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ABSTRACT

In an attempt to develop a better simulation of the climatology of monsoon precipitation in climate models,

this paper investigates the impacts of different convective closures on systematic biases of an Indian monsoon

precipitation climatology in a high-resolution regional climate model. For this purpose, the Weather Research

Forecast (WRF) model is run at 45- and 15-km (two-way nested) resolution with three convective parame-

terization schemes, namely the Grell–Devenyi (GD), the Betts–Miller–Janjić (BMJ), and the Kain–Fritsch

(KF), for the period 1 May–31 October 2001–07. The model is forced with the NCEP–NCAR reanalysis data

as the initial and boundary conditions. The simulated June–September (JJAS) mean monsoon rainfall with

the three convective schemes is compared with the observations. KF is found to have a high moist bias over

the central and western coastal Indian region while GD shows the opposite. Among the three, BMJ is able to

produce a reasonable mean monsoon pattern. In an attempt to get further insight into the seasonal bias and its

evolution, the probability distribution function (PDF) of different rain-rate categories and their percentage

contribution to the seasonal total are computed. BMJ and KF underestimate the observations for lighter rain

rates and overestimate for rain-rate categories of more than 10 mm day21. GD shows an overestimation for

lighter rain and an underestimation of PDF for moderate categories. The seasonal patterns of evolution of

PDF plots of three rain-rate categories are analyzed to determine whether the convective schemes show any

systematic bias throughout the season or if they have problems during certain phases of the monsoon. This

shows that the GD systematically overestimates the lighter rain rate and underestimates the moderate rain

rate throughout the season, whereas BMJ and KF have problems in the initial stages. The heavy rain category

is systematically overestimated by the KF compared to the other two. To further evaluate the proportionate

contribution of each rain-rate bin to the total rain, the percentage contribution of each rain rate to the sea-

sonal total is computed. Analyzing all the rain-rate simulations produced by the three schemes, it is found that

KF has a moist bias and GD has a dry bias in the spatiotemporal distribution of the monsoon precipitation.

Further, this paper investigates the causes behind the mean monsoon precipitation bias. It is shown that GD

produces a model climate where the vertical velocity is less than that of the observations up to 500 hPa and the

vertically integrated moist instability is also weaker. KF, on the other hand, shows a higher than the observed

vertical velocity and a stronger moist instability. Along with this, the vertical profile of heating suggests

a warmer middle level in the KF case and significantly reduced midlevel heating for GD. Thus, KF (GD) has

produced a model atmosphere that has a stronger (weaker) convective instability to produce the observed

bias in the model precipitation. BMJ is found to simulate a reasonable heating profile, along with the realistic

moist instability and seasonal cycle of evaporation and condensation. Insight derived from the analysis is

expected to help improve the convective parameterizations.

1. Introduction

The prediction of seasonal mean Indian summer mon-

soon rainfall (ISMR) is very important for socioeco-

nomic and water resource planning of the country of

India. Also, projection of ISMR under different climate

change scenarios is crucial for the planning of adapta-

tion and mitigation strategies of the country. Unfortu-

nately, today we have very little confidence in either the

seasonal prediction of ISMR or its projections under

climate change scenarios. Although the foundation for

the predictability of the tropical climate has been laid

(Charney and Shukla 1981; Shukla 1981), the skill in pre-

dicting the seasonal mean monsoon rainfall by almost all

the global climate models remains limited (Kang et al.
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2004; Kang and Shukla 2005; Kumar et al. 2005). Simi-

larly, the intermodel variance of projections of ISMR by

the models in the Fourth Assessment Report (AR4) of

the Intergovernmental Panel on Climate Change (IPCC)

is as large as the signal of increase in the ensemble means

(Randall et al. 2007). Among a few other reasons, a

major reason for the current suite of climate models’

poor skill in predicting the seasonal mean ISMR and

uncertainty in the projections under climate change sce-

narios is the large systematic dry bias over the Bay of

Bengal (Randall et al. 2007).

Hence, a significant improvement in the simulation of

the monsoon rainfall climatology in climate models is

crucial for making any further progress toward seasonal

prediction of ISMR or toward a reliable projection of it

under the climate change scenarios. Resolving the re-

gional heterogeneity in a high-resolution atmospheric

general circulation model (AGCM) is one of the keys to

improving the precipitation distribution over the region

(Giorgi and Mearns 1991; Sperber et al. 1994; Jha et al.

2000; Rajendran and Kitoh 2008). However, running

AGCMs at a resolution high enough to resolve the phys-

iographical details (e.g., topography, mesoscale convec-

tion) requires significant computational resources. Thus,

the computationally less expensive strategy of running re-

gional climate models embedded in AGCMs has gained

popularity (Dash et al. 2006; Im et al. 2006, 2008) when

simulating regional climate at higher resolution since the

mid-1990s.

A number of attempts have been made in the past to

demonstrate the capability of regional models embedded

in a GCM to simulate the Indian summer monsoon cli-

matology (Bhaskaran et al. 1996; Jacob and Podzum 1997;

Vernekar and Ji 1999; Lee and Suh 2000; Dash et al. 2006).

The general conclusion of all these studies is that the re-

gional models are able to show an improvement in the

spatiotemporal distribution of monsoon rainfall, which is

attributed to the increased resolution of these models. As

the simulation of precipitation depends sensitively on the

parameterization of convection in the model, it is impor-

tant to identify the most suitable convective parameteri-

zation for a given high-resolution model to improve the

simulation of the monsoon rainfall climatology.

Evaluations of the sensitivity of convective parame-

terization schemes on monsoon simulation have been

performed in the past (Bhaskaran et al. 1996; Martin and

Soman 2000; Das et al. 2001; Ratnam and Kumar 2005;

Dash et al. 2006). Das et al. (2001) compared the July

rainfall and monsoon circulation features using a T80

(;150 km horizontal resolution) global model with three

different cumulus parameterization schemes. They in-

ferred that the simplified Arakawa–Schubert (SAS)

approach is able to produce realistic north–south and

east–west rainfall distributions and circulation features

compared to the other schemes. Ratnam and Kumar

(2005) simulated two contrasting years of monsoon (1987

and 1988) by using the fifth-generation Pennsylvania

State University–National Center for Atmospheric Re-

search (Penn State–NCAR) Mesoscale Model (MM5) at

45-km resolution with a variety of cumulus parameteri-

zation schemes. They found that the Betts–Miller–Janjić

(BMJ) and Kain–Fritsch (KF) schemes produced rela-

tively better spatial distributions of the monsoon rainfall

as compared to the Grell approach. Dash et al. (2006)

used version 3 of the NCAR Regional Climate Model

(RegCM3) to simulate the monsoon for 4 yr (1993–96)

with a horizontal resolution of 55 km and showed that

the Grell scheme is able to simulate the mean monsoon

rainfall closer to the observation as compared to the Kuo

approach. In all of the mentioned studies, it can be seen

that the typical range of the horizontal resolutions used

for the simulation of the Asian monsoon remains around

50 km. At this resolution, large-scale monsoonal features

can be captured, but to resolve the physiographical het-

erogeneity and the mesoscale cloud clusters in the region,

high-resolution regional climate models (RCMs) are re-

quired (Im et al. 2006, 2008). Giorgi et al. (1994), using a

60-km nested domain over the United States, showed that

the simulated surface climatology appears to be realistic

compared to the driving GCM. Jones et al. (1995) showed

over Europe that the details of the simulated spatial dis-

tribution of precipitation, temperatures, etc. agree well

with the observations using a finer-resolution RCM (e.g.,

a 50-km U.K. RCM), which is mainly attributed to the

topography, coastline, and vegetation being better re-

solved. However, it remains to be seen whether the mean

monsoon rainfall bias improves by using a high-resolution

(less than 20 km) model that resolves the physiograph-

ical heterogeneity and mesoscale cloud clusters.

Therefore, the first objective of the present paper is to

simulate the observed daily monsoon climatology over

the Indian region at a high resolution using various cu-

mulus parameterization schemes and its validation with

available observed rainfall data. This can provide the

needed high-resolution daily mean precipitation clima-

tology of the Indian monsoon to assess the seasonal

(June–September) biases arising due to possible short-

comings of different convective closures. Earlier, the RCM

studies were mainly focused on the bias of seasonal (total)

rain and did not offer any insights on how the bias is

contributed by different categories of the simulated rain.

Therefore, the second objective of this paper is to

bring out the biases in daily mean rainfall simulations

arising from different rain-rate (light to heavy) cate-

gories. We believe this will help us to gain necessary

insights about the contribution of different rain rates
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toward the spatiotemporal bias of the seasonal total

rainfall. A detailed investigation of this nature can also

help in identifying the weaknesses in the formulation of

moist convection, which can be improved further.

It may be worthwhile to mention here that in most of

the earlier studies, simulation results, particularly pre-

cipitation, were merely compared with different cumu-

lus schemes and conclusions were drawn about the

inferiority or superiority of the schemes without pro-

viding many clues as to the possible sources of the bias.

To gain sufficient insight into the further improvement

of existing convective schemes and to reduce the un-

certainties in the simulations, it is felt that a detailed

understanding of the reasons behind the better perfor-

mance of one or the other cumulus scheme is required.

Therefore, the third objective of the paper is to inves-

tigate and identify the possible sources of biases in the

simulation arising from different convective closures.

Rajendran et al. (2002) showed that monsoon variability

is sensitive to the heating rates arising from different

cumulus parameterization schemes. It is also established

that the large-scale monsoon circulation is mainly driven

by the middle-tropospheric heating and large-scale or-

ganized convection. Thus, the apparent heat source plays

a key role in maintaining the monsoonal convection.

The evolution of convective instability during the season

is another parameter that tells us about the strength of

the organized convection. Detailed analyses of the ap-

parent heat source and the moist static energy will reveal

the thermodynamic structure of the simulated monsoon

climate and bring out the strengths (weaknesses) of

different convective closures in making the model at-

mosphere more unstable (less unstable) and moist (dry),

thereby affecting the overall mean monsoon simulation.

In summary, this paper is intended to establish the

bias in the mean monsoon simulation in general and the

underlying spatiotemporal variability of the precipita-

tion in particular and to diagnose further the possible

source of the bias in the high-resolution model simula-

tion. In the next section, the model, data, experimental

design, and verification strategy are introduced, fol-

lowed by results and discussion in section 3. Section 4

provides the conclusions of the study.

2. Model, data, experimental design, and
verification

a. Model

The nonhydrostatic, fully compressible, terrain-following

sigma coordinate mesoscale model Weather Research

Forecast (WRF), version 2.2 (Skamarock et al. 2005),

developed by NCAR, was used in the present study. The

model is used with two nested domains with horizontal

resolutions of 45 and 15 km (Fig. 1) and 31 sigma levels

with its top at 10 hPa. The model’s mother domain covers

the large-scale Indian monsoon region (28S–378N, 598–

1018E) with 100 grid points in the east–west and north–

south directions. The nested domain focuses mainly on

the Indian landmass (78–27.58N, 698–918E) with 160 grid

points along the east–west and north–south axes. The

model time steps were chosen to be 240 s.

The physical parameterization schemes used in the

model are the microphysics scheme of Lin et al. (1983),

the Monin–Obukhov (Monin and Obukhov, 1954) simi-

larity scheme for the surface layer, the Yonsei University

scheme for the PBL (Noh et al. 2003), the Rapid Radiative

Transfer Model (RRTM) scheme for long waves (Mlawer

et al. 1997), and the Dudhia (Dudhia 1989) scheme for

short waves in all of the numerical experiments. Three

convective parameterization schemes—namely Kain–

Fritsch (KF; Kain and Fritsch 1993); Betts and Miller

(1986), but modified further by Janjić (1994; BMJ); and

Grell–Devenyi (GD; Grell and Devenyi 2002)—are

used to simulate a 7-yr daily climatology of JJAS rain-

fall. These three schemes work within different closure

frameworks; for example, KF uses the assumption of the

removal of convective available potential energy (CAPE)

in a grid column within an advective time. A trigger

function based on the grid-resolved vertical motion is

used to decide the time of activation of the scheme. The

FIG. 1. WRF domain 100 3 100 (mother domain), at 45-km

resolution, and nested domain 160 3 160, 15-km resolution. Model

topography is contoured below 1000 m and shaded above.
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resolvable-scale vertical motion is proportional to one-

third to the power of the grid-resolved background ver-

tical motion (w1/3). If the upward motion is sufficiently

large to overcome the convective inhibition, the scheme

will activate (so long as the unstable layer is at least of

60-hPa depth). The advective precipitation is derived as

a product of precipitation efficiency and the sum of the

vertical fluxes of vapor and liquid at about 150–200 hPa

above the lifting condensation level (Wang and Seaman

1997). For further details about the KF scheme formu-

lation and its various features, readers are referred to

a detailed studies by Kain and Fritsch (1993), Gallus

(1999), Bechtold et al. (2001), and Kain (2004).

Unlike KF, the BMJ scheme includes deep and shal-

low convection and works based on the principle of

relaxing the temperature and moisture profiles toward

the reference environmental profile. The BMJ scheme

essentially removes the conditional instability in each

grid column by adjusting the vertical profile of the tem-

perature and specific humidity toward the reference

profile, which is derived based on the observations of

Betts (1986) and Betts and Miller (1986). The scheme is

triggered if a parcel when lifted moist adiabatically from

the lower troposphere to a level above the cloud base,

where it then became warmer than the environment.

The GD is a cloud ensemble scheme. The unique aspect

of the GD scheme is that it uses 16 ensemble members

derived from five popular closure assumptions to obtain

an ensemble-mean realization at a given time and lo-

cation. The details of how to determine the ensemble

mean can be found in Grell and Devenyi (2002). An

ensemble approach is followed because statistically the

ensemble members yield a large spread in the accumu-

lated convective rainfall results.

b. Data and experiment

The regional model can be run with both initial and

lateral boundary conditions (LBCs) from either global

analysis data or the global model forecasts data. In our

study, the mother domain simulations are driven by the

National Centers for Environmental Prediction (NCEP)–

NCAR reanalysis data at a resolution of 2.58 (Kalnay

et al. 1996). The LBCs are updated every 6 h. RTG is

a daily, high-resolution, real-time, global, sea surface

temperature (SST) analysis (Thiebaux et al. 2003) that

has been developed at the NCEP/Marine Modeling and

Analysis Branch (MMAB). The daily SST product is

produced on a ½8 (latitude, longitude) grid, with a two-

dimensional variational interpolation analysis of the

most recent 24-h buoy and ship data, satellite-retrieved

[National Oceanic and Atmospheric Administration-17

(NOAA-17 ) Advanced Very High Resolution Radi-

ometer (AVHRR)] SST data, and SSTs derived from

satellite-observed sea ice coverage. The 6-hourly SSTs

were obtained by linearly interpolating the daily SSTs of

RTG and were used as the slowly varying lower bound-

ary conditions for the model.

The model simulation spans from 1 May to 31 October

for the years 2001–07 to study the seasonal (JJAS) mean

rainfall for the 7-yr composite. The simulations corre-

sponding to JJAS are used in the present study allowing

1 month as a model spinup time period. A 1-month spinup

period is sufficient for the dynamical equilibrium be-

tween the lateral forcings and the internal physical dy-

namics of the model (Anthes et al. 1989). Three sets of

simulations were used; the simulations were identical in

all aspects except for their convective parameterization

schemes, where we used BMJ, KF, and GD. A simple

ensemble mean (ENS) of the above three sets of simula-

tions is also computed for comparing the mean precipita-

tion of each of these simulations. The model precipitation

is stored every 6 h.

c. Verification strategy

The simulated model climatology in the mother domain

for lower- (850 hPa) and upper-tropospheric (200 hPa)

winds and the middle-tropospheric (500 hPa) temperature

are compared with the European Centre for Medium-

Range Weather Forecasts (ECMWF) interim reanalysis

at a horizontal resolution of 1.58. Subsequently, the daily

precipitation simulated by the model (regridded at 18 3 18

resolution) is compared with the daily gridded rainfall

data from the India Meteorological Department (IMD)

at 18 3 18 resolution (Rajeevan et al. 2006) for the land

areas and with the Global Precipitation Climatology

Project (GPCP) and the Tropical Rainfall Measuring

Mission (TRMM) rainfall data for the land–ocean area.

The model precipitation biases are assessed by compar-

ing the simulation results with the BMJ, KF, and GD

schemes, and ENS with that of the gridded rainfall data of

the IMD. To quantify the model deficiency in the spa-

tiotemporal distribution of rainfall (over land only), the

biases contributed from different rain-rate categories to

the total rain are also computed. The sources of the model

precipitation biases and deficiencies in different schemes

are diagnosed with the vertical profiles of the apparent

heat source (Q1) and seasonal evolution of Q1 and Q2

based on Yanai et al. (1973) and compared with that

derived from the ECMWF (interim) reanalysis data.

3. Results and discussion

a. The monsoon circulation and temperature pattern

We would like to begin the analysis with a 7-yr cli-

matology of the lower- (850 hPa) and upper- (200 hPa)
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tropospheric wind fields for different convective schemes

in the mother domain. It is important to examine whether

the driving field in the mother domain is adequate for

the nested domain (Im et al. 2006), particularly in con-

nection with the synoptic-scale features of the Indian

summer monsoon.

The JJAS mean winds (2001–07) at 850 and 200 hPa

for each of the three schemes and from the ECMWF

(observation) reanalysis are shown in Figs. 2 and 3, re-

spectively. The large-scale southwesterly flow over the

Arabian Sea (AS) and Bay of Bengal (BOB), and a cy-

clonic vorticity in the northern BOB, are broadly captured

FIG. 2. JJAS-averaged mean 850-hPa winds (m s21) from (a) interim ECMWF reanalysis, (b) BMJ, (c) KF, and

(d) GD for 2001–07; wind speeds above 6 m s21 are shaded.
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by all three of the cumulus schemes (Figs. 2b–d) as

compared to the observations (Fig. 2a). However, the

low-level wind field (Fig. 2c) over the oceans appears

to be stronger than the observations (Fig. 2a) in KF

(RMSE of 3.76). The pattern correlation of 0.76 also

suggests a disagreement between KF and the observa-

tions. The BMJ is found to show (Fig. 2b) a reasonable

wind field, with a minimum RMSE of 3.09 and a maxi-

mum pattern correlation of 0.81 (Table 1) at the 850-hPa

level. GD (Fig. 2d) has produced a weaker low-level

wind field over the oceans (RMSE of 3.80; pattern cor-

relation of 0.72).

The upper-level (200 hPa) easterly winds and the Ti-

betan anticyclone in the large scale are captured by all

FIG. 3. As in Fig. 2, but for the 200-hPa level; wind speeds above 15 m s21 are shaded.
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three of the experiments (Figs. 3b–d) but with varied

levels of intensity. The center of the anticyclone is found

to be shifted eastward in all three of the experiments

compared to the observations. The ridge line is aligned

with a tilt around 258N. The simulated easterlies from

KF along 58N are found to be stronger (Fig. 3c) than

those observed (Fig. 3a) as well as those simulated by

the other two schemes (Figs. 3b and 3d). GD (Fig. 3d)

simulates weaker easterlies in the south of the domain

(Table 1). BMJ shows the most reasonable wind field at

200 hPa with the highest pattern correlation (0.97) and

lowest RMSE (3.80).

From the above discussions it can be inferred that

KF has simulated stronger low-level southwesterlies and

corresponding cyclonic shear. GD, on the other hand,

shows weaker than observed wind fields. However, BMJ

is in better agreement with the observations over both

of the seas (Table 1) as supported by the RMSE and

pattern correlation. The middle-tropospheric (500 hPa)

temperature distribution for the ECMWF reanalysis and

the three convection schemes are also analyzed (figure

not shown). This will bring out whether the model-

simulated middle troposphere has a warmer or colder

bias compared to the observations, which in turn can

influence the instability of the simulated climate. The

north–south temperature gradient with a maximum over

Tibet is broadly captured by all the schemes. KF shows

a warm bias over the central Indian region and has

the highest RMSE (0.71; see Table 1), and BMJ shows

a reasonable temperature gradient with the minimum

RMSE (0.66) out of the three schemes.

b. Precipitation analyses

1) DISTRIBUTION OF MEAN MONSOON

PRECIPITATION

The observed JJAS mean precipitation for 2001–07

over the Indian landmass from the IMD gridded (18 3 18)

dataset (Rajeevan et al. 2006) is shown in Fig. 4a. The

same is done for land and oceanic areas from the TRMM

and GPCP datasets and the results are shown in Figs. 4b

and 4c, respectively. All of the datasets are regridded to

18 3 18 resolution for comparison. The later datasets

have inherent limitations due to their smaller number of

land stations and this is quite visible along the west coast

region where the maximum difference is found with re-

spect to IMD data. The IMD dataset is derived (Rajeevan

et al. 2006) based on the data from 1803 stations that

have at least 90% data availability. The model precipi-

tation is brought to the same grid (18 3 18) as that of the

observations for validation. The JJAS mean precipita-

tion amounts as obtained from BMJ, KF, GD, and

ENS are shown, respectively, in Figs. 5a–d. The RMSEs

(shaded) and biases of the mean precipitation (contour)

over land in each simulation with respect to the (IMD)

observations are shown in Figs. 6a–d. The RMSE of KF

(Fig. 6b) is found to be maximal over central India and

west coast of India compared to the other two schemes.

The RMSE of GD appears (Fig. 6c) to be significantly

less over the central Indian region and agrees well for

this subregion with the ENS results (Fig. 6d). Although,

the RMSE clearly shows the region of higher model

error, it cannot answer the question of whether the model

is over- or underestimating the precipitation in different

subregions. To find an answer to this, the bias (Fig. 6;

contour) is further analyzed. The BMJ shows (Fig. 6a)

a positive bias over western and central India, while

a dry bias is confined over the eastern region near the

foothills of the Himalaya. The spatial pattern of dry and

moist biases in the KF scheme (Fig. 6b) is very similar to

that of BMJ (Fig. 6a). However, the wet bias simulated

by KF is much larger than that simulated by BMJ. The

GD scheme, on the other hand, shows (Fig. 6c) a drier

bias over the whole country with the exception of a small

pocket over the southwestern peninsula. This analysis,

however, neither brings out the reasons behind such

a spatial distribution of the biases, nor does it throw any

light on how the bias in the seasonal total is evolving

from the contributions of various rain-rate categories.

The ENS (Fig. 6d) shows a distribution of moist and dry

biases that is qualitatively similar to that of BMJ (Fig. 6b)

but with a substantial reduction in the west coast bias.

The model’s ability to simulate the evolution of the

climatological mean seasonal cycle of precipitation and

the climatological intraseasonal oscillation (CISO) of

the Indian monsoon (2001–07 composite) are examined

in Fig. 7. The time evolution of the daily climatological

mean precipitation simulated by the models averaged

over 708–908E as a function of latitude (Figs. 7b–d) is

compared with that from the observations (IMD; see

Fig. 7a). The seasonal cycle and the northward propa-

gation are found to be reasonably simulated in BMJ

(Fig. 7b) within certain epochs, whereas KF too fre-

quently shows intraseasonal oscillations with (Fig. 7c)

stronger magnitude and precipitation that appear to be

stagnated at around 218N. From the above analyses, it

appears that BMJ is able to reproduce spatial and

TABLE 1. Pattern correlation and RMSE of the zonal wind at 850

and 200 hPa and temperature at 500 hPa by the BMJ, KF, and GD

parameterizations.

BMJ KF GD

U850 U200 T500 U850 U200 T500 U850 U200 T500

Pattern

correlation

0.81 0.97 0.83 0.76 0.96 0.83 0.72 0.96 0.82

RMSE 3.09 3.80 0.66 3.76 4.12 0.71 3.80 4.58 0.68
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temporal precipitation features that are closer to the

observations as compared to other schemes.

2) SYSTEMATIC ERROR IN SIMULATED

PRECIPITATION DISTRIBUTION

To investigate the spatiotemporal variability of pre-

cipitation superimposed on the seasonal mean, daily

mean rainfall probability distribution functions (PDFs)

are computed for different ranges of rain rates (Fig. 8).

The PDFs are constructed by binning the daily mean

rainfall amount for each grid point in 1 mm day21 bins

and expressed in percentages considering only the rainy

grid cells over land areas for the season (JJAS) as a

whole (DeMott et al. 2007). This brings out whether

a particular rain rate is occurring more (less) frequently

with respect to the observed PDF. The PDF plot in-

dicates that BMJ and KF underestimate the observa-

tions of lighter rain rates and overestimates the rain-rate

FIG. 4. JJAS-averaged mean surface precipitation (mm day21) from (a) IMD, (b) TRMM 3b42, and

(c) GPCP for 2001–07.
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categories of more than 10 mm day21. GD, on the other

hand, shows a mixed distribution with the PDF being

higher than the observations for lighter rain rates and an

underestimation in the middle category (10–40 mm day21)

and thereafter showing an overestimation. The question

that can be raised now is whether the schemes system-

atically show higher or lower biases for certain rain-rate

categories throughout the season, or do they have prob-

lems in capturing certain phases of the monsoon. To an-

swer this, three rain-rate categories are chosen: less than

10 mm day21 (light), between 10 and 40 mm day21 (mod-

erate), and more than 40 mm day21 (heavy). This classifi-

cation is made because the PDFs for all the schemes (Fig. 8)

show a marked difference at the above-mentioned thresh-

old rain rates.

The temporal evolution of the PDF as represented by

the three above-mentioned rain-rate categories is shown

in Fig. 9. Time evolution of GD (for light rain rate)

shows (Fig. 9a, dot–dash) an overestimation of the PDFs

throughout the season compared to the observations.

FIG. 5. As in Fig. 4, but for (a) BMJ, (b) KF, (c) GD, and (d) ENS.
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FIG. 6. Spatial distribution of RMSE (shaded; mm day21) and model-simulated precipitation difference (contour;

mm day21) of (a) BMJ, (b) KF, (c) GD, and (d) ENS from IMD observations.
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BMJ (light rain rate) shows (Fig. 9a, long dash) an over-

estimation of PDFs in the beginning (first 30 days) of the

season but is in good agreement with the observations

for the remaining season. The PDFs of KF (Fig. 9a; dots)

in the light rain-rate category are found to be similar to

those of BMJ. For a moderate rain rate, GD (Fig. 9b)

has systematically underestimated the observed PDFs

throughout the season. For the heavy rain-rate category,

KF shows a systematic bias of overestimation all through

the season (Fig. 9c). Thus, from the PDF distribution, it

appears that the GD has a systematic bias in producing

underestimation (overestimation) of moderate (lighter)

rain-rate categories throughout the season. BMJ has a

prominent bias in the beginning of the season for all the

categories. KF shows a significant overestimation for the

heavy rain-rate category throughout the season. It is also

found that the heavy precipitation (40 mm day21) PDF

has a lag of ;15 days for BMJ and GD as compared to

the observations and also KF. To find an answer to this

model anomaly, for BMJ and KF we hypothesize that

the large-scale moisture transport from the Arabian Sea

could be the cause as it is seen to happen mostly in the

beginning of the season. To verify this, we have chosen

an area (extending from 78–178N, 608–758E) over the

Arabian Sea and computed the time evolution of the

area-averaged moisture transport at the 850-hPa level

FIG. 7. Latitude–time cross sections of daily mean precipitation averaged over 708–908E from

May to October 2001–07 from (a) IMD, (b) BMJ, (c) KF, and (d) GD.
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(figure not shown). It is quite noticeable that, the mois-

ture transport is significantly higher for the observation

and also for the KF in the initial stages; however, in the

BMJ and GD cases, it builds up late in the simulated

climate.

At this point, it may be relevant to evaluate the pro-

portionate contribution of each rain-rate bin to the total

rain, which will bring out the overall percentage share of

each rain rate to the total rain. The contributions of each

rain-rate bin to the total rain, along with the PDF dis-

tribution (Figs. 8 and 9), can establish the bias arising

from the frequency distribution as well as from the pro-

portionate quantity of each rain rate. To address this, the

percentage contributions of each rain rate to the total

(JJAS) rain are shown in Fig. 10 for each of the three

schemes and for the observations.

While the contribution from the rain-rate categories

higher than 40 mm day21 simulated by GD is close to

the observations, the light rain categories simulated by

this method contribute much higher amounts to the total

than was observed (Fig. 10, dot–dash). On the other

hand, intermediate categories of rain simulated by GD

makes much smaller contributions to the total than ob-

served. The contribution to the total by different rain

categories simulated by the KF scheme, however, is such

that (Fig. 10, dots) the rain-rate bin of 0–25 mm day21

makes a smaller contribution than was observed while

the rain rates higher than 25 mm day21 make a sub-

stantially higher percentage contribution to the total than

was observed. The BMJ scheme (long dash) appears to

produce the closest possible contribution among the

three for all of the rain-rate categories. The moist (dry)

bias in simulating the seasonal total rainfall pattern

by KF (GD) (Figs. 6b and 6c) is related to the biases

in simulating different rain-rate categories by the two

schemes (Fig. 10).

It is clear from the above analyses (Figs. 8–10) that

GD has a systematically high bias in the lighter rain-

rate categories and a low bias for medium rain-rate

categories. These two contrasting biases tend to cancel

each other, so that the seasonal mean spatial rainfall

distribution appears fairly realistic (Fig. 6c) over the

central Indian region. The above analyses indicate that

the amount and frequency of light to moderate rain-

rate categories are simulated with certain biases. This

will significantly affect the performance of the monsoon

simulation. The errors in the PDFs of simulated rainfall

at different rain-rate thresholds and inaccurate per-

centage contribution will eventually decide the dry or

moist biases of precipitation over the domain, as seen in

GD (Fig. 6c).

FIG. 8. Time- (JJAS) averaged daily mean rainfall rate proba-

bility distributions (%) from IMD (solid line), BMJ (dashed),

KF (dotted), and GD (dotted–dashed) for 2001–07 over the inner

domain.

FIG. 9. Seasonal evolution (JJAS) of daily mean rainfall rate

probability distributions (%) from IMD (solid line), BMJ (dashed),

KF (dotted), and GD (dotted–dashed) for 2001–07 in rain rates

(a) #10 mm day21, (b) 10 , rain rate # 40 mm day21, and (c)

.40 mm day21.
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The spatial distribution of the percentage rainy days

for different rain-rate categories (light, moderate, and

heavy) for the season as a whole is shown in Fig. 11.

The top panel in Fig. 11 brings out the spatial biases in

simulating the rainy days for each scheme under the

lighter rain-rate category. The observations (Fig. 11a)

show 30%–40% rainy days for the lighter rain-rate cat-

egory over parts of the southern peninsula and central

India. GD grossly overestimates this over the whole

country. BMJ shows (Fig. 11b) a reasonable percentage

of rainy days over central and southern India but over-

estimates it in the northern and eastern parts of the

country. The rainy days simulated by KF are similar to

that simulated by BMJ.

In the moderate rain-rate category, BMJ shows

(Fig. 11f) a moist bias east of the Western Ghats and in

some pockets along the east coast. KF produces a moist

bias over the east coast but reproduces the relatively drier

area east of the Western Ghats. The GD scheme has

a significant dry bias in the moderate category showing

a smaller percentage of rainy days over central India and

its surrounding region. In the heavy rain-rate category

(Fig. 11, bottom), KF is found to have a substantial bias

along the west coast as well as over major parts of central

India. Thus, the spatial distributions of the percentages

of rainy days are able to bring out the reasons behind the

moist bias in central India by KF and the dry bias by GD,

which is seen in Fig. 6.

After establishing the spatiotemporal biases in dif-

ferent rain-rate categories arising from different con-

vective schemes, the question arises as to what is causing

these deficiencies. The physical and thermodynamical

causes of the above-mentioned biases and deficiencies

will be evaluated further in the subsequent sections.

c. Sources of bias

The domain-averaged (58–358N, 608–1008E) vertical

velocity for JJAS composited for the 7 yr is shown in

Fig. 12a and compared with the ECMWF reanalysis.

The large-scale vertical velocity during monsoon re-

gime represents the large-scale weak ascent that prevails

over the country and its manifestation can be seen in

the dominance of lighter rainfall of stratiform nature

(Schumacher and Houze 2003). The simulated vertical

velocity shows that KF substantially overestimates the

observations throughout the troposphere whereas BMJ

and GD underestimate up them to the 500-hPa level.

Thus, BMJ and GD have large-scale ascents that are less

than what was observed in the simulated climate in the

lower troposphere. The overestimation of the large-scale

ascent by KF may be manifested in its tendency for

a moist bias in the lighter rain-rate categories. Similar

results were reported by Bhaskaran et al. (1996) for

RCM simulations over the Indian region. These varia-

tions in vertical velocity, as well as precipitation, appear

to be driven by the tropospheric heating (Bhaskaran

et al. 1996). To establish the moist bias of the schemes,

the vertically integrated (950–150 hPa) moist static en-

ergy (MSE) result is averaged over the whole domain

composited for 7 yr are plotted for each of the schemes

(BMJ, KF, and GD; see Fig. 12b) for the JJAS. It is in-

teresting to note that the seasonal cycle of gradual in-

crease in MSE from the monsoon onset till its withdrawal

is broadly captured by all three of the schemes. However,

the amount of instability is higher in KF as compared to

in BMJ and GD, while GD shows a weaker moist in-

stability, particularly at the time of the peak monsoon.

BMJ lies in between KF and GD. Thus, from the moist

instability angle also, KF (GD) seems to produce a more

(less) convectively unstable model climate.

To address the issue of tropospheric heating as a cause

of model precipitation biases, the apparent heat source

(Q1) and moisture sink (Q2) are evaluated. Here, Q1 and

FIG. 10. As in Fig. 8, but for the contribution to the total seasonal

rainfall (%) as a function of rain rate.
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FIG. 11. Time- (JJAS) averaged spatial distributions of the percentage of rainy days with respect to the total number of rainy days from

(a) IMD, (b) BMJ, (c) KF, and (d) GD for 2001–07 in rain rates (i) #10 mm day21, (ii) 10 , rain rate # 40 mm day21, and (iii)

.40 mm day21.
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Q2 (Yanai et al. 1973) compare the collective effects

of convection on the large-scale thermodynamics. The

expressions for Q1 and Q2 are

Q
1

5 C
p

p

p
0

� �k
›u

›t
1 V � $u 1 v

›u

›p

� �
(1)

and

Q
2

5�L
›q

›t
1 V � $q 1 v

›q

›p

� �
, (2)

where u is the potential temperature, q is the mixing

ratio of water vapor, V is the horizontal velocity, v is the

vertical velocity, and p is the pressure. In Eq. (1), k 5

R/Cp, where R and Cp are, respectively, the gas con-

stant and the specific heat at constant pressure of dry air;

p0 5 1000 hPa; L is the latent heat of condensation; and

$ is the isobaric gradient operator.

As mentioned in Liu and Moncrieff (2007, hereafter

LM07), Q1 is the sum of the latent heating associated

with phase changes, the vertical eddy transport, the sub-

grid diffusion that includes the divergence of the surface

sensible heat flux, and the radiative heating. Similarly,

Q2 comprises the net condensation, the vertical eddy

transport of moisture, and the subgrid mixing. As in our

experiment (similar to LM07), the archived model out-

put contains the atmospheric variables and does not

include the variables of the microphysical processes and

subgrid diffusion, Q1 and Q2 are estimated from the

thermodynamic conservation equations by horizontally

averaging over the outer domain using Eqs. (1) and (2).

Further, vertical integration of Eqs. (1) and (2) in the

total atmospheric column gives

hQ
1
i5 hQ

R
i1 LP 1 S (3)

and

hQ
2
i5 L(P� E), (4)

where QR is the radiative heating rate, P is the pre-

cipitation rate, S is the sensible heat flux, and E is the

evaporation rate. The bracketed quantity means the

vertical integration from 950 to 150 hPa.

As the monsoon convection is predominantly driven

by the large-scale distribution of heat (Xavier et al.

2007), the vertical distribution of Q1 is shown in Fig. 13 and

compared with the ECMWF analysis. The midlevel heat-

ing is hardly present (Fig. 13, dot–dash) in GD whereas KF

(dots) has produced a significantly stronger heating in the

middle troposphere. The Q1 profile of BMJ (dashed) lies

in between KF and GD. The profile obtained from BMJ

is reasonably comparable with that of the ECMWF re-

analysis. Underestimation (overestimation) of Q1 by

GD essentially can cause a weaker (stronger) instability

(KF) and may lead to weaker (more intense) convection

for these schemes.

After identifying the bias in the JJAS-averaged ver-

tical structure of the heat source by each scheme, our

study will be incomplete if the climatological evolutions

of Q1 and Q2 are not examined. The seasonal evolutions

of Q1 and Q2 will help us in terms of understanding the

deficiencies in the convection schemes more clearly.

Xavier et al. (2007) showed that during winter and

spring Q2 is negative and it increases slowly, suggesting

a stronger evaporation than precipitation during this

time. Soon after the onset of the monsoon, Q2 starts to

increase at a faster rate, but the evaporation continues to

dominate because of the warm landmass and about two

FIG. 12. Time- (JJAS) and domain-averaged (58–358N, 608–

1008E) (a) vertical velocity (m s21) profiles from ECMWF (solid

line), BMJ (dashed), KF (dotted), and GD (dotted–dashed), and

(b) the time evolution (May–October) of MSE (KJ kg21) vertically

integrated between 950 and 150 hPa, for 2001–07.

APRIL 2010 M U K H O P A D H Y A Y E T A L . 383



pentads after the onset, precipitation overcomes evap-

oration. So the moisture sink is not a leading process

during the onset or at the time the Indian summer

monsoon is set up. A remarkable feature is the cancel-

lation between the heat source and the adiabatic cooling

during the monsoon months (JJAS). However, the sig-

nificant temperature increase that is observed during the

premonsoon period arises largely from the adiabatic

warming, sensible heating over the Tibetan Plateau, and

vertical mixing. In the case of withdrawal of the mon-

soon, there is a coherent pattern of the evolution of

the climatological values of Q1 and Q2. The seasonal

evolutions of Q1 and Q2 are well brought out by the

ECMWF (interim) reanalysis (Fig. 14a). Keeping this

observational analysis in the mind, seasonal evolutions

of Q1 and Q2 are shown in Figs. 14a–d and compared

with that of the ECMWF analysis. The domination of

evaporation (Q2) compared to precipitation (Q1) until

mid-June is prominently captured (Figs. 14b and 14c) by

BMJ and KF. The enhancement of condensation (pre-

cipitation) overcoming evaporation after the monsoon

onset and followed by a maxima in July–August and the

reduction in precipitation at the time of withdrawal are

reasonably captured only by BMJ. KF could not show

the reduction in precipitation and the enhancement of

the evaporation at the time of withdrawal and as a result

precipitation is found to dominate during the majority of

the season. This can be attributed to the high moist bias

in the spatiotemporal distribution of precipitation by

KF. GD (Fig. 14d) has hardly reproduced the seasonal

variabilities of the evaporation and precipitation, and

both processes are found to be comparable to each other

throughout the season, which is unrealistic as per the

observations. The weak evolutions of Q1 and Q2 can be

attributed to the dry bias shown by GD in the seasonal

mean precipitation.

4. Conclusions

The precipitation climatology at a high level of reso-

lution (15 km) for a period of 7 yr is prepared by run-

ning WRF from May to October for each year over the

Indian region. The sensitivity levels of three cumulus

parameterization schemes are evaluated in simulating

the spatiotemporal evolution of the Indian summer

monsoon (ISM). The seasonal bias of the mean mon-

soon rainfall is determined with respect to observed

rainfall data over the Indian landmass from IMD. Com-

paring the three convective parameterization schemes,

KF is found to have a high moist bias over central India

as well as along with the west coast in the seasonal mean.

GD apparently shows a dry bias over the central and

eastern parts of the Indian region. BMJ, on the other

hand, is found to produce a moist bias over the central

Indian region.

PDFs of different rain-rate categories and their per-

centage contributions to the total seasonal rain are in-

vestigated as they play an important role in determining

the overall model bias. These analyses also show that

GD systematically overestimates the lighter rain-rate

category and underestimates the moderate category

throughout the season. On the other hand, KF significantly

overestimates the heavy rain-rate category throughout the

season. Among the three, BMJ produces a PDF of pre-

cipitation that is closest to the observations for all of the

rain-rate categories. The higher percentage contribution

by KF from the rain-rate bins of 25 mm day21 or more,

along with significant overestimation of the observed PDF

in the high rain-rate category, can be responsible for the

positive bias seen in the spatial plot of the seasonal mean

precipitation. The reasonably good simulation of seasonal

mean rainfall by GD over central India (Fig. 6c) appears

to be due to the cancellation of two contrasting biases

in simulating the different rain-rate categories, namely

overestimation of low rain-rate categories and under-

estimation of moderate rain-rate categories. BMJ is able

to produce a reasonable bias out of the three.

After identifying the details of the biases for each

convection scheme arising from different rain-rate cat-

egories and their manifestations on the spatiotemporal

FIG. 13. Time- (JJAS) and domain-averaged (58–358N, 608–

1008E) vertical profiles of the apparent heat source (K day21) from

BMJ (dashed), KF (dotted), ECMWF (solid), and GD (dotted–

dashed) for 2001–07.
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distributions of precipitation, apparent heat sources (Q1),

moisture sinks (Q2), and moist static energies (MSEs)

are analyzed to determine the thermodynamical reasons

behind the deficiencies in the seasonal mean precipita-

tion simulations. In this analysis, KF shows a stronger

middle-tropospheric heating and GD consistently shows

a weak middle-tropospheric heating, where only BMJ

is closer to the observed profile of Q1. The stronger

(weaker) heating by KF (GD) in the middle troposphere

could lead to stronger (weaker) upper-air divergence

(also seen in the mean 200-hPa wind), which eventually

can increase (decrease) lower-level convergence, result-

ing in enhanced (suppressed) updrafts that may finally

lead to moist (dry) biases in the precipitation.

The analysis of the seasonal evolutions of Q1 and Q2

brings out the competition between the two important

moist processes, namely evaporation and condensation.

It is found that KF is unable to reproduce the domination

FIG. 14. Time evolutions (May–October) of the apparent heat source (solid, K day21),

moisture sink (dotted, K day21) averaged over 58–358N, 608–1008E for 2001–07 in (a) ECMWF,

(b) BMJ, (c) KF, and (d) GD. The vertical integration is from 950 to 150 hPa. The onset dates

are marked by arrows in each panel.
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of evaporation over condensation at the time of with-

drawal, indicating excess rain even at the end of the

season, whereas GD shows a weak seasonal cycle of

evaporation and condensation. This helps GD in pro-

ducing the dry bias in the seasonal mean precipitation

simulation. On the other hand, BMJ could realistically

depict the domination of evaporation compared to con-

densation till mid-June. The enhancement of conden-

sation over evaporation after the monsoon onset and

followed by a maxima in July–August, as well as the re-

duction in condensation at the time of withdrawal, are

only reasonably captured by BMJ.

Finally, it can be said that KF produces a stronger

instability and intense updraft resulting in a large moist

bias. GD, on the other hand, produces a weaker instability

and weaker updraft, resulting in a relatively dry bias. The

bias is mostly contributed from the moderate rain-rate

category in the GD case and from the heavy rain-rate

category in KF. BMJ also shows certain biases compared

to the observations. The improvement in formulation

that can give an accurate profile of Q1 and Q2, and re-

move the deficiency of producing the right PDF at the

correct proportion, could result in a significant im-

provement in the precipitation bias in weather and cli-

mate applications of regional models.

Thus, the present study establishes the reasons behind

the seasonal mean precipitation biases shown by dif-

ferent convection schemes. Further, it is demonstrated

how the individual rain-rate categories contribute to the

total bias of the seasonal mean. However, the reason

behind the bias arising from different rain-rate cate-

gories remains to be explained and will be the subject of

another study. This study is unique in the sense that it is

the first time WRF is run at a high resolution (15 km) for

a longer time (7 yr) over the Indian region to critically

evaluate the reasons behind the precipitation biases and

identify the deficiencies in the convective closures. In

future studies, the BMJ convective parameterization,

particularly the shallow and deep convective triggers,

will be further modified to remove some of the de-

ficiencies documented in this study.
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