct from each
other. Such degeneracy may add random errors to the
forecast. To reduce the contribution of random errors,
we decided to adopt a multimodel ensemble strategy.
To achieve this, we would like to construct a second
SOM model with a set of different indices. For this
purpose lag correlation between the central India rain-
fall time series and various circulation fields were car-
ried out. From this exercise, three new indices are cho-
sen that have strong correlation with the CI rainfall
with a lag between 15 and 20 days. The indices are
defined in Table 1 (last three indices). The SOM net-
works are then trained separately based on the past 19
days information for the same number of nodes, and
the forecast rainfall is obtained in a similar way as the
earlier one (i.e., based on the past nine days training).
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The two-model ensemble forecast rainfall is then ob-
tained by averaging the two forecasts. The four-pentad
forecast and verification are shown in Fig. 10b. The
correlation between forecasts and verification for the
85 pentads is 0.66 and standardized RMSE is 0.63.
Thus, the multimodel ensemble forecast strategy in-
creases the forecast skill and reduces the RMSE. The
extended drought in the years 2002 and 2004 is well
captured using this forecast model.

From the previous example it is clear that the skill of
this technique depends on the efficiency of SOM in
picking up proper analogs. If a proper analog of an

event in the forecast period exists in the past data, the
future will be well forecast. Though Lorenz (1969)
found that small errors grow rapidly, the prospect of a
better rainfall forecast using an artificial neural net-
work technique lies in the fact that it compensates the
effect by efficiently separating the signal from the noise
(Elsner and Tsonis 1992). We also wish to point out
here that the choices of the indices in this study are
partly made through a “frequentist” approach (e.g., the
three indices used in the past 19 days training) and
partly through a “Bayesian” approach (e.g., the six in-
dices used in the past nine days training). There is al-

FIG. 10. (top) The four-pentad forecast for CI for the 85 pentads (17 pentad yr�1 � 5 yr) from 2000 to 2004. The
first forecast for each year is for the pentad 20–24 Jun and the last pentad is for 8–12 Sep. This forecast is made
using the SOM model with six dynamical parameters and the past nine day information. (bottom) Similar to (top)
but showing the average forecast of the two-SOM model (i.e., one using the past 9-day information and one using
the past 19-day information).
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ways a chance of improving the forecast through some
other choices of indices. In addition, forecasts for other
regions of study may also be calculated. We conclude
this section by saying that the above example of ISO
forecasting may be considered an instance of applica-
tion of SOM that laid the foundation of a more detailed
study in applying SOM to ISO prediction. The above
illustration is a logical extension of our identification of
a nonlinear convectively coupled intraseasonal oscilla-
tion, isolating its various phases and signature of large-
scale dynamics on the rainfall ISO using SOM during
the summer monsoon over India.

7. Summary and conclusions

In this paper, a new innovative technique known as
self-organizing map (SOM) has been introduced to
study the monsoon ISO. Unlike the linear techniques
used so far that could identify only the ensemble mean
phases of the monsoon ISO, a nonlinear pattern recog-
nition technique, SOM, is capable of identifying differ-
ent shades of each ensemble mean phase, including
their evolutionary history. This novel feature of the
technique has opened up the possibility of a nonlinear
extended-range prediction of monsoon rainfall.

We started with the recognition that the difficulty in
predicting the active and break phases Indian summer
monsoon is due to the event-to-event variability of the
phases of intraseasonal rainfall oscillation. The event-
to-event variability is a signature of nonlinearity of the
oscillation. We hypothesize that the summer monsoon
ISO is a convectively coupled oscillation, and hence it
should be possible to identify the phases of rainfall os-
cillation by using large-scale circulation parameters.
However, the relationship between rainfall and circu-
lation being nonlinear, an effective method to isolate
the commonality among the parameters such that they
detect different phases of the nonlinear convectively
coupled intraseasonal oscillation is needed. For this
purpose, one needs to include a sufficiently large num-
ber of circulation parameters since the different shades
of the convectively coupled intraseasonal oscillation of
rainfall are reflected through a distinct common pattern
among these parameters. Using many parameters to
understand a single phenomenon, essentially, implies
use of a dimensionality reduction and clustering algo-
rithm. Thus, we use an unsupervised learning clustering
algorithm called SOM to bring out the common fea-
tures of active and break phases and their different
shades.

Large-scale circulation indices (Webster and Yang
1992; Goswami et al. 1999; Wang and Fan 1999) have
been successfully used in the past to represent the sea-

sonal-mean monsoon and its interannual variability. In
this study, we use the same large-scale circulation indi-
ces to describe the summer monsoon ISO. We use six
daily large-scale dynamical indices as input parameters
to the SOM algorithm and, from the dates associated
with different SOM nodes, demonstrate that it captures
the temporal evolution and the spatial patterns associ-
ated with different phases of the monsoon rainfall ISO
(Figs. 4 and 5). The driest and wettest patterns of rain-
fall obtained from using only dynamical parameters
(i.e., excluding the rainfall itself) through the use of the
SOM algorithm resembles closely the composite active/
break rainfall pattern obtained from using rainfall only
(from the IMD rainfall). This also implies that the
large-scale parameters used in this study are sufficient
to determine the rainfall variability and hence are use-
ful for predictions.

The ability of identifying distinct nonlinear phases of
rainfall ISO using only large-scale circulation param-
eters through SOM and without involving any a priori
criterion is noteworthy. This not only testifies to the
strength of the SOM technique in bringing out the non-
linear coupled states but also establishes that the mon-
soon ISO is a nonlinear coupled oscillation. The novel
feature of the methodology presented here is that it is
independent of the datasets used. We demonstrate that
the spatial structure and temporal evolution of the
phases of the summer monsoon ISO in rainfall can be
captured with equal fidelity by using large-scale circu-
lation parameters from ERA-40 as well as NCEP–
NCAR reanalysis datasets.

Even though we may be interested only in predicting
the intraseasonal component of rainfall variability, pre-
dicting the same using rainfall time series is rather dif-
ficult due to the intrinsically large day-to-day variability
in rainfall. Our demonstration using a nonlinear tech-
nique that a suitable combination of large-scale circu-
lation variables are strongly linked to different phases
of rainfall low-frequency intraseasonal oscillation (in-
cluding some of the regional details) provides a frame-
work for devising a prediction strategy for active and
break phases without involving rainfall information. By
using a 9 � 9 SOM classification instead of a 3 � 3 one,
we also show that the large-scale circulation indices can
identify different shades of each ensemble mean phase
of the precipitation ISO. Based on this knowledge, a
formal methodology for analog prediction scheme is
proposed and demonstrated that a skillful four-pentad
lead prediction of central India rainfall is possible using
only circulation fields. The predicted rainfall captures
the different phases of ISO and, as it does not involve
any filtering, can be effectively used for real-time ex-
tended-range prediction of monsoon rainfall.
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