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General classical theory of spinning particles in
a meson field

By H. J. Buasua, Pu.D.
Department of Physics, Indian Institute of Science, Bangalore

(Communicated by P. A. M. Dirac, F.R.S.— Received 18 December 1940)

An exact classical theory of the motion of a point dipole in a meson field
is given which takes into account the effects of the reaction of the emitted
meson field. The meson field is characterized by a constant ¥ = u/A of the
dimensions of a reciprocal length, x being the meson mass, and as xy -0 the
theory of this paper goes over continuously into the theory of the preceding
paper for the motion of a spinning particle in a Maxwell field. The mass of
the particle and the spin angular momentum are arbitrary mechanical
constants. The field contributes a small finite addition to the mass, and a
negative moment of inertia about an axis perpendicular to the spin axis.

A cross-section (formula (88a)) is given for the scattering of éransversely
polarized neutral mesons by the rotation of the spin of the neutron or proton
which should be valid up to energies of 10° eV. For low energies E it
agrees completely with the old quantum cross-section, having a dependence
on energy proportional to p*/E? (p being the meson momentum). At higher
energies it deviates completely from the quantum ecross-section, which it
supersedes by taking into account the effects of radiation reaction on the
rotation of the spin. The cross-section is & maximum at E ~ 3-5u, its value
at this point being 3 x 10-2¢ cm.?2, after which it decreases rapidly, becoming
propartional to E-2 at high energies. Thus the quantum theory of the
interaction of neutrons with mesons goes wrong for K > 3u. The scattering
of longitudinally polarized mesons is due to the translational but not the
rotational motion of the dipole and is at least twenty thousand times
smaller.

With the assumption previously made by the present author that the
heavy partilesc may exist in states of any integral charge, and in particular
that protons of charge 2¢ and —e may occur in nature, the above vesults
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can be applied to charged mesons. Thus transversely polarised mesons
should undergo a very big scattering and consequent absorption at energies
near 3-54. Hence the energy spectrum of transversely polarized mesons
should fall off rapidly for energies below about 3. Scattering plays a
relatively unimportant part in the absorption of longitudinally polarized
mesons, and they are therefore much more penetrating.

The theory does not lead to Heisenberg explosions and multiple processes.

It has been shown in the preceding papert with Corben that it is possible
to give a complete classical theory of the motion of a point dipole in a
Maxwell field. This theory is free from the infinite energies associated in the
usual theory with a point charge or a point dipole, and it was shown that the
appearance of these infinities in the usual theory is fictitious and due to an
incorrect definition of field energy when singularities are present in the field.
It appears that the effects of radiation reaction are even more important
for a point dipole than for a point charge, and this makes the scattering of
light decrease as w2 for high frequencies w instead of increasing as w?, as
would be the case if radiation reaction were neglected.

- The work of this paper is an extension to the meson field of the work of the
preceding paper with Corben. It will constantly be necessary to refer to the
results of that paper. The underlying ideas and assumptions are exactly the
same, as is also the method of procedure. It must be understood that when-
ever the charge g; and the dipole moment g, are referred to in this paper, these
are quantities which interact with and create the meson field and not the
Maxwell field. In other words, the charge is not an electric charge, nor the
dipole moment an electromagnetic moment. When need arises for specifically
distinguishing these quantities from the corresponding electromagnetic
quantities, I shall refer to them as a mesic charge and a mesic dipole
moment, and correspondingly I shall talk of an electromesic force and a
- magnetomesic force.

The extension of the theory to the case of spinning particles moving in a
meson field is of both theoretical and practical interest, for it is known that
protons and neutrons have an explicit spin interaction with the meson field
involving the interaction constant g,, whereas this term appears to be absent
in the interaction of electrons or protons with the Maxwell field. The meson
field has a characteristic constant y which is connected, when the field is
quantized, with the rest mass 4 of the meson by the relation y = u/f (the
velocity of light is taken to be unity). In the classical theory neither & nor %
appear explicitly, but only in the combination y which has the dimensions of
a reciprocal length. Maxwell’s theory is the particular case of meson theory

1 Bhabha and Corben (1941), referred to in this paper as C.
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in which y = 0. Now it was shown in a previous paper (Bhabha 1939,
referred to in this paper as A) that the Green’s function for the meson field
is just the Green’s function for the Maxwell field plus a non-singular part
which has a plain discontinuity on the light cone. This additional part tends
to zero continuously as y—0. It follows from this that in any given case, the
highest singularities in the meson field are the same as those in the Maxwell
field, and all additional terms are singular to a lesser degree. One would
expect from this that it would be possible to extend the theory of spinning
dipoles of the previous paper to a meson field. This is done in the present
paper. Exact equations are derived for the motion of a point dipole in
a meson field which contain the constant y explicitly, and go over con-
tinuously into the equations of the previous paper as y—0. Even for the
simplest type of point dipole, namely one whose mechanical properties are
those of a pure gyroscope, there are three constants having the dimensions
of a reciprocal length which enter into the equations of motion. These are
3M /243, (31/2¢2), and y, where M and I denote the mass and spin angular
momentum of the particle, and g, and g, the mesic charge and dipole moment
respectively. If these constants are given the values which they have in
nuclear theory, it appears that the first and second are respectively about
450 and 3 times the third. As stated above, Maxwell’s theory corresponds to
the limit y = 0, so that it follows from the magnitude of the constants that
all processes which involve only the first and third constants, as, for example,
the scattering of transverse waves by a point charge, will differ very slightly
in the Maxwell and meson theories. This is confirmed by the results of a
previous paper (A). On the other hand, in processes which involve the second
constant also, the differences in the magnitudes of corresponding processes
in the Maxwell and meson theories may be expected to be considerable,
since the second constant is only about three times the third. The results of
this paper confirm this. For frequencies w, large compared with y, the
difference between the two theories is small and gets continuously smaller
with increasing w,.

A cross-section is given for the scattering of meson waves due to the g,
spin interaction by a particle which is free to rotate but not to translate.
This cross-section goes over continuously as xy—0 into the corresponding
cross-section for the scattering of light. It has the same general dependence
on frequency (formula (88) and the curve marked 8 = 0 in the figure). For
low frequencies it increases as (w§— x2)?/«, and, if the angular momentum '
of the spin of the particleis put equal to 3%, it agrees completelyt with the
quantum cross-section for the scattering of neutral mesons by neutrons.

+ See, however, second footnote on p. 341.
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However, it differs from the behaviour of the quantum cross-section,
which continues to increase as w? to the highest energies, in that it reaches
a maximum at w, ~ 3-5y, and finally decreases for high frequencies as wg2.
This decrease is entirely due to the effect of radiation reaction on the
rotation of the spin, which is completely neglected in the quantum theory.
Moreover, this behaviour at high frequencies is similar to the scattering by
a point charge. For scattering by a point charge the cross-section decreases
but slowly up to a certain frequency, after which the decrease becomes more
rapid, finally becoming proportional to wg2. Since the scattering by the
translational motion of a point charge and the rotation of a dipole are very
different processes, it seems plausible to suppose that this decrease of the
scattering at high frequencies proportionally to'wy 2 is a fundamental property
of radiation fields, both Mazwellian and mesic.

A non-relativistic attempt to avoid the increase of the quantum
cross-section for the scattering of mesons due to the spin of the heavy
particles has recently been made by Heitler (1940) in which it is as-
sumed that the heavy particles can exist in states of spin 3%, 37, etc. There
are a number of objections to this assumption. First, it is known that the
effect of the reaction of the emitted radiation is neglected in the quantum
theory, so that a failure of the quantum formulae at high energies is in any
case to be expected. The classical theory of this paper then shows that the
effect of this radiation reaction is to make all cross-sections decrease at high
frequencies like wy2, and hence it completely removes all necessity for
assuming that the heavy particles may exist in higher spin states. Secondly,
the assumption that the heavy particles can exist in higher spin states is an
assumption about the mechanical properties of the heavy particles, and would
only alter the scattering of mesons by heavy particles, whereas the difficulty
is equally pronounced in the scattering of light by an electron having an
explicit spin interaction with the Maxwell field, as is theoretically possible,
although for the actual electron which occurs in nature this spin interaction
happens to be zero. There is complete parallelism between the two cases, and
the theories of this paper and the preceding paper with Corben deal with
both on the same footing. To apply Heitler’s idea to the scattering of light
in the above hypothetical case we should have to assume that the electron
could also exist in states of higher spin, and there is no evidence whatever
for this. It is not unreasonable to suppose that all elementary particles with
a spin 7% in their normal state have the same mechanical characteristics and
there is only one relativistic theory for a particle of spin 1%, namely, that in
which the particle is described by the Dirac equation. It is not possible to
say yet whether Heitler’s idea allows of formulation in a way consistent with
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the theory of relativity. Thus, whereas the treatment of this paper is com-
plete within the limits of classical theory, the approach of Heitler falls short
of the completeness of present quantum mechanics by not being in rela-
tivistic form. Finally, the assumption of allowing the heavy particles to
exist in states of higher spin merely puts the scattering by the spin on the
same footing as the scattering by a point charge. In this it does not seem to
me to go far enough. For it is well known that the formulation of the inter-
action of a point charge with a field in quantum theory neglects the effect
of radiation reaction and leads to divergence difficulties in higher approxima-
tions. These have been discussed at length elsewhere (Bhabha 1940b). Dirac
(1938) has shown how these difficulties may be removed for a point electron
within the limits of classical theory, and the work of this paper is but an ex-
tension of the work of Dirac to a spinning particle moving in a meson field,
and shows that in classical theory the complete treatment of the spin pre-
sents no more difficulty than the treatment of a point charge. Thus it would
be reasonable to suppose that the difficulties concerning the spin in the
quantum theory are to be removed in the same way as the difficulties
concerning a point charge, namely, by introducing into quantum theory the
effects of radiation reaction both for a point charge and for a point dipole.
A quantum translation of the classical theory of Dirac and of this paper, if
possible, would do this, though it may require a far-reaching extension of
the basis of quantum mechanics. '
Aninteresting feature appears in the scattering of meson waves. Asshown
in A, the scattering of longitudinal waves, due to the motion of a point charge
is less than the scattering of transverse waves of the same frequency w, by
a factor y2/w2. This difference is very much accentuated in the scattering by
a dipole. As far as concerns scattering by a magnetomesic dipole which is free
to rotate but not to translate, it is only the magnetomesic force of the wave
which acts on the dipole and causes it to oscillate. Now the magnetomesic
force of a longitudinal wave is zero, so that no scattering of longitudinal
waves by the dipole will occur at all. The scattering of longitudinal waves
can therefore only be due to the translational motion of the point charge or
dipole. With the actual values of the constants as they occur in nature the
scattering of transverse waves due to the rotation of the dipole is more than
twenty thousand times greater than the scattering of longitudinal waves due
to the translational motion of the particle. Hence transverse and longi-
tudinal waves behave quite differently. The difference only disappears for
low frequencies, w, very close to , when in any case the scattering of both
is negligible. However, as shown in A, when a longitudinal wave is scattered
it is more probable that the emerging wave will be transversely polarized,
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and hence the probability of its being scattered again will be very much
greater.

The above remarks apply strictly to neutral mesons. The cause of the
difference in the scattering of charged and neutral mesons was analysed in
a previous paper (Bhabha 1939), and it was shown there (and also by Pauli)
that it is due entirely to the fact that whereas in the usual theory a positive
meson can only be emitted by a proton and a negative meson by a neutron, a
neutral meson can be emitted by both a proton and a neutron. There are
thus twice as many intermediate states leading to the scattering of neutral
as of charged mesons, and the effects of these largely cancel each other, thus
reducing the scattering of neutral mesons. Toavoid this difference the present
author put forward the idea that the heavy particles could exist in states of
all integral charge, positive and negative, having different rest energies, of
which only the two of lowest energy (rest mass), namely the proton and
neutron, occur normally in nature. This idea was communicated to Dr Heitler
and has been adopted by him to calculate the scattering of mesons due to the
charge of the heavy particles (Heitler 1940). With this assumption, as was
shown in a previous paper (1940b), the theory of charged mesons is put on the
same footing as the theory of neutral mesons, so that the above-mentioned
classical cross-sections which should be valid for energies up to 10°eV can at
once be applied to charged mesons.t

This idea by itself is, however, not sufficient to remove the difficulties in
the scattering of mesons due to the spin of the heavy particles. Heitler (1940)
has attempted to overcome these difficulties by allowing the heavy particles
to exist in states of higher spin, whereas the approach of this paper has been
to show that the difficulties disappear if proper account is taken of the
effects of radiation reaction. The scattering of mesons due to the spin of the
heavy particles is therefore different in his theory from that given here. The
two cross-sections have a different dependence on energy, and experiment
could easily distinguish between them. Thus the cross-section given in this
paper is small at low and high energies but becomes very large at energies
near 3-5u. The effect of this would be that the energy spectrum of trans-
versely polarized mesons would fall off rapidly for energies below about 3.
Further, one would expect the mesons in cosmic radiation to fall into two
groups depending on their polarization, longitudinally polarized mesons
being scattered twenty thousand times less than transversely polarized
mesons of the same energy and hence being far more penetrating. On the rare
occasion, however, that a longitudinally polarized meson is scattered, the
probability that the scattered meson is transversely polarized is of the order

t Cf. Bhabha and Madhava Rao, 1941, Proc. Indian Acad. Sci. A, 13, 9-24.
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203/(2w3 + x2), so that the chance of a subsequent scattering is very much
greater. For mesons of cosmic-ray energies, the difference in the scattering
of longitudinally and transversely polarized mesons is so great that it might
almost lead them to appear as different particles, whereas the difference is
only in their polarization and consequently in their penetrating power. This
difference vanishes for mesons of extremely small velocities, but then the
scattering is in any case very small and negligible compared with a number
of other processes.

It must be recognized, however, that the application of the cross-sections
of this paper to charged mesons definitely implies an assumption that among
other things protons of charge 2e and — e may be expected to occur in nature.
The circumstances under which these particles might be observed and the
probability of processes leading to their creation have already been fully
investigated in the paper mentioned (Bhabha 1940b). If the cross-section
for the scattering of mesons given in this paper could be shown experi-
mentally to be in agreement with the scattering of charged mesons, then this
would be evidence, though not proof, that the assumption made about the
nature of the heavy particles and the possible appearance of protons of
charge 2¢ and — e was correct. The theory of the motion of spinning particles
in meson fields developed in this paper is, however, complete in itself, and
does not depend on the correctness or otherwise of its application to charged
mesons through the independent assumption about the nature of the heavy
particles.

Finally, the work of this paper shows that the spin itself does not lead to
multiple processes and Heisenberg explosions as hitherto supposed. In a
previous paper (A) I showed that the mass of the meson cannot lead to
explosions either. The only remaining possibility of the appearance of
‘Heisenberg explosions then lies in the difference in the behaviour of charged
and neutral mesons, and, as shown in the paper mentioned (Bhabha 19400)
this difference is removed by the assumption that the heavy particles can
exist in states. of all integral charge, so that even.this possibility of the
appearance of explosions disappears. It may then be concluded that large
Heisenberg explosions are not possible theoretically. This does not, of course,
mean that oceasionally two and on rare occasions more mesons may not
be simultaneously produced.

THE MESON FIELD OF A DIPOLE

I keep to the notation of the preceding paper. The velocity of light
is put equal to unity, and I take the metric tensor g,, in the form gy, = 1,
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911 = Y22 = g33 = —1 with all the other components vanishing. The co-
ordinate of the particle is denoted by z, which can be considered as a function
of the proper time 7, measured from some arbitrary point on the classical
world line of the particle. A dot over a symbol denotes differentiation with
respect to 7. The velocity £, is denoted by v,. The spin of the particle is
described by an antisymmetric tensor S, which may likewise be considered
as a function of 7. The mesic charge and current density P, at any point z,,
may then be written

0

Pﬂ(xp) =01 oodT”pa(xo —29) 0(%y — 21) (T — 25) 8(5 — 23), (1)

and the dipole density %, at the point «, by

e

2 ,(x,) = ng _wdT 8,(T) 8(g — 2) 0(2y —21) 8(@y — 2,) H(23—23). (2)
As in the preceding paper, the invariant formed from any two tensors
X,, and ¥, is written
XY)=X,Y», X:=(XX)=X,X».

The invariant formed from any combination of tensors and two vectors is
written in the usual matrix notation; thus

(888v) = o#8,,87,, 0% = 4,00

The antisymmetric tensor formed from two other antisymmetric tensors
X,, and Y, will sometimes be written in the vector product notation

[X. Y]y, = X, Y7, — X, Y°,
The vector v, by definition satisfies
v?=1. (3)

The equations derived from this by successive differentiation aret

(v9) = 0, (4a)

(v6) +6% = 0, (40)

(vvith) + 3(9%) = 0, (4c)

(vp'v) + 4(G0ll) + 362 = 0. (4d)

Further, 82=8, 8" = constant, (5)

T I write v" and +"V for the third and fourth derivatives with respect to 7.
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and the equations derived from this by successive differentiation are
(88) =0, (6a)
(S8)+ 82 =0, (6b)
(881 +3(88) = o. (6¢)

If the potentials of the meson field are denoted by U, and the field

strengths by @,,, the meson equations may be written in the formt

2 2 '
(va—'a?y U,u) = G/w, (766)
—a—G’ +x2U0, = 4P, + 4 —8—2 7b
ax‘u )24 XU, = v ﬂax” e ( )
From (7a) it follows that
0 0 0
wGﬂv‘*‘ 5&7‘ GW‘+5_x_VGAI" = O, (8)
and from (7b) x2iU = 477—?—P =0 (9)
ox, 7 ox,””

for a neutral meson field,{ since then the divergence of the charge and
current density P, vanishes. Inserting (7a) into (7b) and using (9) I get

0 0

0
— 2] = —
axpapr”J“X U, = 4nP,+4m-—2% (10)

w*
ox 4

The usual energy-momentum tensor of the meson field 7, is given by
4nT), = G, 0%, +19,, G o0 07+ XXU,U, - 39,,U,U?). (11)
The angular momentum density tensor M, ,, of the field is defined as in C by
M)L,uv = x/\le"“wﬂTl\y. (].2)

Since I am interested in investigating the action of the meson field on
the dipole, I shall henceforth put g, = 0 for simplicity. If g,#0, I have

+ These differ from the form given in A in that the field strengths of this paper
are equal to — (G /,,,—47r2 w) of A. This is only a matter of definition, and is more
convenient for our purpose, although superficially it makes the equations less
symmetrical.

1 On the old theory of charged mesons and their interaction with the heavy
particles, the charge current density leading to the creation of positive mesons was
different from that leading to the creation of negative mesons, and neither satisfied
a conservation equation, so that the right-hand side of (9) did not vanish. With the
new assumption of allowing the heavy particles to exist in states of all integral
charge this is altered, and the right-hand side of (9) vanishes again.
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only to add to the equations of motion the terms calculated in A for the case
91 #0, g, = 0, and further calculate the cross-terms in g,¢, exactly on the
lines of the preceding paper. These are much simpler than the reaction terms
in g% which will be treated below.

As shown in A, the solution of (10) when P, = 0 can be written as an
integral with the help of a Green’s function G':

Uy(x,) = f f f iodx:,G(xp, x;,){a% Z/W(x;)}, (13)

where 2/, stands for the four variables x, 7, x; and x;. G is a function of
x,—, only There are, as usual, two independent solutions corresponding
to the retarded and advanced potentials. I shall only deal with the re-
tarded potentials since the result does not depend on which are taken.

3 %
»— %5, u=(u,ur)t and u, = (%‘, u?c) , the

Green’s function @ can be written in the form

If I write, for the moment, u,=x

0
G’(.’Ep, .’E;,) = mF(u), (14)

with the function F defined, as shown in A (48a), for the retarded potentials
by

Jo(xu)  uy>u,,

Flu) = olX 0> Uy (15)
0 Uy < Uy

Here J, is the Bessel function of order zero. The function F therefore has a

plain discontinuity on the light cone % = 0. I shall frequently have to use

the following properties of Bessel functions.

s Jn+1 =7 {s—n Jn(s)}’ (16)
Lt L L 17
Lt 20,06) = g, (7)
Tal8)+ Toa(s) = (5. (1)

For X , given by (2), the differentiation with respect to ), in (13) can be
made to operate on G by partial integration, and, since @ is a function of
x,— 2/, only, it can be written as a differentiation with respect to z,, which
can then be taken outside the integral. Introducing (2) into (13) I thus find

Ull;et. (xp) = g2~a~x—f dr SﬂV(T)mF(u), (19)
ud — o0

Vol. 178. A. 22
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where, in the notation that will be used henceforth,
U, = &, —2,(T), (20a,
u = (u,ur)t, (200)
3 \}
U, = (2 u?c) . (20¢)
1
I introduce the following symbols as abbreviations:
K = u’uq;/l" K = uluq}//,, K” — uﬂq’jﬂ, (21)
and
W=8,0, 8= S’/wv", S, = Sﬂ,,v", Sy, = Sily, 8 = Siyw. 22)
Now, for any function of u,
0 _ 0w oF(u) uroF(u)
) =5, o u ou (23)
and, by (20a) for a fixed point z,,
ou?
=2k, (24)
By (23), (19) reduces to
grete — o [° 4 uS,, 0 (1 oF
v 92J;°0 Tu ou ﬁ%)’
o yrS,, 0 (10F
ret. — L0y Pubdul
or, by (24), Uret- = g, _wd‘r p aT(K 87')'
After repeated integration by parts we get
o 010 [urS
b — R SR [
Uret = ng—wdfrF(u) P {K 87'( p )}
Hence, by (15),
Uret. — o drJ dd ’W’Spv 25
A o(xw) 7~ Eci_T(_/é_)} (25a)
o d( d (urS,
=92 . duJo(X’“)@{m( P )} (250)
Here 7, is the retarded time, determined by
{xp—zp('ro)} {xr —2P(14)} = 0. (26a)
1 shall write 8p =%, —2,(T), (260)

so that (26a) may be written s* = 0.
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Now, if ¥ = 0, the equations (7) become the Maxwell equations, and we
should expect (25) to become the expression for the Maxwell potential ¢@
given in the preceding paper. This is obvious from (25), for when y = 0,
Jolxu) = 1 by (17), and (25a) does in fact become exactly the expression for
@ given in (23) of C. Integrating (25a) by parts, I have

1 To To 1d °S d
Det. =g2l:J(Xu) d(“"sp")] -—ng df—w(“—ﬂ)d—gﬁ(xu). 27)

kdr\ « —w kdr\ «
By (17) and (21), the first part just becomes ¢@ given byt

sPS sPS sP8
pv pv 1 pv
s T K3 K + K2 } ) (2 8)

8
89 = 0ol o+

which is just the Maxwell potential given by (23) of C. I make the
convention that all quantities are to be taken at the retarded time 7, except
when they enter in the integrand of an integral along the world line. Thus
the first term of (28) is 8,(7y) {s,v#(7,)} . By (24) and (16), the second

integral becomes
7o d (urS,,\1
—ngJ_ dj(“f“);*ﬁ(?{u),

which, on again integrating by parts, becomes

K3

w8, Ji(xw) 70 urS,, d (Jl(xu)
92 X[ :I o Kk AT\ ) )
Hence using (16) and (17) again we may write finally,]
Uret. — ¢(2) U(x) (29)
where Up= Vs (30)
with = g2 X f dr Jy(xw). (31)

The integral in (31) remains finite even when the point y, approaches the
world line. The first term of (30) is finite but not one-valued on the world
line, its value depending on the direction from which the point on the world
line is approached. U0 as y—0.

T Following Dirac, I separate terms which correspond (as k - 0) to singularities
of different orders by a comma.

t For a consistent notation I should write the second part as U®X). I have,
however, written it as U for simplicity, since g, has been put equal to zero in this
paper.

22-2
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By using (7a) we can now find the retarded field Gi*. Corresponding to
(29) we can write
et = F@ 4+ G, (32)

where F2 is the expression for the retarded field in the Maxwell theory,
and is deﬁned by

FQ = T ¢(2) V¢</§>, (33)

It is given explicitly in C (114). G‘¥) is derived from U®. In differentiating
(30) it must be remembered that a change in the point z, also changes the
retarded point 7,. The method has been given in A. I find}

Sw  8:8, 08", 5,878, 8,8°8 ,
G(X)___gx[/” NI A A LR 3 p(l )+_i‘72_£:|—

K k2 K2
s,8P8
+%92x4[ — ””] +G, (34)
with
G, f ar S = Sy s . (35)

The part proportional to x? in (34) has a singularity of order x—, while
the part proportional to y* vanishes on the world line. The expressions
(29) and (32) show quite clearly that the retarded meson potential and
field is the same as the corresponding Maxwell potential and field plus a part
containing y which is singular to a lesser degree and vanishes when y->0.
Both U, given by (31) and @ﬂ,, given by (35) are finite and one-valued on
the world line,

Now, as in the previous papers, I write the actual potentials U, and field
strengths G, at a point as the sum of the retarded and ingoing potentials and
field strengths respectively at that point; thus

U, = Upt-+ U, (364)
G,y = G+ G, (360)

The ingoing potentials and field strengths satisfy the equations (7) and (10)
with P, and X, put equal to zero. Using (29) and (32) we may write (36) as
U =¢P+UP+Um, (37a)

G = FQ+GX+ G-, (37b)

1 The minus sign at the end of a bracket means that the same terms with u
and v interchanged are to be subtracted.
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The ingoing field can always be written as a superposition of plane waves,
a typical solution being

U, = vy,cos (w,2"), (38)
where, by (9) and (10), w,y’ =0, (39a)
V=0, = Y2 (390)

The field strengths for this wave are

G, = —(0,7,—w,7,)sin (0,27). (40)

A transversely polarized wave is defined as one in which the amplitudet
v; of the vector potential is perpendicular to the direction of propagation
. Then, by (39a),y,= 0,and U, = 0. Thefield strengths &, are perpendicular
to the direction of propagation. A longitudinally polarized wave is defined
as one in which the amplitude vy, is parallel to the direction of propagation
wy. Then, by (40), Gy; vanishes exactly, so that a longitudinally polarized
wave has no magnetomesic force. The ‘electromesic force’ G, is now along
the direction of propagation. Inserting (38) and (40) into (11), the energy-
momentum tensor for this plane wave averaged over a period is

1
—gwﬂw,'yz. (41)
The vector ¥, is perpendicular to the time-like vector w,, so that y? is
negative.

THE EQUATIONS OF MOTION

To find the equations of motion of the particle in a given meson field I
use the method of the previous papers. Assume the world line of the particle
to be given and the direction of the spin at every point of it. Now surround
the world line between the points 7; and 7, by a thin world tube, and using
the tensors (11)and (12) calculate the flow of energy, momentum and angular
momentum into the tube. For the conservation laws to hold, the flow of each
of these quantities into the tube should equal the increase in the amounts
stored at the two ends of the tube. As before, I take the world tube to be
defined by

K=8,v* =g, (42)

"
where ultimately ¢ will be made to tend to zero.

+ A Latin suffix only takes on the values 1, 2 and 3. ' A repeated Latin suffix
therefore implies a summation from 1 to 3 only.
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If we denote an element of the three-dimensional surface of the tube by
dS” taken as positive when the normal is directed outwards; the flow of
energy and momentum into the tube is

f T, ds,

which, as shown in C, can always be written in the form

Ta
fT T, dr.

For conservation of energy and momentum, this must only depend on the
conditions at the two ends of the tube, so that the integrand must be a perfect
differential. We must then have

T,=4, (43)

and if 4 , is known, this becomes the equation determining the translational
motion of the dipole.
Similarly, the flow of angular momentum into the tube is given by

f M, dS".

Defining M, , by frz M,,dr =J(s,\T#,,—sﬂTM)dSV, (44)
71

we can show, as in C, that the conservation of angular momentum requires
that M, ,— (vy4,—v,4,) shall be a perfect differential, so that I have to put

M,,— (0 4,—v,4,) = By, (45)

If B,, is fixed, this becomes the equation determining the rotational
motion of the dipole.

The calculation follows the work of C step by step. The only difference is
that I get additional terms involving x in 7), and M,, besides the terms
already given in the previous paper. These arise from two causes. First, the
retarded field strengths differ from the Maxwell field strengths F? by having
the extra terms G%. Secondly, the energy tensor (11) itself has additional
terms proportional to x* and involving the potentials U, explicitly. I can
therefore write

T, = Trpax- 4 Trpes., (46)
where 722 is just the expression calculated in C for the Maxwell field, with

the only difference that the ingoing meson field strengths G2 appear in place
of the ingoing Maxwell field strengths F3:. Then 7" is the additional part
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that appears for a meson field due to the two causes mentioned above. It
contains y explicitly and vanishes as y—0. Corresponding to this, I write
4 ,1in (43) as the sum of two parts,

A,u — Aﬂlax._i_Aﬁues., (47)

where A%ax is the expression for 4, found in C for a Maxwell field.
Similarly, write ,
M,, = M=+ Mpes., (48)
B = Bma.x es.. (49)

By substituting these into (43) and (45), and using the expressions for 7"pax.,
A=, MRee=- and B’,{“ax' found in C, the translational equation (43) becomes

Ms, + — 0, {HKS? + 1K' (88 %) — 4g,(S G}

= —1g, Spa% G% + Tll;teact. + (Tﬁnes. _A'ﬁaes.), (50)

and the rotational equation (45) becomes
I8,,+I'S%,+ K[8.8],,+ K'[S.8%],,
=g,[8. @Qine ]Aﬂ +[S. Creact. ]/\ + {Mmes — (,UAAll?es. — vﬂAl]z\neS.) _Blﬁfa.}. (51)

These are just equations (72) and (73) of C which give the motion of a
spinning particle in a Maxwell field, with additional terms. M, I, I’, K and
K’ are arbitrary constants, and have the dimensions of mass, angular
momentum and moment of inertia respectively. 8%, is the six-vector
adjunctt (dual) to 8,,. Finally, 7%t and C5¢2et are the terms proportional
to g% giving the reaction of radiation for a Maxwell field. Now, by the
arguments given in C, we must have

M3 — (v, Apes: — v, Apes) — Bies:] = S, Ces: — 8,005, (52)

that is, A7 and BY - must be so chosen that the left-hand side of (52) has
the form of the right-hand side of this equation. Further, in order that the
invariant equation got by contracting (50) with v# should be consistent with
an invariant equation which can be derived from (51) as shown in C, one

must demand that )
(S . Cmes.) = 20 T/l;les. _ Aﬂues.). (53)

T Its components are connected with those of S,, as in C(26) by S*01 =8,
S = — 828, etc., the other relations being derived by a cyclical permutation of any
three suffixes.
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Now consider the contribution to 72 that comes from the fact that the
retarded field strengths in (376) contain the extra term G). The highest
singularities in the three terms on the right-hand side of (37b) are re-
spectively of order €73, ¢, and 1, while the surface element dS” is of order
€%. Hence the addition to 7% due to the extra term G'}) in (3756) will come
from product terms in 7}, involving F'?) and G, and from terms quadratic
in @Y. There will be no extra terms containing G4%:. Now G*¥) contains the
term G wgiven by (35), which, as has been mentioned before, has no singulari-
ties even on the world line. This term will therefore appear in the equations
of motion in terms of the same form as those involving the ingoing field G2
Moreover, since the highest singularity in F@) is of order =3, the derivative
of G . Will also appear in the translational equations, just like the derivative
of G The derivative appears as before because the value of @, at a point
a, on the world tube has to be expressed in terms of its value at the retarded
point z,(r,) on the world line by a Taylor’s series; thus

0
(@oley = @ulegea+ (55500 V)ZM. (54)
Now, using (35), I find
0 s 7o Ja(xu)
w G/.w = AJngX4S/w’If - 292X3f_w8pvup 3u3
1 6 A A SP 3 o d A8 JS(Xu)
—z892X (8/1,8 S/\V —§,8 S/\,u) E‘ —g2X w T[g,upu wt u/LSpv]—T
+ 02X f dr(u, w8y, —u, u'S,,) , 4("“)
S S
= ig2 X*S/w ;p - 11592 Xs(sp SAS/\V -3 SASA/L) 7? + gpv,p’ (55)
oJ;
where g — 92X f dT[up w + g,up uASAV + u[l Spv]— ﬂ;}b)
+92xf drfu, ] X, (56)

The minus sign means that terms with # and v interchanged have to be
subtracted. The first two terms on the right-hand side of (55) come from the
fact that a change in the point x, changes the retarded point 7, according
to (26a). The second term is of order ¢ and hence contributes nothing to
T, and M, ,, as will be seen in the appendix. It vanishes on the world line.
The expression (55) is, moreover, contracted with s# in (54), so that the first
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term on the right-hand side of (55) also vanishes by (26). Hence @ﬂ,,’ , will

play the part of a—zp (7”,, in the equations of motion. Contracting (55) with

v# and remembering (21), I get at a point on the world line

d 0 ~
%g/w = ’Up'éﬁG/w = ig2x48”,,+gﬂ,,’pv". (57)

Tpes- and MRS are given by (97) and (99) in the appendix, and 43¢ and
Brpes- are chosen to satisfy (52) and (53). If we introduce the expressions
for Tipes. —Ag‘es- given in (102) of the appendix, the translational equation
(50) becomes

Ms, + -0 HKS + 1K (88%) — 4g,(S[G™ + G1)}

?
-- %g2s/w(57 O+ ) + 3~ 10,57+ 18,8+ 10,87
+ T'react. + (T;mes._ A;mes.), (58)

where 7', mes: —A;}nes- is an expression proportional to g2 ¥ and is given by
(109) in the appendix. The terms in y* are important. On contracting (58)
with v#, the last two terms proportional to x* cancel each other, while the
first combines according to (57) with G oo, 1O give

d A
%g2{Spuap0',/4 + ig2 X4v,u S2} vk = %92 Spud_,r Gpw
which is analogous to
e P T
By using (104) of the appendix, the rotational equation (51) becomes
I8,,+I'S%,+ K[8.8],,+ K'[S.8%],,
=[S (G +G)], +[S. Oreset ]y, +[S. 0", (59)

where C2¢- is given in the appendix by (110) and is proportional to g3 x2.
The reaction terms 77 mes- —A;mes' and C}12¢ contain one arbitrary dimen-
sionless constant k. This completely determines the exact equations of
motion of a spinning particle in a meson field. As y—0, the equations go
over continuously into those derived in C for the motion of a spinning
particle in a Maxwell field.

Specialized equations can be derived from (58) and (59) which are con-
sistent with the condition that the mesic dipole moment shall always be a
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pure ‘magnetic’ moment in the system in which the particle is at rest. This
condition is expressed by
8,7 = 0. (60)

To derive equations consistent with (60) I follow the procedure given in C.
Take all the terms in (59) on to the left-hand side and contract this expression
with v#. T then have to add the resulting expression to 4, in (43). Any
addition to 4, naturally also alters the rotational equation (51) or (59),
since 4 , occurs on the left-hand side of (45). The alteration in the terms not
involving x has already been given in the previous paper. I have only to
consider the alteration in the additional terms involving x. By (60), the
effect of the above operation is to replace T};“es-—AfBeS- in (50) by

T/x?es Ames + d (S pOmes /vu) (61)

The corresponding change in terms involving ¥ on the right-hand side of
(69) is to replace [8,,Cmes]_ by [8,/(Ches-— s v7v,)]_. Using (102) and
(104) of the appendix, and the results of C for the modification of the other
terms not involving y, I find that the translational equation becomes

) d ’ " i Y 0
Mo+ {18, + 1K, 82+ K8, 8" — 49,0, (S[G™ + ) — o8,/ (G i + G ) v}
= — 19,8 ( A+ 4, ”) — 493 X%, 8%+ T3t 4 Toeltx. (62)

Here, as in C, I have put K’ = 0 for simplicity. I’ must necessarily be put
equal to zero. T°!f is the reaction term in g3 given explicitly in an earlier
paper (Bhabha 19404, referred to here as B). T¢I is the reaction term in
g% which involves y, and is given by (111) in the appendix.

Similarly, the rotational equation (59) is now to be modified to

I8, + 08, —v, 8} + K[8,*(8,,—8,v,)]-
= gz[Slp{(Gm + Gpﬂ) - (G’,iol;l; + gpu) vyvﬂ}]—
+ 185, D7, 1+ G x282 (S = Spv,)]- (63)

D,, is the reaction term proportional to g3 given explicitly in B (46) and
C (142) It is such that D, v* = 0. We see that G ., appears in the equations
(58) and (59) in the same way as the ingoing field Gm It embodies the effect
of the previous motion of the dipole on the motlon of the particle at the
instant under consideration and may be interpreted as the resultant of the
fields which the particle has itself radiated in moving along the preceding
part of the world line. It should be noticed that the arbitrary constant &
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in Cmes- has dropped out of the specialized equations (62) and (63) for the
case 8, = 0.
Contracting (62) with v# and using (53) I get the invariant equation

K(88)—2K(8'8")—go(S.{G" + G})
+20,8' (G +@,,) v — (SD) — g3 x%(S2— §'2) = 0. (64)
On contracting (63) with v# it vanishes identically. Thus (63) vanishes
identically in the rest system when either A or u takes on the value zero. It
therefore only consists of three equations determining S, S, and Sy,
while 8y, S and 8, are determined explicitly by the equation derived by

differentiating (60). Corresponding to this, (64) in the rest system takes the

form
K (8,84 — 925%1(@ +ékl) Slekl gzxzs"’sm (65)

THE SCATTERING OF MESONS BY A DIPOLE

In considering the scattering of meson radiation by a dipole, we may
simplify the problem by putting the mass of the dipole M = co. All deriva-
tives of the velocity will then vanish, and (63) can be considered in the rest
system. Put the dipole at the origin of coordinates. Henceforth write ¢, «,
¥, zin place of %, x,, ®, and x;. If we introduce a space vector M defined by

Mk = Slm’ M = Smk’ Mm = Skl’

and denoting the magnetomesic force Gi;, G5 Gi2: of the ingoing field by
H the equation (63) takes the formt

IM + K[M.M] = g,[M.H] + 3¢2[M. M) 4 ¢,[M. G]+g2x3[M.M], (66)

where G stands for the vector G,,,, G,., Gyy. Its components are defined by
(85). The quantities %, in (35) written out explicitly are

u = 2(7) —2(T') = 0, wg = 29(T) —20(7') = =1, w=1uy=1¢t—1, (67)

¢ being the time at the proper time 7. Hence, on account of (60) and (67), the
second integral in (35) vanishes, and I get

t
G(t) = 29, %2 J _wdt’ M(t’)’é—(qi—fi)

— 20| duM(t—u) 22X (X”) (68)
0

1 Henceforth the square brackets have their usual meaning in three-dimensional
vector theory.
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Let us suppose that a periodic force H with a frequency w,acts onthedipole:
H = Hjcos w,t. (69)

Solve (66) for small oscillations of the dipole. I write
M(t) = M+ M, sin wyt + M, sin (wyt + 0). (70)

M, is the initial direction of the dipole, and I assume that M2 = 1. The
vectors My, M; and M, are perpendicular to each other and such that
[M,.M,] is in the direction M,. I neglect quantities quadratic in M,,
M,, and H,,

Introducing (70) into (68), I get

G= 292X2Mofwdu'é%?u)
0

+2¢,X f du[M, sin w,(t —u) + M, sin {wy(t — u) + 0}] —5— J2(Xu)

The integrals which occur in this expression can be easily evaluated and are
[ A) _

o HA=v®)E 4+ —3w] O<v<l,
f dqu(u)e‘M=‘f l ]
[%[——i(lﬂ 1)i+a3—3iv] »>1.

o=
-

With the help of these I get at once
G = 29, x®M, + 39, x*M{ P sin w,t + @ cos w,t}

+ 29, X3M,{ P sin (wyt + 6) + Q cos (wyt + )}, (71)
(-5
-2 Wo< X,
where P = X
0 Vo> X,
wh_30, 0y < 72)
X 2x oS X
" 5 §(ﬂ’ Ci%__l ! Wy >
P P v B

Now write as abbreviations

(73)
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Introducing (70) and (71) into (66), using (72) and remembering the relation
between the three directions M,, M, and M,, I find, neglecting terms
quadratic in M;, M, and H,, that (66) becomes

w,M; occosa)ot+’%g t+8)—§cos(wot+3)}:|
1
+woM2[occos (wot+ & E t—é’cosa)ot}:] [M .H,] cos wyt,
(74)
—w2)?
: pu- X 2 oy,
where £= ,Bwo—if—o(l _P)= - (15a)
ﬂwo_ao Wo> X,
0 Wy < X
X3{ w} 3“’0} 2 A2\8 0=
- _+_ w2 — 75b
==l l0 ey =) ooy (T5D)

Now, each square bracket on the left-hand side of (74) can always be written
as the sum of a term proportional to coswyt and a term proportional to
sin wyt, and, since M, and M, are perpendicular, the coefficients of the terms
proportional to sinwyt in each bracket must vanish. The coefficient of the
term proportional to sin wyt in the first bracket vanishes if

£cosd+¢sind = 0,

that is, if tand = —%, (76)
while the coefficient of the term proportional to sin w,t in the second bracket
vanishes if

. _]: —
asin &+ 7, £=0.
Hence, with the help of (76),
.Z_l{_1 _ @ sind a (77)
M, £ JE+H

By using (76) and (77) and dividing through by cos wyt, equation (74)

becomes
2__¢2_ 2
M,(Z2EE) o, 5705, Mo Hil
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Let 0 be the angle between M, and H,, and % the angle between M; and
[M,.H,], M, lying in such a direction that the angle between the M, M,
plane and the M,H, plane is {77 —%. Then it follows from the above equation

that
208
tany = m , (78)
3ot sin 0
29, 00{(0® — £ — %) + 423

The work done by the external force on the dipole is on the average

and | M| = (79)

- 92&1—1\‘—4) = — 37, 0o{ (Hy. M) + (Ho M,) cos 6}
= — 19,0, Hy{| M, | sin O siny — | M, | sin 6 cos 7 cos 6}.
By (76), (77), (78) and (79), this becomes
2 2 2
{Hjsin?0 (o2 E(Zz jgz):- f 4)052§2 ‘
When o, < ¥, this expression vanishes since, by (75b), { is then zero. This
is what one would expect, for no meson waves exist for w, < x, and hence no

radiation by the dipole is possible. The amplitude of the oscillation M, as
given by (79) is now proportional to («2—£*)~*. For very low frequencies

w0<X:

(80)

3w
Er~fwy—dxw, = %%(K—QEX)' (81)

This shows quite clearly that as far as slow oscillations are concerned the
constant K, which, as was shown in C, is to be interpreted as the moment of
inertia of the particle perpendicular to the axis of the spin, is diminished by
a quantity g3 x. We must interpret — g3y as an added moment of inertia due
to the meson field. For the Maxwell field where y = 0, there is no such added
moment of inertia due to the field. Now the energy density as given by (11)
is a positive definite form, so that if the expression (11) were used for
calculating the addition to the moment of inertia due to the field, the
addition would always be positive. For a point dipole it would be infinite.
The arguments of the preceding paper show that this infinity is spurious and
(11) is not the correct expression for the energy density when point charges
or point dipoles are present. (11) has to be modified in the presence of point
dipoles as Pryce (1938) has modified the energy tensor for a point charge.
The result that the addition to the moment of inertia given above is negative
then shows that the modified energy tensor will no longer be a positive
definite expression.
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Exactly as in the casr fa point charge investigated in A, the mass of the
particle is changed due to the mass of the meson field. We could calculate it
by working out the amplitude of the translatory motion of a dipole of finite
mass M due to an external force of low frequency in a way exactly analogous
to the one used above for calculating the change in the moment of inertia.
Its order of magnitude can be estimated by dimensional considerations.
The mass of the field must be proportional to g2, and the only other constant
which the expression for it can contain is ). The only combination of these
two constants which has the dimensions of a mass is g%x3. With the actual
values of the constants for neutrons and mesons as they occur in nature,
92x® = w(g3x2/h) ~M/150, M being the neutron mass, so that this is
extremely small compared with the neutron mass, and of the same order as
the alteration in the mass calculated in A due to the meson field of a point
charge g,. It is seen that the dipole field makes a very small negative
contribution to the mass of a neutron. This result is contrary to a non-
relativistic classical theory by Heisenberg (1939) in which the field was made
to account for the whole mass of the neutron.

I now return to the more interesting case w,>x. To get the scattering
cross-section we have to suppose that the force H is the magnetomesic force
of a planewave of the type (38). Now,as mentioned before, the magnetic force
of alongitudinal wave is zero, so that a dipole free to rotate only will not
scatter longitudinal meson waves at all. Any scattering of these waves must
be due to the translation of the dipole, and the scattering will be of the same
order as the scattering due to a point charge calculated in A. For transverse
waves the rate of energy transfer per unit area of a wave with a magnetic
force H is, by (41), Hiwy(wi—x?)~*/8m. Dividing (80) by this, it is found
that the total effective cross-section for the scattering of a transverse meson
wave is

. w2 — 2)2 o2 2 2
6rsin2 ¢ ong ) (a2—§2i§2)—:£ ek (82)
If ¥ is put equal to zero, this at once reduces to the cross-section for the
scattering of light by a dipole given in C. { may be regarded as expressing the
effects of radiation reaction for a meson field, for it reduces when y—>0 to Wi,
the reaction term for a Maxwell field. £ may then be taken to express the
effects of the sum of the mechanical moment of inertia K of the particle
perpendicular to the axis of the spin plus that due to the field. When

Wo =X, 5
Wy

= _x 5 o X
g—ﬂwo wo_zgg K—ﬁgZ_)'
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This clearly shows that the moment of inertia of the field is — 292 ¥3/w3, and
tends to zero as w, increases. This is what one would expect, since, as the
frequency increases, less and less of the static field swings with the dipole.
In the absence of the radiation reaction term &, the cross-section (82) would
become infinite when £ = «, i.e. at frequencies w, given by

. o _ I
B—xP|wf K- 393 x°wf

This is a resonance phenomenon. The expression on the right of (83) is the
normal gyration frequency of the spin in a meson field for small amplitudes.
The effect of the radiation reaction term { is to make the scattering finite
even for this frequency, but the cross-section still has a more or less strong
maximum at this point, as shown by the curves in the figure, which are
drawn for different values of # and hence of K. For I < (K —%g%y)x, the
gyration frequency is less than y and hence no resonance occurs in the
scattering of meson waves. (This is shown below by the curve marked £ = 15
in the figure.) '

To get the angular distribution of the scattered radiation one must
calculate the potentials at a large distance r due to the vibration of the
dipole given by (70). It is shown in the appendix that, if quantities of the
order 1/r? are neglected, the potentials at a large distance » are given by

N (83)

Uget. — 0’
gar (X2 — 03) eV =9) {[r . M,]sin wyt + [r. M,] sin (w,t 4 &)}/r? Wo< X5 |
Uret. = \; JornJ(@3 — x%){[r.M,;] cos (0t — (W3 — x2)) + [r. M,] cos (wyt — rJ(@3—x2)+8)/r2 1 (84)

( Wy > X-

For w,< x the field falls off exponentially, and no radiation takes place.
For w,>x the radiated wave is purely transverse. The average rate of
radiation of energy per unit area in the direction r is, according to (11),

L s =) (I My 5 Mo (17 My). [ M)

8772 72 72 72 7

cos 8}. (85)
M,, M, and & are given by (79), (77) and (76) respectively. Thus the angular
distribution has no very simple relation to the direction of the incident
field. Moreover, as (78) and (77) show, it varies with the frequency. If we
integrate (85) over all directions and use (75b), (77) and (79), the total rate
of radiation just becomes equal to (80).
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DiscussioN

The scattering cross-section (82) is plotted in the figure for I = }#, and
X = 442 x 102 cm.~! corresponding to a meson mass g of 85x 10%eV. I
have taken & = 102 corresponding to g3 x2/% = 1/13-3, as is required by the
theory of nuclear fof®es. The different curves correspond to different values
of K given by # = 0, x, 5x, 10x and 15y.
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The dipole moment g, only appears in (82) in the denominator of a, and
of fin £. For small g, and frequencies which are not too high, these are large
compared with w,, and (82) can be expanded in a series in ascending powers
of g,. The first term of this series is

8T . 508 (=X 1+ K2} I2

R R R T 1) L (86)

This differs completely from the quantum cross-section for the scattering
of mesons by neutrons (or protons) due to the appearance of the constant K,

Vol 178. A 23
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since for frequencies near I/K, (86) has a strong resonance peak and becomes
infinite. There is no such constant in the quantum theory. If K = 0, then
(86) does in fact become the quantum cross-section. To apply it to the
scattering of neutral mesons by neutrons or protons I must put I = 4%,
and replace sin%@ by 2/3, its value averaged over all initial orientations of
the dipole.t If I write for greater similarity with the quantum formula
B = fiw, for the energy of a meson; and

p = fi(w§— x*)*
for its momentum, and further, if I put g,—gs/x, I find that (86) becomes,

in the case K = 0,
64 (gi2\21 po
9 "( hi ) X pRE &7

which is exactly the cross-section for the scattering of neutral mesons due
to the spin of the neutron as given by quantum theory. Now, as is well
known, quantum theory neglects the reaction of the radiated field, so that
for high frequencies important deviations from formulae (86) and (87)
should be expected, as indeed the exact formula (82) shows. There is, how-
ever, no reason to doubt that the Dirac equation adequately describes the
mechanical properties of a particle of spin 1%. There is therefore no reason
for doubting that the formula (87) is correct for low frequencies. The above
argument then shows that for the elementary particles as they occur in
nature, K is zero, and the elementary particles have the simplest possible
mechanical properties for a spinning particle. Thus the exact classical
equations of motion for a neutron or proton (with g, = 0) in a meson field
are got by putting K = 0in (62) and (63). A glance at these equations shows
that the case I = 0, K =0 is formally not as simple as the case /40, K=0
which seems to occur in nature and is described by the quantum theory of
elementary particles.

Thus a formula which goes beyond the quantum formula (87) and which
may be used for describing the scattering of mesons by neutrons or protons
is obtained by putting K = 0 in (82). The resulting formula is

X OL2(L)2 + ((()2 — X2)3 + XG
2 2 __ 42)2 0 0
s 08 =X T i )P+ P — PR

(88)

t £ is the classical average. Detailed calculations (see second footnote on p. 341)
have shown that in the quantum theory of a particle of spin 7/2, sin®6 is to be
replaced by 2. The quantum cross-section is therefore exactly three times (87).
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As mentioned at the beginning of this section, o = 10X2, so that the explicit
x% terms in (88) may be omitted with an error of less than 2 9%,. To this degree
of accuracy the scattering cross-section may be written

X th4
6 Sln20&m6. (88(1/)

The formula (88) has a very wide range of validity. In deriving it the
following approximations have been made. First, the translational motion
of the particle was neglected. Due to the largeness of the neutron mass this
" approximation is fully justified. The scattering due to the translational
motion of the dipole would be smaller by a factor of the order (u/M)2.
Secondly, the meson field has been treated classically. A comparison
of the Klein-Nishina formula with the Thomson formula, as well as the
corresponding quantum formula of Booth and Wilson (1940)1 for the
scattering of neutral mesons due to the g, interaction with the classical
formula given in A, shows that this is a good approximation so long as the
wave-length of the quanta or mesons is large compared with the Compton
wave-length of the electron or neutronrespectively. Thusnoappreciable error
is introduced by the classical treatment provided that wy,< M/#. This fre-
quency M /# corresponds to mesons with an energy of the order of 10?€V,
and thus formula (88) should correctly give the scattering of mesons up to
these energies. Quantum deviations from formula (88) would only make
their appearance near and above this energy. Lastly, the spin of the
neutron (or proton) has been treated classically. Since the neutron spin is
1%, so that its angular momentum in any direction can only take on the
two values + 37, it may be doubted whether a classical treatment of the
spin would give correct results. The complete agreement} of the classical
formula (88) with the quantum formula (87) for low frequencies shows

1 I am indebted to Dr A. H. Wilson for communicating this result to me before
publication.

1 Subsequent calculation has shown (Bhabha and Madhava Rao, 1941, Proc.
Indian Acad. Sci. A, 13, 9-24) that the quantum cross-section is greater than the
classical by a constant factor 3, though the two agree completely in their dependence
on frequency, scattering angle, and polarization of the incident and scattered meson.
This difference of a constant factor 3 results from differences in the averaging over
the initial orientations of the spin of the heavy particle. In the quantum theory
the average value of the square of the cosine of the angle which the spin makes
with some fixed direction is 1, if the spin is %/2, whereas in the classical theory it
is always 3. As a consequence it can be shown that sin? § in formulae (88) and (88a)
must be replaced by 2 and not %.

23-2
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that a classical treatment also gives the right result. There is no reason to
suppose that it will go wrong at high frequencies on this account alone.

We therefore meet with a very unusual state of affairs. The above
arguments show that the quantum theory of the interaction of the heavy
particles with mesons goes wrong owing to its neglect of the effects of radia-
tionreaction on the rotation of the spin at the point where the quantum cross-
section (87) diverges from the classical cross-section (88a), i.e. at momenta
satisfying p3 < Eoafi®. With a = 102, this gives £ ~3u. On the other hand,
quantum effects would not invalidate the classical formulae (88) and (88a)
until we reach energies comparable with the rest energy of the heavy
particles. Thus, there is a region of energies E, defined by 3u < B < M, for
which the classical formulae (88) and (88a) still hold, but the quantum
formula (87) is quite wrong.

The cross-section (88) is given by the curve marked £ = 0 in the figure.
For comparison the corresponding cross-section for the scattering of light is
given in the figure by the broken curve marked ‘Maxwell’. This is got from
(88) by putting x = 0, in which case (88) becomes the cross-section for the
scattering of light given in the previous papers (B (56) and C(111)). The
abscissa for the broken curve is wy/y and not wyy—1. The difference
between the two curves is considerable, contrary to what is found for the
scattering by a point charge. This is what one would expect from the argu-
ment given in the introduction.

With the assumption that the heavy particles can exist in states of all
integral charge positive or negative (Bhabha 19400), the above results can
at once be applied to charged mesons as they appear in cosmic radiation.
To sum up, then, the scattering of transversely polarized mesons is given
correctly by formula (88) (curve marked # = 0 in the figure) up to energies
of 10°eV. The scattering is greatest at energies £ ~3-5u, the cross-section at
this point being 3 x 1026 cm.2. For higher and lower energies the scattering
is much less, so that it is nof possible to exclude the above cross-section as
being too large to be reconciled with experiment. That would only be the
case if the cross-section at higher energies were also of the same order,
whereas (88) decreases roughly as E—2 at high energies. The largeness of the
cross-section for B'~3-54, however, will have the effect that relatively very
few transversely polarized mesons will fall below these energies. Thus
the energy spectrum of mesons will fall away rapidly for energies below
about 3, if they are transversely polarized.

Longitudinally polarized mesons are not scattered by the rotation of the
spin. They can only be scattered by the translational motion of the dipole;
the cross-section for this is of the same order as the cross-section for the
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scattering of longitudinal waves by the g, term as calculated in A (43),

namelyt ,
X 1x? 1
677(0—(2)(1 +§‘w—§) {(%)2—'—1&3}2—'— lwz— 3x* 1x°
23] " 22 T 4wd 40l

The ratio of this cross-section to the cross-section given above for scattering
by the spin at a frequency w,~3-5x where the latter is a maximum, is of the
order (g3/h)2 (u/M)2 With (u/M)2~1/137 and ¢%/fi ~1/14, this ratio is of
the order 4 x 103, For higher energies the cross-section due to the spin falls'
away very rapidly butso also does the cross-section given above for scattering
of longitudinally polarized mesons by a point charge, due mainly to factor
x2/wd. The ratio is therefore not much altered at high energies. Thus the
scattering of longitudinally polarized mesons is always more than twenty
thousand times less than the scattering of transversely polarized mesons
except for very small velocities, when in any case the scattering is negli-
gibly small for both. Scattering will therefore play an important part in the
absorption of transversely polarized mesons, but a quite unimportant part
in the absorption of longitudinally polarized mesons.

In comparing the theory of this paper with experiment it should be
remembered that if the observed mesons do not show the above large
scattering at energies near 3-5u, as given by formulae (88) and (88a) with
sin2 6 replaced by 2, in the absence of other evidence this could be interpreted
to mean that the observed mesons were mostly longitudinally polarized at
the place of observation. On the other hand, if the observed mesons
showed a large scattering for energies near 3-5u, it would mean that a
large number of the actual mesons at the place of observation were trans-
versely polarized. It would also be evidence in favour of the correctness of
the theory of this paper, for no other theory predicts a behaviour of this
type for mesons.

I wish to express my thanks to Professor Sir C. V. Raman and the
Director, Dr J. C. Ghosh, for having afforded me every facility for doing
this work at the Institute.

APPENDIX

One must calculate 7% and M4 as defined by (46) and (48). First
consider the contribution to these due to the extra terms containing the
potentials in (11). These are proportional to x2. The potential U, at a point

T Obvious misprints in A (43) have been corrected.
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on the world tube is the sum of three parts as given by (37a), the first being
independent of ¥ and of order ¢~2 and the second proportional to x* and
of order 1. Thus, remembering that, for the world tube defined by (42),

a8 = {(1—-«')—ev’}edQdr, (89)

as shown in A, where dQ is a solid angle about the retarded point in the rest
system of that point, it is seen that the potentials will contribute to 7"7¢5 an
amount

2
f—ﬂ f{¢‘,%)¢‘§> —19,,$PP@P}H /(1 — k') — ev’} €dQ)

2
+& f (POUP + UI) 4 (UP + U) §O — g, §O/(UP + Un)} (8 — ev¥) Q.
(90)

By using (28), the first integral.can be evaluated as shownin C. All its terms
are proportional to x2, and are of orders ¢~ and 1. As far as the second
integral is concerned, the two parts of U given in (30) can be treated
separately. The first part will give a contribution proportional to x* and
calculation shows that it is

gEXA3S,, B2+ §v, 82). (91)

The second part U, is non-singular and can be treated along with the ingoing
field. This gives

9o X438, + v, 8, — v, 8,3 (07 + Un0), (92)

The terms containing the ingoing field, 7™, as calculated in C (119), are

Tivix. — gz[d%{%s; G — 3G 87 4 1o, Sro G,

—18Qps_ " a {3 31) S 3?) Sﬂ}:l_ Gm o'v (93)

08

where the ingoing meson field strengths G'2- have been written in place of
the ingoing Maxwell field strengths F3.. Now the terms containing Ui
in (92) combine with the last three terms in (93) to form

(3850 + 40,8, 0, 8,) (5 G+ 2207,

which vanishes on account of (76). T"ix- therefore remains the same as in
the Maxwell case, except that G3- now replaces Fiz-


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on January 19, 2011

Classical theory of spinning particles in a meson field 345

Now consider the contribution to T;ﬂ%’ which comes from the first two
terms in (11). Itis

- f (10, Q07,4 G F®», 4+ g, FO GO} (s/(1 —K') — 2%} €2
1 .
+4m [0, + 10, G 00} (¢ —evyedn. (o)

G consists of three parts as shown by (34). The first is of order e, the
second of order ¢ and the last of order 1. Therefore, as far as the second
integral of (94) is concerned, only the first will give a finite contribution and
it will be proportional to x%. Calculation shows that it vanishes. In the first
integral, the first part of G'¥) will give a contribution proportional to 2, the
second to x*. The latter is

%‘QEX‘I{ - %S/WSV - %v/l/ 82+ %vﬂ ‘S'Z} (95)

The third term in G}) is non-singular, and therefore it can be treated with
G'3:. Its value on the world tube must be expressed in terms of its value at
the retarded point by a Taylor series as given by (54). (7 , Will play the

part of the derivative @lw. Hence there will be terms containing G~/w

2
and 67 ,» exactly like the terms containing G'Z- and 587 @'z Thus, corre-
spondmg to the last three terms of (93) the first integral of (94) gives

- g2{%8/w + %U/t ‘S’,,-'— %UO' $ﬂ} Gim',v

This combines with the terms containing U7 in (92) to give an expression
containing @,,”—x2 U, as a factor. Using (31) and (56), and remembering
(205) we get

G "—XZU = —6g,x3 dTS w2 3(xu +gzx4 d'rS Ji}gu)

+gzx“ " dr 8 X
. ! 00 u

Jy(xu
= s x“f aroe {Jz(X“) +Jy(xu) — 622 (X ) } 0
by (18).
Now consider the second term in (93). It really appears as the sum of two
terms

d, .
—§g2[7)p(a P G%) 8o+ Gin. S"'] = — %gzzl}_(all?&ga).
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Corresponding to the first two terms on the left of this equation, the first
integral of (94) will give

- %g2[vp @/w, p SU + g,uo-go-]y

which, on account of (57), may be written

d ~ s d \
=30 (7 Cuo— 20098, 87+ O 87 | = 3850 87— 300 . (0 8.

Thus, corresponding to the first four terms of (93), it is seen by the same
reasoning that (94) will give

d _ _ .
92[% {%S/w @‘”’v,,— %G/ur B+ %v”SPUGPO_} - '1'12'92 X47)/1,82 - %SPU'Gpo',/t . (96)

The calculation of the terms proportional to y? is straightforward. The
terms proportional to y* are given by (91), (95) and (96). Adding up all the
terms the final result is

d 5 ~
Tl/?es. — gzl:&; {%Sﬂﬂ' Gorv, — 32;67-”0. 8o 4 -_};’Uﬂ Spo Gpo'}
- %S""apa,ﬁgzx‘*(- %v,u82+ %SIW 87+ 2},0'“ SZ):I

2X2 d 1 $2 /7 mes. 97
=937 - (80, )+ T, (97)
where
T/ mes. = g2x2[p (382 — 382+ L(88") — 11(880) —H(S"8v)
+75(8180) — $820% + 8202 + {5(9889)} — 0, {F(BS) + 5(8.50)}
+ oo, S2—10, 824 38 ,(80) + 38 ,(89) + §8,, 0+ (89)
+387,(80) + 38, 877 +438,, 870, + 8, 876,
+38,, 80228, 8" 58, 80,38, 8. (98)

The calculation of M- is straightforward. I have to calculate the
integrals (90) and (94) with an extra s, in the integrand, the expressions
being then made antisymmetrical in A and . As before I obtain an
expression like M given in C(59), with G » written in place of Fi:.. The
final result is

Milfues' = gz[SA"'Gh‘a,‘u + %OA Sﬂo’énvv - %UA @/w ga]— + Mi};:\es.’ (99) ‘
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where
Mymes: = g3x*[Sh, 82, + 818}, + 402 8,087 ‘
+0{Sp 87— 38y 87+ 438, 878, + 30,82 — 36, 82 + $8,(89)}]_. (100)
I may straightaway write ' ' |
Ao = 038, G 0,~ 30, 87+ o, 88,3~ 4% (Ju, 89+ djmes, (101)
where 477 contains only terms proportional to g3 x?, so that

T'Il.‘nes. —A;ltles' == %g28p067p0,/¢+g§x4( - %0”82-!-%8”,,48'/‘)

d 2l ’ ’
+10,8%) + s (0,807 Q) + (Tymes — Ajmes), - (102)

and Mgiee:— (0 Ao —v, Apes) — Bye= =[Sy Op=., (103)
where O = 0l O™ (104
and [S/\pO, mes. pﬂ]— = M:I/liles' — (,UAA;‘mes. — vﬂA:\mes.) —_ Bl,{}fs'. (105)

The expressions (102) and (103) show that G, , occurs in the translational

po.

equation (50) exactly like the ingoing field é% Gz, while G, ., oceurs in the

po?

rotational equation (51) exactly like G'%;. The terms of order y* in (102) are
most essential. Not having any differentiation with respect to 7, they cannot
be altered by any addition to A2¢. They are just such that, on contracting
(102) with v#, and remembering (57), I get

v#( Tllzles' —_ A/Izles.) = %QZ(S/’” @p‘r) + ¥ T;‘mes. - A;Lmes.). (106)
This, according to (53), must be equal to 3(SCmes), that is, by (104),
392(8G) +3(8. 0'mes), (107)

Ifany substitution other than (101) had been made for A7, (106) and (107)
would not have been equal.
Finally, then, 4™ and BYs* have to be determined so that

M%;nes. — (0, A;tmes. _ vﬂA%mes.) _ Bl]{}fs. = [SAp . 0;1/{193.]_, (108a)
(S’C” mes.) = (", mes. — A;mes.)' (108b)

Both 4/ and BYs- must be proportional to g3 x2, as is seen from (98) and
(100). They must be quadratic in S, and contain terms with respectively
one and no dots. They may be found by the method given in C. There are
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eight possible independent terms in 47 and only one in By The con-
ditions (107) determine the coefficients of all these in terms of one arbitrary
constant k. The result is that

Times — f1mes. = g232(kS, 8+ (2k—1)8,, 87+ kS, 8%,
+kS,, 8" +k8S,, 87, +18,, 875,418,852
+v,{2(k— 1) 8%+ (2k — 1) (S"85) + 2k(8.8") + (2k — 1) (88%)
+3(88%) + 482 — §820% + 3202} + 2k (8S)
+0,(880) — 4, S2+ 39, 8%, (109)
and Omes = g x?[(k—1) (8,, 00, — 8, %v,)

+(k—1)(8,9,—8,5,)—(S,v,—8,v,)+8,,]. (110)
According to (61),

Tielf, X= T;tmes A’ mes. + (S pO’ mes. ’l)”)

= ggx2{vﬂ(%32 — 82— §8%9%) — 45,82+ 88, 8"+ 38, S"P’l}p. (111)
Further,
OLJ;Lnes. (O/mes ’U”’U _ O/mes ¥v,) = 92X2{Spﬂ (S S;Up)}. (112)
This has already been introduced into (63) and gives the last term of that
equation. . ’

I wish to find the potentials at a distant point x, at time ¢ due to an
oscillation of the dipole of the type

S’ » = 0oLy, cos wyt,

the L, being constants. The dipole is taken to be fixed at the origin.
Then, by (20a), u;, = x;, and u, = t—¢', for a point on the world line corre-

3
sponding to a time ¢, and, by (20b), u, = /(u?+7?), where r = 3 2%; hence
1

¢ =t—J(u+r?).

Further, by (21), k = u,. The potentials are given by (255), and, for any given
value of u, the position of the dipole has to be taken at a time ¢’ as defined
above. Both u, and ¢’ are functions of  as the preceding expressions show,
but, since I am only interested in the potentials at a very large distance r,
itissufficient to let the differentiation act only on ¢ and not on u,. Differentia-
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tion of u, merely adds terms to the potentials which are of a higher order in
1/r. I thus find

k
Uret. —ngwuduJo(xu) {%‘;l’-yx—ul;’—“’; wgsin wy(t — /(42 +72)).  (113)
0 0 0

Now, by a well-known theorem of Bessel functions,

eV (?(2+w§)

* _u— —wo vV (u2+12) _—
[t

VO +w})’
whence
ood J( ) u Twy vV (u2+7r2) OOH%d ’ Ood J( ) u o v (u2+r2)
u U e~y = W U Y) s €7
o olX U2+ r2 ) 0 olX N
6—7‘\/()(2—0)3)
—_— Wo <
J 1w, 0<X>
- e—tr V(wi—x»
(00>X,

L e,

where terms of order 1/r? have been neglected. Similarly, by integrating
twice with respect to w,, I find, omitting terms of order 1/r3, that

_ «L(X2 - w(z)) eV (x—0?)
r2w3 0

dudo(Xu) 75—z €00 V@M =
f (u?+ 72 _i(@3—x?) e—irv(@—x?
r2w3

Wo <X,
Wy > X.

By using these integrals, (113) gives at once

ga(X? _“’2)
U(l)'et. —

9'2«/(‘”(2)_

k0 g—rv(x*~0]) sin wy ¢ We<X

t—rJ(@0§—x%) @>X
and [ gz(wo lﬂ‘eos Wob+ /(2 — wB) ==~ L”‘ sin wg ) VR gy <y,
U%et. — r
Ly, x‘L
lgz(“’o B R (O B rglk) cos (ot —ry(03—X%)  wy>x.

Use of these results leads at once to (84) of the text.
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