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ABSTRACT

The seasonality of predictability of ENSO (related to the so-called spring predictability barrier) is investigated
using the Cane–Zebiak coupled model. Observed winds are used to force the ocean component of the model to
generate analyzed initial conditions. It is shown that decrease of predictability during Northern Hemispheric
spring is due to fast error growth (with a doubling time of small errors of about seven months) being associated
with many, but not all, spring analyzed initial conditions. With winter analyzed initial conditions, errors always
grow more slowly (with a doubling time of about 15 months). The fast growth rate of errors seen in the dominant
empirical orthogonal function (EOF) in spring is present in all smaller scales of motion (higher EOFs) in all
seasons. The coupled model allows initial errors in smaller scales to quickly cascade to the dominant scale in
spring of certain years, while it does not allow this in winter. Further, if the initial conditions are generated from
a long coupled run (coupled initial conditions as opposed to analyzed initial conditions), then errors in the
dominant mode grow slowly both in spring and winter. These results establish that the origin of the seasonality
of predictability lies in the use of observed winds to create initial conditions. The authors propose that the
analyzed initial conditions have an ‘‘imbalance’’ that arises from the fact that the variability of observed winds
has a much larger small-scale high-frequency component than model winds. Such imbalances in the spring initial
conditions in certain years quickly affect the evolution of the dominant mode, leading to loss of predictability.
Even though such imbalances may be present in the winter initial conditions, they take a much longer time to
influence the dominant mode, thus accounting for the greater predictability in winter.

1. Introduction

The physical basis for prediction of the mean state
of the atmosphere one season or more in advance is well
established (Charney and Shukla 1981; Shukla 1981).
The premise is that low-frequency changes in the at-
mosphere (mainly in the Tropics) are governed primarily
by slowly varying conditions at the lower boundary such
as the sea surface temperature (SST). Many modeling
studies (e.g., Lau 1985; Shukla and Fennessy 1988;
Shukla and Wallace 1983) and statistical forecasting ef-
forts (Barnett 1981a,b; Barnett and Preisendorfer 1987;
Harnack et al. 1986) support this view. In contrast, the
subject of predictability of the coupled ocean–atmo-
sphere system is still in its infancy. This is partly be-
cause the concept of slowly varying boundary condi-
tions is not relevant to the coupled system. The bound-
ary condition for either component (ocean or atmo-
sphere) is an internal variable for the other (e.g., wind
stress or SST). As a result, any long-range predictability
in the coupled system must arise from its internal dy-
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namics. By ‘‘internal dynamics’’ we mean any process
or processes (such as nonlinear interactions or feed-
backs) leading to low-frequency oscillations of the cou-
pled system. The dynamics of the coupled system spans
a wide spectrum of time and space scales of motion
ranging from atmospheric synoptic disturbances,
through the annual cycle and biennial oscillation to the
quasi-four-year El Niño–Southern Oscillation (ENSO)
signal. The fact that the tropical ocean–atmosphere sys-
tem exhibits a large amplitude ENSO oscillation on the
interannual timescale indicates a certain potential for
long-range predictability. Extensive studies have been
conducted to understand the physical mechanisms of the
observed quasi-four-year period, mostly using coupled
models including limited but essential physics (see Nee-
lin et al. 1992 for a review). The potential for long-
range predictability of ENSO has been demonstrated by
several forecasting models including purely statistical
methods, intermediate coupled models, and coupled
general circulation models (CGCMs). Past work on
ENSO prediction, reviewed by Latif et al. (1994), and
more recent efforts (Barnett et al. 1994; Ji et al. 1994;
Davey et al. 1994; Wu et al. 1994; Balmaseda et al.
1994) have established the possibility of ENSO predic-
tion 6–12 months in advance. Some dynamical coupled
models (Cane et al. 1986, in particular) have somewhat
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larger useful lead times. A prominent feature of most
of these models is that the skill of forecast has a strong
seasonality, with a sharp decline in skill in boreal spring
(Xue et al. 1994; Latif et al. 1994) followed sometimes
by a recovery of the skill during the following autumn
or winter. This so-called spring predictability barrier has
been a major concern in attempts to extend the lead time
of successful forecasts.

While forecast models have demonstrated the feasi-
bility of forecasting ENSO about one year in advance,
the fundamental question regarding the limit on pre-
dictability of the coupled ocean–atmosphere system has
not been settled. Any further improvement of the present
prediction skill of these models will depend on a better
understanding of the factors responsible for the limit on
predictability, which is determined by the growth of
small errors. Goswami and Shukla (1991, hereafter GS)
made the first detailed calculation of the growth of small
errors in the Cane–Zebiak model (Zebiak and Cane
1987, hereafter CZ model). They showed that growth
of small errors in the coupled model is governed by two
processes having two different timescales. The fast pro-
cess has error doubling time of about 5 months (e-fold-
ing time of about 6.5 months) and the slow process has
error doubling time of about 15 months (e-folding time
of about 21 months). Goswami and Shukla proposed
that these two processes may be related to two distinct
unstable normal modes of the coupled system. Follow-
ing a different procedure but using the same model,
Blumenthal (1991) also arrived at these two timescales.
However, he proposed that the fast error growth arises
because the coupled model is non-self-adjoint. If a sys-
tem is not self-adjoint, there is a possibility of transient
growth in a mode that does not coincide with a growing
normal mode of the classical stability analysis. This
mode is one of the singular vectors of the evolution
operator, whose growth rates are given by the singular
values (Molteni and Palmer 1993). The growth rate of
one (or more) of these transient modes could be larger
than that of the fastest growing normal mode. Therefore,
if the system is non-self-adjoint, there is a possibility
that such transient modes may be relevant to the fast
growth of errors. Regardless of whether the fast growing
entity in the CZ model is a normal mode or a singular
vector, however, it is clear that the predictability of the
coupled system is limited by the process or processes
responsible for the fastest growth of errors. It is hoped
that identification of the origin of the fast error growth
will lead to development of methods [similar to ini-
tialization in numerical weather prediction (NWP)] to
suppress it, and thereby to extend the lead time of useful
long-range predictions.

The objective of the present study is to isolate the
origin of the fast error growth. Experience with forecast
models, which show decrease in forecast skill in spring
and enhanced skill in winter, lead us to believe that the
fast growth of errors may be linked with the spring
predictability barrier. Therefore, we conduct a careful

study of the dependence of the error growth on initial
conditions. This issue was not dealt with in any detail
in GS. Second, a question that has not been addressed
in the context of coupled models at all is how errors in
different scales of motion grow. Its relevance to the
origin of the fast error growth is that the latter may be
associated with the smaller scales of motion. The third,
related, question is how initial errors in one scale of
motion affect the other scales of motion. While these
questions have been studied in detail for the predict-
ability of the atmosphere, we have made the first attempt
to address them in the context of a coupled ocean–
atmosphere model. In addition to being of fundamental
importance for understanding the nature of error growth
in the coupled system, the answer to these questions
has practical relevance. For example, a knowledge of
how errors grow in different scales of motion and how
errors in one scale affect other scales might indicate
what kind of error in the initial condition affects the
prediction most severely, and hence cannot be tolerated.
On the other hand, errors in the initial condition that do
not significantly affect the dominant (ENSO) mode
might well be tolerable. As of now, very few obser-
vations go into preparing the initial condition for cou-
pled models. We hope that the questions studied here
will help to define the optimum set of observations nec-
essary to generate ‘‘good’’ initial conditions.

The paper is organized in the following manner. Sec-
tion 2 describes the model and the methodology, in-
cluding the design of the experiments. In section 3, we
describe a large number of predictability experiments
with ‘‘analyzed initial conditions.’’ The seasonal de-
pendence of the predictability is examined in detail in
this section. The growth of errors in different scales of
motion is also examined. In section 4 we discuss pre-
dictability experiments with ‘‘coupled initial condi-
tions.’’ This section demonstrates that the slow growth
of errors is intrinsic to the coupled model, while the fast
growth with spring analyzed initial condition must arise
due to some high-frequency component introduced
through the ‘‘analysis.’’ Section 5 summarizes the re-
sults and makes some concluding remarks.

2. The model and methodology

a. The model

The model used in this study is the standard version
of the Cane–Zebiak model that has been used in a large
number of studies related to ENSO (Cane et al. 1986;
Zebiak and Cane 1987; Goswami and Shukla 1991,
1993; Blumenthal 1991). This is an anomaly coupled
model, that is, the governing equations describe oceanic
and atmospheric perturbations about the mean clima-
tological state, with monthly climatology prescribed
from observation. The model uses a steady-state at-
mosphere, and as a result does not contain the effect of
atmospheric high-frequency variability on the coupled
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FIG. 1. EOF 1, EOF 10, and EOF 20 of the model sea surface temperature (SST), thermocline height (h),
zonal wind (U), and meridional wind (V) anomalies, calculated from monthly values of an 80-yr coupled
run. Positive contours are solid lines while negative contours are dashed. The magnitudes of the contours
are arbitrary. The percentage of total variance explained by each EOF is also shown.

oscillation. Nonlinearity enters through the thermody-
namic energy equation for the ocean. The model is de-
scribed in many of the studies mentioned above, and
we refer the reader to them for details. The strength of
this coupled model lies in its ability to simulate much
of the characteristic large-scale spatial and temporal
structure of ENSO including the recurrence of warm (or
cold) phases at irregular intervals with an average period
of 3–4 years (Zebiak and Cane 1987). The model pre-
scribes the climatology from observations, and this is
equivalent to using a ‘‘flux correction.’’ As a result this
rather simple model has been more successful in sim-
ulating ENSO variability, and in forecasting, than even
complex coupled GCMs without flux correction (see
Neelin et al. 1992). The weakness of the model lies in
the fact that the positive SST anomalies during a mature
warm event tend to be too confined meridionally and
the core of the positive anomaly does not move suffi-
ciently to the west, compared to reality.

b. Methodology

In GS, predictability experiments were conducted by
introducing small perturbations distributed randomly in

space. This is equivalent to introducing perturbations in
all scales of motion. One of the major objectives of the
present study is to examine how errors in different spa-
tial scales of motion evolve and grow. In principle, this
may be achieved by representing the model fields in
terms of a set of orthogonal functions, Fn, each of which
has well-defined spatial scales, and then studying the
evolution of an initial error having the spatial structure
of one of the Fn. However, it is not immediately clear
how to achieve this in a simple way. ENSO oscillations
in the model as well as in nature have a characteristic
spatial pattern whose zonal scale is much larger than its
meridional scale. It is not possible to represent this pat-
tern by either a small number of Fourier modes or a
combination of parabolic cylinder functions and Fourier
modes, for example. Therefore, we decided to use the
empirical orthogonal functions (EOFs) of the coupled
model itself as basis functions to represent the model
fields. For this purpose, we carried out EOF analyses
of different fields from a long coupled run of the CZ
model. The first, tenth, and twentieth EOFs of zonal (U)
and meridional (V) winds, sea surface temperature
(SST), and thermocline height (h) anomalies are shown
in Fig. 1. The dominant mode of variability associated
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FIG. 1. (Continued)

with the ENSO—that is, the first EOF—of any of these
fields explains a large fraction of the total variance of
that field. EOF 1 explains about 60% of the variance of
the h field and about 80% of the SST variance. This is
consistent with findings in other studies (e.g., Xue et al.
1994; Zebiak and Cane 1991). It is noteworthy that the
first four EOFs of the model SST anomalies explain
93.2% of the total variance, whereas the first four EOFs
of the observed SST account for 68% of the total vari-
ance (Zebiak and Cane 1991). This reflects the partial
absence of non-ENSO signal in the model fields, and
may be related to the fact that the coupled model has
a steady-state atmosphere that does not generate high-
frequency atmospheric variability. The full set of EOFs,
once calculated from the long coupled run, is called the
standard set and is saved for future use in the predict-
ability studies. We recognize that there is no one-to-one
correspondence between EOF number (or index) and
spatial scale, that is, the nth EOF is not necessarily of
larger spatial scale than the (n 1 1)th EOF for all n.
But EOF 1 is certainly large scale, with basin-scale
structure, whereas a high index EOF such as EOF 10
is small scale. We refer to an initial error (see subsection
e) having the spatial structure of EOF 1 as an error in
the large scales of motion and an error with the structure
of a high index EOF as being an error in the small scales.

c. Initial conditions

As adequate data for the coupled system variables
such as ocean currents and thermocline depth are not
available, the initial conditions for the predictability ex-
periments are derived from an initial condition run as
described in Cane et al. (1986). In this run, the data
(i.e., the values of all fields) at the initial time istoa

simulated by forcing the ocean component of the cou-
pled model with the wind stress specified from obser-
vations for each month starting from January 1964. We
have used the Florida State University (FSU) surface
wind stress analysis for the period covering January
1964–May 1988 (Goldenberg and O’Brien 1981) to
force the ocean component of the coupled model. The
calculated anomalies of all model fields including sur-
face winds (as a response to simulated SST) at time

are then saved and used as initial conditions for thetoa

predictability experiments. These initial conditions are
referred to as the analyzed initial conditions, as they
involve the surface wind observations that are assimi-
lated using the model.

Predictability experiments are also carried out with
another class of initial conditions, which are referred to
as coupled initial conditions. To generate the latter, a
coupled model run is started from a chosen analyzed
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initial condition at time . For t . , the coupled modelt to oa a

is allowed to generate its own atmospheric and oceanic
fields, and the model is integrated up to a time t 5 .toc

The various oceanic and atmospheric fields at the instant
constitute the coupled initial conditions.toc

d. Control experiment

A control experiment is a forecast using the coupled
model, starting with some initial condition at time .toa

In the control run, the coupled model produces evolution
of both oceanic and atmospheric fields internally for
time t . . Generally, control experiments are con-toa

ducted for a duration of 15 years. The zonal component
of surface wind produced by the control run is projected
into the set of EOFs of the U field once every month
during an experiment. The computed amplitudes of the
U field in the different EOFs are saved. This procedure
is employed on any field such as SST or h in which we
intend to follow the growth of errors. For example, the
zonal wind field in the control experiment is ofUAtmCont.

the form

N

U (x, y, t) 5 A (t)F (x, y), (1)OAtm n nCont. Cont.
n51

where Fn is the nth EOF and (t) is the amplitudeAnCont.

(principal component, PC) corresponding to Fn; {Fn}
is the standard set of EOFs that describes the natural
variability of the coupled system; and N is the number
of model grid points. Since the EOFs are orthogonal,
the amplitude corresponding to the nth EOF is

TA 5 F U . (2)n n AtmCont. Cont.

Broadly speaking (see above), EOFs of different in-
dices are associated with different horizontal scales of
motion. This property enables us to introduce pertur-
bations selectively to study the growth of errors in the
large or small spatial scales and to examine how errors
in one scale affect other scales.

e. Perturbation experiments

A perturbation experiment comprises an ensemble of
forecast experiments using the coupled model. Each
forecast experiment is identical to the control experi-
ment except that a small random perturbation is intro-
duced at the initial time on a selected amplitude An. The
initial error field corresponding to this perturbation
therefore has the spatial structure Fn(x, y). Since the
wind stress is an important source of error in the coupled
model, the U field was chosen for introducing initial
errors. Similarly, to introduce initial error in the ocean
component, we chose the thermocline depth field. A
number of 15-yr forecast runs, each with a random per-
turbation to the first amplitude A1, were conducted. The
15-yr duration is based on our experience that shorter
runs often do not permit small initial perturbations to

grow to saturation. In these runs, an error is introduced
at the initial time to in the U field (or the h field) alone.
For example, if the initial U field in the control run is

N

U (t ) 5 A (t )F ,OAtm o n o nCont. Cont.
n51

then the initial U in a perturbation run is

N

U (t ) 5 {A (t ) 1 dR}F 1 A (t )F , (3)OAtm o 1 o 1 n o nPert. Cont. Cont.
n52

where d is the (fixed) magnitude of the perturbation and
R is a random number drawn from a Gaussian set with
zero mean and unit variance. The initial perturbation in
the amplitude of F1 in the U field leads to differences
between the perturbation and control runs in all model
fields as time progresses. In general, at any time t . to,
the amplitudes (t) for any variable in the pertur-AnPert.

bation run are different from those in the control run,
(t). For example, ifAnCont.

N

U (x, y, t) 5 A (t)F (x, y)OAtm n nPert. Pert.
n51

is the U field in the perturbation run, then, in general,
(t) ± (t). Perturbation experiments with knownA An nPert. Cont.

initial perturbations on An, n . 1, have also been carried
out.

This method is clearly distinct from the classical stud-
ies on predictability such as GS. There, an initial con-
dition run was made by forcing the ocean model with
observed surface wind stresses. A series of identical
twin experiments with the coupled model was conducted
by introducing small initial perturbations randomly dis-
tributed in space in each of 181 different initial con-
ditions. Then, the mean error growth was computed by
averaging over these 181 experiments. Clearly, the clas-
sical studies are not designed to examine the dependence
of error growth on initial condition or spatial scale.

f. Error growth analysis

We use the root-mean-square differences (rmse’s) of
the amplitudes An in the control and corresponding per-
turbation experiments as a measure of error evolution.
For an ensemble of perturbation runs containing M sam-
ples, the rmse for the kth amplitude at a particular time is

1/2M1
2rmse(t) 5 {A (t) 2 [A (t)]} . (4)O k kCont. Pert.1 2M i51

To estimate the rate of growth of forecast errors, the
classic method used by Lorenz (1982) with modifica-
tions suggested by Dalcher and Kalnay (1987) is adopt-
ed. The growth of the root-mean-square error E between
two forecasts with the same model is assumed to obey
the quadratic differential equation
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dE E
5 aE 1 2 . (5)1 2dt E`

Here, a is the rate of growth and E` is the asymptotic
value of E. This equation takes into account the ex-
ponential growth of a small error with a growth rate a,
as well as the eventual saturation of the error at a level
E` due to quadratic nonlinearities.

According to Eq. (5), the error evolves as

E`E(t) 5 E 2 , (6)`

E0 at1 1 e1 2E 2 E` 0

where E0 is the initial value of the error.
We need a slight generalization when two processes

coexist that lead to two timescales of error growth. We
write the total error as

E(t) 5 E1(t) 1 E2(t), (7)

where E1 or E2 individually is governed by an equation
having the form of Eq. (5); a1 and a2 represent the two
growth rates, and and the two saturation levelsE E1 2` `

for E1 and E2. The error eventually saturates at the level
E`, which is the sum of the two saturation levels; that
is,

E` 5 .E 1 E1 2` `
(8)

There is no rigorous theoretical basis for fitting the
error growth curves with two timescales. This is pri-
marily based on strong empirical evidence and the
following arguments. The errors in different scales in
systems possessing many scales of motion tend to
grow at different rates and saturate at different levels
(Lorenz 1969). The growth of errors in a given vari-
able, in principle, has contributions from all these
scales. If the growth rates and saturation levels of the
errors associated with different scales are not suffi-
ciently well separated, the error for a given variable
would show a smooth averaged growth. If, however,
the major contribution to the error growth comes from
two scales whose growth rates and saturation levels
are distinctly different, we expect to see two levels
of saturation (or two plateaus) in the error growth
curve. In GS it was noted that the averaged error
growth in the CZ model has two slopes and two levels
of saturation. This led to the proposal that the growth
of error in the coupled system is governed by two
timescales. In the present study it is shown that the
two timescales proposed by GS actually come from
different initial conditions, in each of which individ-
ually the error in the dominant mode grows with one
or the other growth rate. In addition, it is found that
errors in all smaller scales of motion tend to have two
saturation levels. Therefore, we fit these error curves
with the generalized model having two timescales of
error growth [Eq. (7)].

3. Predictability experiments with analyzed initial
conditions

a. Small initial perturbations on the dominant mode

In this section we present results of a series of iden-
tical twin experiments with analyzed initial conditions
from the period January 1970–December 1987. For each
initial condition a 15-yr control coupled run is made.
During the control experiment the projected amplitudes
An(t) for any field (say, U) are saved every month. Then,
an ensemble of perturbation runs (normally 10, often
more than 100), each of 15 years’ duration, is made
introducing a random perturbation in one of the ampli-
tudes (say, A1 or A10) at the initial time in each case.
The magnitude of the perturbation is a fixed percentage
of the standard deviation of the corresponding ampli-
tude. We have examined the evolution of both small and
large initial errors. In the small error experiments, the
initial error in A1 is equal to 1% of its standard deviation
(SD), whereas initial error in A10 is 10% of the SD of
A10. These values are chosen because high-index EOFs
explain a much smaller fraction of the variance of any
physical field. The large error experiments have initial
error magnitudes of up to 20% of the SD of A1. The
standard deviation of each amplitude represents the up-
per bound or the level of saturation of errors in that
amplitude.

In the first set of experiments, initial errors were in-
troduced in the dominant amplitude A1 for the U field.
Figure 2 shows the time evolution of A1 from the control
and fifty perturbation runs, and of the rmse [Eq. (4)],
for the different analyzed initial conditions, one cor-
responding to Northern Hemisphere spring (April) and
the other corresponding to winter (December). All per-
turbation trajectories are close to the control for some
time and then move away from it (and from each other).
It is remarkable that the rmse curves show large fluc-
tuations, which persist even if the ensemble size of the
perturbation runs is increased to 200 (not shown). In-
spection of several cases shows that mean peak-to-peak
separation is roughly two years (Fig. 2a); in some cases
(Fig. 2b), the fluctuations are modulated by an oscil-
lation of about 4-yr period.

It also appears that with December initial conditions
the perturbation trajectories are close to the control for
a longer period than in the May case (Figs. 2a,c). Fur-
ther, the root-mean-square (rms) difference seems to
grow slower and to take longer to reach saturation in
the winter case than in the spring case (Figs. 2b,d). The
saturation level is approximately equal to the SD of A1

for the U field, which is about 18.
To decide how the winter and spring error growths

differ from each other, we need a quantitative estimate
of the growth rate. This is made difficult by the presence
of the large fluctuations in the rmse curves. If we club
together several winter cases or several spring cases
from different years, the amplitude of the fluctuations
are found to reduce substantially. Although the rmse
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FIG. 2. The time evolution of the dominant amplitude (A1) of the
zonal wind field (U) in a control (thick dashed) run and 50 pertur-
bation (thin lines) runs for a winter [(a) 1985 December] and a spring
[(c) 1978 April] analyzed initial condition. The evolution of rmse in
A1 for the two initial conditions is shown in (b) and (d), respectively.
The initial perturbation is applied to A1 of U and its magnitude is
equal to 1% of the standard deviation of A1.

curve for each April (or December) has similar large
amplitude oscillations, the curves for different years are
phase shifted relative to each other, resulting in the re-
duction of the fluctuations in the composite. The phase
shift of the rmse curves is due to the phase shift of the
control runs corresponding to different Aprils (or De-
cembers). Figure 3 shows the rms errors from a com-
posite of 18 winter cases with December initial con-
ditions from 1970 to 1987. For each analyzed initial
condition, a control and 10 perturbation runs were made;
the rms error evolutions for the different initial condi-
tions were averaged over the 18 cases to form the com-
posite. The initial error in A1 propagates to all other
amplitudes An as the integration proceeds. The dotted
curves represent the best fit to the rmse evolution using
either Eq. (6) or Eq. (7). The rmse for A1 clearly has
only one saturation level, whereas those for higher am-

plitudes have two saturation levels. A good fit cannot
be obtained for any An, n . 1 using a single growth
rate and saturation level.

It is easy to show that for small initial error (Eo/E`

K 1) the error as given by Eq. (5) grows exponentially
for small times (at K 1). The fit to the rmse curve for
A1 allows the estimation of the growth rate a1; for the
December initial conditions a is 0.05 and this corre-
sponds to a doubling time of small errors of about 15
months. All higher amplitudes An have two growth rates,
the smaller of which is about 0.1 for all n. The errors
behave in exactly the same way for January initial con-
ditions.

Spring initial conditions seem to fall into two classes.
In some years the growth of error in A1 is slow and its
behavior is similar to the winter case; in other years,
error growth is much faster. The rmse with the first class
of spring initial conditions is not shown. We mention
only that error in A1 has one growth rate (a ø 0.05),
whereas error in any higher An has two growth rates,
the lower of which is about 0.1. We therefore call these
spring cases winterlike. Of the 18 years examined
(1970–87), eight April initial conditions are winterlike.
Very few of the May initial conditions exhibit fast
growth; in many of the May cases, an initial period of
very slow growth seems to be followed by sudden in-
crease of the growth rate.

The rmse curves from the remaining 10 April initial
conditions, which exhibit fast error growth in A1, have
been composited (Fig. 4). Once again, error in A1 has
a single growth rate, and higher An show two growth
rates. The value of a is 0.1, corresponding to a doubling
time of about 7 months. The smaller of the two growth
rates in the higher amplitudes is again about 0.1. Unlike
in the winter cases, there is significant scatter in the
growth rate of small errors in A1 within the different
Aprils that have gone into the composite. In some years
the growth is relatively slow (though distinctly faster
than in winter) and in some years the growth is almost
twice as fast.

We find that the essence of the seasonality of error
growth is the following. Errors in the dominant mode
in all runs with winter initial conditions grow slowly,
whereas in about half of all spring cases they grow fast.
The fast growth rate in A1 in spring, with doubling time
of about seven months, is present in the higher EOFs
in all cases irrespective of initial condition, indicating
that it is a characteristic growth rate for the smaller
scales of motion. It appears that this fast growth rate
invades A1 in spring in certain years, while it is unable
to do so in winter.

Goswami and Shukla (1991) found that error evo-
lution seems to be governed by two growth rates. Their
estimates of the rates are not very diffferent (doubling
times of 15 and 5 months) from the slow and fast growth
rates found here. However, since the rmse was averaged
over all initial conditions, the origin of the fast growth
was not clear in GS.
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FIG. 3. Evolution of rmse composite for amplitudes A1, A2, A5, and A10 of the zonal wind field (U) with
winter analyzed initial condition. The composite is made from 18 December analyzed initial conditions from
1970 to 1987. The dashed curves represent empirical fits to the error curve. The initial perturbation is applied
to A1 of U and is equal to 1% of the SD of A1 (which corresponds to 1.6% of the total variance of the U
field). The quantities a, a1, and a2 are growth rates.

So far we have discussed growth of errors when initial
errors are introduced in an atmospheric field (zonal
wind). The growth of errors in the coupled system is
expected to be governed by coupled dynamics. There-
fore, it should be immaterial whether the initial errors
are in an atmospheric field or in an oceanic field. To
test this we carried out a series of experiments for a
number of initial conditions where a small error was
introduced in the dominant mode (A1) of the thermocline
depth field (h). This is equivalent to introducing initial
error in the oceanic heat content. The rmse for the pre-
diction of thermocline height anomaly (not shown)
evolves in much the same way as the rmse for zonal
wind in all cases examined. Our main conclusions re-
garding the error growth seem to be valid regardless of
whether the initial error is in an atmospheric field or in
an oceanic field.

As the dominant mode (EOF 1) explains a very large
fraction of the total variance of any variable in the mod-
el, the error growth in any particular physical field
should be dominated by the error growth in its first EOF.
To test whether this is the case, we looked at the growth
of errors in SST and zonal wind anomalies averaged
over the Nino-3 (58S–58N; 1508–908W) and Nino-4
(58S–58N; 1608E–1508W) regions in a few cases. Ex-
amination of rmse in Nino-3-SST or Nino-3-U, Nino-
4-SST or Nino-4-U, shows that evolution of errors in
these fields is nearly the same as that in the dominant
mode. Clearly, the growth of errors in the dominant
mode determines the error growth of the model fields.
The assertions in this and the previous paragraph are

based on only a few initial conditions, and should be
considered preliminary.

b. Initial perturbation on high EOFs (small scale)

In this section, we address the following important
issue. How do errors initially introduced in small spatial
scales influence the growth of errors in the dominant
mode? To answer this question, we introduce an initial
error in the tenth EOF, whose magnitude is 10% of the
SD of Al0. The growth of rmse in the dominant mode
(A1) for winter and spring initial conditions is shown in
Fig. 5. Figure 5a is the average over six December initial
conditions and Fig. 5b is a composite formed from seven
non-winter-like April cases. The first thing to note is
that whether the initial error is in the dominant mode
(as in Figs. 3 and 4) or in a higher mode (as in Fig. 5),
the rate of growth of errors in A1 remains the same.
Errors grow slowly with winter initial conditions and
fast with spring initial conditions. The second, and per-
haps the more important point to note is the following.
The magnitude of the initial error introduced in the tenth
EOF is the same for both winter and spring initial con-
ditions, and the level of saturation of errors in A1 is the
same for all initial conditions. Since the rates of growth
of errors for spring and winter initial conditions are
clearly different, one would expect the time required to
reach saturation with winter initial conditions to be lon-
ger than that with spring initial conditions (as can be
seen in Figs. 3 and 4). If the initial error is in Al0,
however, we note from Fig. 5 that while the time taken
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FIG. 4. Same as in Fig. 3 but for spring analyzed initial condition. The composite is made from 10 non-
winter-like April analyzed initial conditions.

FIG. 5. Evolution of rmse composite (solid curve) with empirical
model fit (dashed curve) for the dominant amplitude (A1) for (a) winter
and (b) spring analyzed initial conditions. For each initial condition,
an ensemble of 10 perturbation runs were made. The initial pertur-
bation is applied to A10 of U and its magnitude is equal to 10% of
the SD of A10. The rmse are composited from six winter and seven
spring initial conditions.

for error to reach saturation with spring initial conditions
is comparable to those in Fig. 4, the corresponding time
with winter initial conditions is much larger than those
in Fig. 3. With winter initial conditions, error in A1 does
not reach saturation in a 15-yr integration, and therefore

we made 30-yr integrations in this case. The implication
is that a perturbation of small spatial scale quickly in-
troduces a significant error in the dominant mode in
spring but takes much longer to lead to an appreciable
error in EOF 1 in winter. In other words, it appears that
the dynamics of the coupled system allows errors in
small-scale motions in spring to propagate rapidly to
the dominant mode, while it discourages upscale prop-
agation of small-scale winter errors.

c. Large initial perturbation on the dominant mode

Our interest in the present study is chiefly to examine
seasonality and scale dependence in the growth of small
initial errors. As pointed out in the introduction, it is
the behavior of small errors that determines the theo-
retical limit on predictability. However, when the CZ
model is used for making predictions, the errors in the
initial fields are not necessarily small. Further, it is the
behavior of the error in the first couple of years that is
of greatest interest in prediction-related work. An anon-
ymous reviewer has noted that very small errors grow
so slowly in the first year or so, that it might be of
interest to examine the growth of more realistic errors.

Accordingly, we discuss the initial evolution of errors
in EOF 1 of magnitude equal to 5%, 10%, and 20% of
the SD of A1. Figure 6 shows the rmse evolution in A1

in the first three years. Errors with December and Jan-
uary initial conditions are composites of all 18 cases
examined and those for April are composites of the 10
fast April cases (as in section 3a). The case of small
initial error (1% of the SD of A1) is shown for reference
(top panel). There are two important things to note in
Fig. 6. First, seasonality is marked for small initial error,
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FIG. 6. Evolution of rmse composite in the first 3 years in the dominant amplitude (A1) with winter
(December, January) and spring (April) analyzed initial conditions with initial error in the dominant mode
of U. The magnitude of error is equal to (a) 1%, (b) 5%, (c) 10%, and (d) 20% of the SD of A1. The
December and January composites are based on 18 initial conditions each while the April composites are
based on 10 non-winter-like April initial conditions.

and is discernible also in the 5% and 10% cases, whereas
the 20% case shows no consistent seasonality. Second,
the rate of growth of error in the first year increases as
the size of the initial error is increased; this is true for
both spring and winter initial conditions.

For small and moderate initial error (the 1%, 5%, and
10% cases), the rmse with April initial conditions is
always higher than that with winter initial conditions.
As the initial error magnitude is increased to 20% of
the SD of A1, however, rmse at 12 months is higher in
the winter cases than in the April case, leading to loss
of any seasonality. We remind the reader that in all these
experiments the initial perturbation has the spatial struc-
ture of EOF 1 and is therefore large scale. In an actual
forecast, the errors in the initial fields will almost cer-
tainly have nonzero projections on higher EOFs as well;
that is, they will have a component with smaller spatial
scales as well.

4. Predictability experiments with coupled initial
conditions

So far we have discussed the growth of errors in
forecasts with analyzed initial conditions, which are de-
rived by forcing the ocean component of the coupled
model with observed wind stress. Below, we examine
the growth of errors in forecasts with initial conditions
generated by the coupled model itself.

To generate coupled initial conditions, the coupled

model was run for a selected duration, T, starting with
the analyzed initial condition at time . During this run,toa

the model generates its own evolution of atmospheric
as well as oceanic variables. The full set of fields at the
time 5 1 T constitutes the coupled initial con-t to oc a

dition. The control run, and a set of 10 perturbation runs
are made with coupled initial conditions for a duration
of 15 years. The methodology for studying the growth
of errors in different scales of motion is identical to that
described in the case of analyzed initial conditions.

First we show in Fig. 7 the rmse for the dominant
mode (A1) for winter and spring coupled initial condi-
tions. The upper panel is a composite based on six winter
coupled initial conditions and the lower panel on six
April coupled initial conditions. Each coupled initial
condition, at time , has been generated by starting attoc

from an analyzed initial condition and running thetoa

coupled model for a long time T (at least 20 years).
Small perturbations were introduced in the dominant
mode of the U field at time (5 1 T). The strikingt to oc a

feature is that errors in both spring and winter cases
tend to grow with the slow growth rate. The fast growth
rate seen with spring analyzed initial conditions (section
3a) is conspicuous by its absence in the dominant mode.
However, as with the analyzed initial conditions, fast
growth is inherent to the higher EOFs (not shown). It
therefore follows that the slow timescale is the intrinsic
timescale of the coupled model. The lack of seasonality
in the growth of errors with coupled initial conditions
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FIG. 7. Evolution of rmse composite with empirical model fit for
the dominant amplitude (A1) with (a) winter (December) and (b)
spring (April) coupled initial conditions for large T. Here, T is larger
than 20 years in all cases. The initial perturbation is applied to A1 of
U and is equal to 1% of the SD of A1.

FIG. 8. Evolution of rmse composite with empirical model fit for the dominant amplitude (A1) for small
T with (a) winter (December) and (b) spring (April) coupled initial conditions derived from winter analyzed
initial conditions and with (c) spring and (d) winter coupled initial conditions derived from spring analyzed
initial conditions. Here, T is smaller than two years in all cases. The initial perturbation is applied to A1 of
U and is equal to 1% of the SD of A1.

and the presence of clear and marked seasonality with
analyzed initial conditions clearly shows that fast
growth of errors must be somehow related to the anal-
ysis, which uses the observed surface wind history to
generate initial conditions.

Having established that the rapid error growth in the
model with spring initial conditions is related to the
analysis, we ask the following question. For how long
does the coupled model retain the memory of the an-
alyzed initial conditions? To answer this question, we
conducted another series of identical twin experiments
with coupled initial conditions, with not very far fromtoc

, that is, with relatively small values of T. Figure 8toa

shows composites of rmse in the dominant mode with
for four different kinds of coupled initial conditions with
T lying between 12 and 20 months in each case. Each
of these composites is based on six similar initial con-
ditions. We see that if T is small, the growth of errors
is still governed by the model’s memory of the analyzed
initial condition. In other words, if the coupled model
was started with spring analyzed initial condition, the
growth of error is fast, no matter whether we initiate
the predictions from next winter or spring. Similarly, if
the coupled model was initiated with winter analyzed
initial conditions, the error grows slowly regardless of
whether the coupled initial conditions pertain to spring
or winter. We have found from experiments with dif-
ferent coupled initial conditions that the coupled model
begins to lose its memory of the analyzed initial con-
ditions after 3–4 years.

5. Summary and conclusions

The predictability of short-term climate fluctuations
such as ENSO, involving the coupled ocean–atmosphere
system, is primarily governed by internal dynamics. The
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physical basis for any long-range predictability of such
a system lies in the existence of one or more low-fre-
quency internal oscillations with significant amplitude.
The limit on the predictability, however, is set by growth
rates and saturation levels of errors in different scales
of motion in the presence of interaction between scales.
While these issues have been extensively studied in at-
mospheric predictability, they have not been examined
at all for the coupled ocean–atmosphere system. Recent
studies have shown that the growth of errors in the
coupled system is governed by at least two timescales
(GS; Blumenthal 1991). One of these is fast, with an
error doubling time of about 5 months, and the other is
slow, with a doubling time of about 15 months. To put
these growth rates in perspective, an initial error of
0.258C in SST would take a year to grow to 1.58C (ap-
proximately the SD of Nino-3 SST anomalies) at the
fast rate, and over three years at the slow rate. Present-
day forecast models (Latif et al. 1994) have useful pre-
diction skill at lead times of 6–12 months. Some inter-
mediate dynamical models (specially the CZ model)
show skill at lead times of 12–18 months. It seems clear
that the skill of this class of models is limited by rapid
growth of error, at a rate comparable to the fast rate
identified in GS. The primary objective of the present
study is to investigate the origin of the fast error growth.
We do this by examining the seasonal and scale depen-
dence of error growth. Decomposition of model fields
in terms of the model’s EOFs allows us to introduce
errors with a given spatial structure and to study growth
of errors in all scales.

We have studied the growth of errors in forecasts
started from different seasons. Two classes of initial
conditions were used—analyzed initial conditions were
generated using past observed winds and the ocean com-
ponent of the coupled model, whereas a long (; 20 yr)
run of the coupled model was used to generate coupled
initial conditions, in which the atmospheric and oceanic
fields are expected to be compatible with each other.

We find that growth of small or moderate error in the
analyzed initial condition is always slow in winter fore-
casts and fast in forecasts started from spring of certain
years. If coupled initial conditions are used, there is no
such seasonality and errors always grow slowly. Clearly,
the slow growth rate of errors (doubling time of about
15 months) is intrinsic to the model, whereas the fast
growth rate (doubling time of about 7 months) arises
from the use of observed winds in the analysis proce-
dure. There is clearly a mismatch between the physical
fields in the analyzed initial condition and the kind of
balanced fields that the model demands.

This mismatch leads to the seasonality in error
growth. The CZ model was designed specifically to cap-
ture the interannual variability of the large spatial scales
of motion. Therefore, much of the small-scale compo-
nent of the fields in the analyzed initial conditions must
appear to the model as noise. It is also possible that the
analyzed initial condition has error in the large spatial

scale. Our experiments show that in either case the con-
sequence is rapid error growth in the dominant mode
(EOF 1) with a subset of spring initial conditions.

If we recall that the first four EOFs of the coupled
model wind explain 95% of its variance, whereas the
corresponding number for the FSU winds is 41% (see
GS), it becomes clear that small-scale noise must be
present in the analyzed fields both in spring and winter.
We have shown (section 3b) that error travels much
more quickly from the small scales to the dominant
mode with spring initial conditions than with winter
initial conditions. This leads to rapid growth of error in
the physical fields with spring initial conditions, where-
as the growth remains slow in the winter case. If the
initial errors are large scale, the growth of error in the
dominant mode is fast in the spring case and slow in
the winter case (section 3a).

We believe that the ultimate limit on predictability is
governed by the slow growth rate of errors in the model.
It appears that some improvement of forecast skill may
be expected if the amplitude of the small spatial scales
in the analyzed fields can be reduced to make the latter
more compatible with the model. Of relevance here is
the study of Xue et al. (1994), who find that the fastest
growing singular vector of the evolution operator in the
CZ model has nonzero projection mostly on high-index
multivariate EOFs of small spatial scales. Another pos-
sibility is an analysis procedure using modified winds,
which are more in keeping with the model’s demands.
Encouraging results have been reported in this direction
recently (Chen et al. 1995).

Our results on the source of the fast growth rate of
errors in the CZ model may have a broader relevance
to the mechanism for the spring predictability barrier
common to most prediction models. To put our results
into perspective, it is important to point out some lim-
itations of the present study and some unanswered ques-
tions. First, our results are based on the CZ model. It
is important to establish the robustness of these results
using other similar or more complex coupled models.
In particular, it would be desirable to study the role of
atmospheric high-frequency variability, absent from the
present model. Second, the question of cascade of errors
from one scale of motion to another has not been ex-
amined in any detail in the present study. Further, it is
not clear what physical factors determine whether a
spring initial condition from a particular year will ex-
hibit slow or fast growth. Many of the May initial con-
ditions show very slow growth of error in the first two
or three years if the initial error is small and has large
spatial scale. A final question concerns the relative pro-
jections of the analyzed fields onto the large-scale and
small-scale EOFs of the coupled model. We are taking
a close look at the mismatch between the analyzed initial
fields and the various physical fields from the coupled
model at present.
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