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Abstract

In baculovirus-based high-level expression of cloned foreign genes, the viral very late gene promoters of polyhedrin (polh)

and p10 are extensively exploited. Here we report the cloning and characterization of the p10 gene from a local isolate of

Bombyx mori nucleopolyhedrosis virus (BmNPV). The gene harbours a 213-bp open reading frame encoding a protein of 70

amino acids with a predicted molecular mass of 7.5 kDa. The BmNPV p10 showed deletion of a single A at � 210

nucleotide compared to the prototype baculovirus, Autographa californica multinucleocapsid nucleopolyhedrosis virus

(AcMNPV), p10 gene, resulting in a translational frameshift to generate a termination codon and consequently a truncated

polypeptide instead of the 10-kDa protein. This protein P7.5 from BmNPV has a putative leucine zipper dimerization motif

towards the N-terminal end and the central nuclear disintegration domain but the carboxy-terminal domain implicated in

protein association for ®brillar structure formation is absent. Phylogenetic analysis revealed that p10 is highly conserved

among baculoviruses and the BmNPV strains are more closely related to AcMNPV than other baculoviruses. The

transcription of p10 is regulated in a temporal manner, reaching maximal levels by 72 h post-infection. RNAase protection

and primer extension analysis mapped the transcription start sites at ÿ70 and ÿ71 nt with respect to the ATG, within the

conserved baculovirus late gene motif TAAG. The upstream region showed complete homology to the strong promoter of

the AcMNPV p10, suggesting that this promoter from BmNPV could also be exploited for high-level expression of cloned

foreign genes in silkworm cells or larvae.

[Palham V. B. and Gopinathan K. P. 2000 The p10 gene of Bombyx mori nucleopolyhedrosis virus encodes a 7.5-kDa protein and is

hypertranscribed from a TAAG motif. J. Genet. 79, 33±40]

Introduction

Nucleopolyhedrosis viruses in the very late phase of

infection produce two polypeptides, polyhedrin (Polh) and

P10, at high levels. These polypeptides are associated with

the formation of the viral occlusion bodies and are

synthesized maximally after the release of extracellular

virus. At 48 h post-infection (hpi) these two proteins

constitute nearly 50% of the total protein in virus-infected

cell lines (Smith et al. 1982). Polyhedrin is the major

constituent of the occlusion bodies that are formed

exclusively in the nucleus of the baculovirus-infected cells.

As occlusion proceeds in the nucleus, large arrays of

®brillar structures begin to accumulate primarily in the

nucleus and sometimes in the cytoplasm as well. The P10

protein is associated with the large ®brillar structures in

both nuclei and cytoplasm (Harrap 1970; Van der Wilk et al.

1987; Williams et al. 1989). Disruption of the p10 gene

results in disappearance of the ®brous material but

formation of the polyhedra containing normal enveloped

virion is not affected (Vlak et al. 1988).

The polh and p10 genes have been well characterized

from the prototype baculovirus, Autographa californica

multinucleocapsid nucleopolyhedrosis virus (AcMNPV),

and transfer vectors based on their promoters and ¯anking

sequences are most extensively exploited in baculovirus-

based expression systems. The p10 of AcMNPV codes for a

10-kDa protein of 94 amino acids (Kuzio et al. 1984).

Insertion of the bacterial lacZ in frame with the coding

sequence of p10 in AcMNPV leads to the synthesis of

copious amounts of the P10±�-galactosidase fusion protein

(Vlak et al. 1988). Evidently, the p10 gene is nonessential
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for viral replication and its promoter, therefore, could be

effectively utilized for producing large quantities of

heterologous proteins.

Both p10 and polh belong to the class of late genes being

hypertranscribed during the very late phase of infection but

their temporal expression kinetics are slightly different. p10

is activated a few hours earlier than polh although its maxi-

mum expression levels are lower. At earlier times post-

infection, therefore, p10 promoter is more active than polh

(Roelvink et al. 1992). By the time the expression from polh

promoter reaches maximum, the cellular post-translational

processing machinery is highly compromised due to the

load of viral infection. Hence the p10-promoter-based

expression vectors offer a 12±24-h advantage over the

polh-promoter-based vectors for ef®cient processing of the

recombinant proteins.

Although the p10 promoter from AcMNPV has been

exploited for construction of expression vectors, such studies

using the Bombyx mori nucleopolyhedrosis virus (BmNPV)

p10 promoter have been lacking. Our group (Sriram et al.

1997; Sehgal and Gopinathan 1998) has exploited the

AcMNPV p10 promoter for generating recombinant

BmNPV through homeologous recombination. Such recom-

binant BmNPV expressed large quantities of reporter genes

under the control of AcMNPV p10 promoter in Bombyx-

derived cell lines and B. mori larvae. Search for the p10

gene from a local isolate of BmNPV (Palhan and

Gopinathan 1996) was therefore undertaken with the aim

of characterizing the gene and its promoter and its trans-

cription pro®le. The p10 genes from BmNPVs, the Chinese

(Yaozhou 1992) and the Japanese isolates (Hu et al. 1994)

differed from each other in the size of the encoded protein.

We report here the detailed characterization of p10 from the

local isolate of the virus, BmNPV-BGL.

Methods

Virus and cell culture: The B. mori-derived cell line BmN

was grown in TC100 medium supplemented with 10% foetal

calf serum and 50�g=ml gentamycin (Maeda 1989). The

local isolate of BmNPV, BmNPV-BGL (Palhan et al. 1995;

Palhan and Gopinathan 1996), was used in this study.

Isolation of BmNPV p10: Genomic DNA was isolated from

BmNPV derived from the viral polyhedral bodies as des-

cribed by Maeda (1989). A 2-kb KpnI `D' fragment from

the BmNPV genomic DNA was cloned at the KpnI site in

plasmid pTZ18R to generate the clone pNZK9. For

sequencing purposes three subclones of pNZK9, designated

as K9BI harbouring the 900-bp BamHI fragment, K9�B
harbouring the 1.1-kb KpnI±BamHI fragment, and �BX

harbouring a 450-bp BamHI to XhoI deletion (®gure 1),

were constructed. These clones were made in pBSKS� at

the appropriate restriction sites.

DNA sequencing: Double-stranded or single-stranded DNA

were sequenced using either the universal or reverse seque-

ncing primers and the T7 sequencing kit (Pharmacia).

Single-stranded DNA templates were prepared using the

helper phage M13K07 (Sambrook et al. 1989). Sequences

were aligned making use of DNASIS (Hitachi) and Clone

Manager software.

RNA isolation, primer extension and RNAase protection: Total

RNA was isolated from BmN cells infected with BmNPV

(multiplicity of infection, moi, � 10) at 12, 18, 24, 36, 48

and 72 hours post-infection (hpi) using the single-step

guanidinium isothiocyanate method (Chomczynski and

Sacchi 1987). Primer extension reactions (Sambrook et al.

1989) were carried out with 10�g total RNA and a synthetic

31-mer oligonucletoide primer (50-CGCGTCAAAACGTT-

GGGCTTTGACATGATAG-30) at 50�C using SuperScript

II� reverse transcriptase (GIBCO-BRL). RNAase protection

assay (Sambrook et al. 1989) was done with 10�g total

RNA and p10 antisense riboprobe, which was generated by

the in vitro transcription reaction using T7 RNA polymerase

from the linearized plasmid �BX DNA template. After

hybridization (80% formamide overnight at 50�C), the

samples were treated with a mixture of RNAase A (1 unit)

and RNAase T1 (100 units) for 1 h at 37�C and extracted

with phenol±chloroform. The protected RNA was precipi-

tated with 3 volumes of ethanol, dissolved in the gel-loading

buffer, and subjected to electrophoresis on an 8% acrylamide

± 6 M urea sequencing gel.

For slot blot hybridization, 10�g total RNA isolated at

different times following viral infection was blotted onto

nylon membranes, UV-crosslinked and hybridized with the

p10 antisense probe at 45�C for 12 h. The membrane was

washed sequentially for 30 min with 6� SSC, 2� SSC and

0.1� SSC at 65�C, in presence of 0.1% sodium dodecyl

sulphate, and X-ray ®lm was exposed to it. The autoradio-

gram was quanti®ed on an LKB Ultra Scan laser densito-

metric scanner.

Protein structure analysis: Protein secondary structure analysis

was done using the UWGCG software (Wisconsin Package,

version 8, September 1994, Madison, USA) PEPPLOT,

ISOELECTRIC and MULTIALIGN programs. The helical

wheel draw analysis was done using the software developed

by Staden for MRC. The leucine zipper motif search was

done using PROSITE. Phylogenetic analysis was done by a

distance method using PHYLIP program (version 1.6.1). All

the computer analyses were carried out at the Bioinfor-

matics Centre at Indian Institute of Science.

Results

Identification and cloning the BmNPV p10 gene

The local isolate of BmNPV, BmNPV-BGL, showed nearly

identical restriction profiles, except for some polymorphic
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sites for a few enzymes (Palhan and Gopinathan 1996),

when compared to the prototype BmNPV-T3 strain (Maeda

and Majima 1990). The location of p10 on the genome of

BmNPV-BGL was identi®ed by Southern blot hybridization

using the AcMNPV p10 as probe, and the corresponding

genomic fragment (the 2-kb `D' fragment from KpnI diges-

tion) was cloned into plasmid pTZ18R and sequenced

(®gure 1).

BmNPV p10 harbours an open reading frame (ORF)

coding for a small polypeptide of 70 amino acids with a

predicted mass of 7.5 kDa (®gure 2). The sequences are

highly homologous to the AcMNPV p10, with 93.5% and

90% homology at the DNA and protein levels respectively.

However, the C-terminal end of BmNPV-P10 lacks 23

amino acids compared to the AcMNPV-P10. The deletion of

a single nucleotide (A) at position �210 (with respect to the

ATG) generates a stop codon in BmNPV p10, resulting in

a truncated protein of 7.5 kDa. Henceforth, the protein

encoded by BmNPV p10 is referred to as P7.5. The p10

sequences are ¯anked by the genes P26 in the 50 upstream

region (in the same orientation) and p74 in the 30 down-

stream region in the opposite orientation (®gure 2).

The secondary structure predictions of the putative P7.5

polypeptide done by the PEPPLOT program of the UWGCG

package based on the Chou±Fasman and Kyte±Doolittle

analysis revealed that the protein is generally hydrophobic,

lacks glycosylation sites, and has an estimated pI of 3.84.

Analysis of BmNPV p10 promoter sequences

The sequences upstream to the p10 coding region, located

within the short intergenic region (73 nt between p26 and

p10), are AT-rich and highly homologous to the AcMNPV

p10 upstream promoter sequences. The conserved baculo-

virus late gene and very late gene motif `TAAG' harbouring

the transcription start site was located at ÿ72 nt with respect

to the A of ATG. The other late gene conserved motif

`TTTGTA' was located at ÿ52 nt.

A TATA-box-like sequence, TATATTA, was present at

ÿ87 nt with an overlapping CAAT box immediately

upstream to it in the highly AT-rich upstream region. The

BmNPV P7.5 ORF had the sequence Aÿ3UCA�1UGU

around the start codon, a perfect Kozak consensus required

for efficient translation of late baculovirus genes (Rohr-

mann 1986). The conserved A at ÿ3 nt would predict very

efficient translation of the p10 mRNA.

Temporal nature of p10 transcription

The transcription profile of the BmNPV p10 was analysed

by RNA slot blot analysis employing an antisense riboprobe

(®gure 3a). The temporal nature of p10 transcription was

evident with its level increasing as the infection proceeded,

peaking at 72 hpi. No signals due to p10 transcripts were

detectable until 18 hpi. The burst in p10 expression at late

time points post-infection was typical of the hypertran-

scribed very late baculovirus genes. The steady-state p10

Figure 1. Characterization of the p10 gene from BmNPV. The
location of the p10 on the linearized physical map of BmNPV
genome is shown. The KpnI restriction fragment D (2 kb) was
cloned into plasmid pTZ18R at the KpnI site (marked NZK9) and
mapped using different restriction enzymes. The location of P10
ORF is indicated by the black box with an arrow showing its
orientation. The location of the previously identi®ed polh gene is
shown by the arrowhead as a reference on BmNPV genomic DNA.
The thick lines marked K9�B, K9B1 and �BX designate the
subclones (in plasmid pBSKS�) constructed for sequencing as
well as antisense RNA isolation purposes (the arrows below
indicate the sequencing strategy). The restriction sites marked are
as follows: Ba, BamHI; H, HindIII, Hc, HincII; K, KpnI; P, PacI;
X, XhoI.

Figure 2. The nucleotide sequence of the BmNPV p10 region.
The P10 coding region is shown in bold and the predicted amino
acid sequence is indicated below by the one-letter code. The
transcriptional start signal (TAAG) is marked in bold with the
arrows indicating the start sites. The polyadenylation signal for
p10 is double-underlined. The KpnI, XhoI and BamHI restriction
sites are underlined. Partial sequences of the adjacent p74
(downstream to p10 and in the opposite orientation) and p26
(upstream of p10 and in the same orientation) genes are also given.
The stop codon for P26 and P7.5 ORF as well as the one
corresponding to AcMNPV-P10 in the absence of `A' deletion are
marked by *. ~ at the C-terminal end of P10 ORF indicates the
site where a single nucleotide (A) deletion was located between the
two C residues. The GenBank accession number for this sequence
is U46757.
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RNA level at 72 hpi compared to 24 hpi was about 5±8

times higher, con®rming the very late temporal nature of

p10 expression. By 96 hpi, the lysis of the infected cells was

almost complete at the moi used.

Mapping the BmNPV p10 transcription start site

The transcription start site of the p10 mRNA was mapped

by an RNAase protection assay and con®rmed by primer

extension analysis. The exact size of the RNAase-protected

fragment (270 nt) was estimated from the known sequen-

cing ladder run alongside (®gure 3b). Thus, the p10

transcription start site was mapped to the A residue located

at ÿ71 nt (with respect to the ATG) within the conserved

late gene motif TAAG. Analysis of primer extension

products on a high-resolution sequencing gel revealed the

presence of two bands in the RNA samples isolated at late

time points post-infection (®gure 3c, lanes marked 48 and

72). Comparing the size of these bands with a known

sequencing ladder generated using the same primer on the

�BX DNA template indicated that transcription was initiated

from both the A residues (ÿ70 and ÿ71) within the TAAG

motif.

Comparison of P10 protein sequences

The protein sequences of P10 from a variety of NPVs are

summarized in figure 4, and the extent of their homology to

P7.5 from our local virus isolate, BmNPV-BGL, is pre-

sented in table 1. While p10s from several baculoviruses

encode a 10-kDa protein, some of them, including the

Japanese strain T3 of BmNPV and the local isolate BmNPV-

BGL, encode a protein of only 7.5 kDa. This is in contrast to

the Chinese isolate of BmNPV, which encodes a 10.2-kDa

protein.

Evolutionary conservation of baculovirus P10 proteins

Comparison of the P10 protein sequences from several

baculoviruses revealed that they are highly conserved

(summarized in table 1). The BmNPV and AcMNPV

proteins showed 89% identity. The phylogenetic analysis

Figure 3. The transcription pro®le of BmNPV p10. (a) Transcription of the p10 gene was monitored by RNA slot blot using
radiolabelled p10 gene probe or antisense riboprobe. Total RNA isolated from virus-infected cells (moi� 10) at different times (18, 24,
36, 48 and 72 hpi; C, uninfected control) was slot-blotted and probed using the 32P-labelled antisense riboprobe (see text, under Methods).
The histogram represents the quantitation of the autoradiogram by laser densitometric scanning, taking the maximal expression at 72 hpi
as 100. (b) The p10 transcription start site. The transcription start site of p10 was mapped by RNAase protection assay. Using a 425-nt
antisense riboprobe (lane P), a 270-nt protected fragment was detected in the RNA isolated from the BmNPV infected cells at 24 and
72 hpi (indicated by lower arrow). Lanes: M, pTZ18 DNA digested with HinfI (size marker); A, C, G, T, the sequencing ladder generated
from the XhoI end of the double-stranded �BX template DNA using the reverse sequencing primer, to serve as the size marker. (c) Primer
extension analysis of p10 exprssion in BmN cells infected with BmNPV. Total RNA was isolated from uninfected (lane U) BmN cells and
cells infected with BmNPV at 48 and 72 hpi. A 31-nt oligodeoxyribonucleotide complementary to the p10 mRNA (50-
CGCGTCAAAACGTTGGGCTTTGACATGATAG-30) was end-labelled with 32P, annealed to 10�g total RNA, and reverse-transcribed
to generate the cDNA. The same primer was used in sequencing reaction using �BX dsDNA as template (lanes A, C, G, T). Following
electrophoresis on 8% acrylamide ± 6 M urea sequencing gel, the bands were visualized by autoradiography. The primer extension
products, corresponding to transcription initiation from the two adenines within the consensus baculovirus very-late promoter TAAG
motif are marked.
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indicated that the BmNPV strains, as anticipated, were

closely related to each other. Their nearest neighbour on

the evolutionary tree was AcMNPV (figure 5). However,

about seven ORFs such as pcna in the lef8 region and the

ORF 603 in the polh upstream region were missing in

BmNPV-BGL (unpublished observations from the authors'

laboratory) and BmNPV-D1 and T3 strains (Gomi et al.

1999). In fact, the total genomic sequence comparison also

revealed that BmNPV genome was over 90% identical to

about three-fourths of the AcMNPV genome (Gomi et al.

1999).

Discussion

Functional domains of BmNPV P7.5

Although the complete nucleotide sequences of AcMNPV

(Ayres et al. 1994), OpMNPV (Ahrens et al. 1997),

BmNPV T3 strain (Gomi et al. 1999) and LdMNPV (Kuzio

et al. 1999) have been reported and the P10 sequences have

been identi®ed, the gene has been characterized in detail

mainly from AcMNPV. The P10 protein of AcMNPV has

been implicated in the formation of ®brillar structures

within the virus-infected cells at late times but disruption of

this nonessential gene by itself does not affect the formation

of polyhedral bodies (Vlak et al. 1988). The aggregation

and polymerization functions have been attributed to a

hydrophobic region of P10 in AcMNPV (Van Oers et al.

1993). The P10 of BmNPV-BGL encodes a 7.5-kDa protein

identical to the proteins of the T3, TA and D1 strains of the

virus (Hu et al. 1994) but different from that of the Chinese

strain (Yaozhou 1992). A characteristic difference between

the BmNPV P7.5 and AcMNPV P10 is the absence of

23 amino acid residues from the carboxy-terminal region in

the former. The positively charged, hydrophobic carboxy

terminus was considered to be a common feature of bacu-

lovirus P10 proteins (Zuidema et al. 1993). This hydro-

phobic region of AcMNPV P10 is the one implicated in the

formation of the ®brillar structures (Van Oers et al. 1993)

possibly through the interaction of P10 aggregates with

Figure 4. Multiple alignment of baculovirus P10 sequences. The
multiple alignment of P10 sequences from a variety of baculo-
viruses was done using the CLUSTAL W (1.7) program. The
single-letter code for amino acids is used. Note the conserved
leucine zipper (repeat of 4 Leu residues and one Leu=Ile=Val with
a space of seven residues starting from residue 31), marked in bold,
and the conserved Pro residues around 65±70 towards the C-
terminal end of all the P10 ORFs.

Table 1. Comparison of baculovirus P10 proteins.

Baculovirus Protein size Identity Reference
AA kDa %

AcMNPV 94 10 88.5 Kuzio et al. 1984
BmNPV-BGL* 70 7.5 100 This study
BmNPV-CHN 93 10 100** Yaozhou 1992
BmNPV-D1 70 7.5 95.7 Hu et al. 1994
BmNPV-TA and -T3 70 7.5 98.5 Hu et al. 1994

Gomi et al. 1999
CfNPV 81 8.8 50 Wilson et al. 1995
LdMNPV 77 8.1 24 Kuzio et al. 1999
OpMNPV 92 10 42.9 Leisy et al. 1986

Ahrens et al. 1997
PnNPV 92 10 44.2 Mingchou et al. 1992
SeNPV 88 9.6 28.9 Zuidema et al. 1993

The amino acid sequence percentage identity with BmNPV-BGL was calculated using the UWGCG software package with a gap weight
of 3.0 and a gap length weight of 0.10. The P10 sequences were retrieved=extracted from the EMBL bank or from the literature
cited.
*BmNPV-BGL (Bangalore), CHN (China), DI, T3 (Japan) and TA (Taiwan) refer to different isolates of BmNPV. CfNPV, Choristoneura
fumiferana nucleopolyhedrosis virus; LdMNPV, Lymantria dispar multinucleocapsid nucleopolyhedrosis virus; OpMNPV, Orygia
pseudotsugata multinucleocapsid nucleopolyhedrosis virus; PnNPV, Penna nuda nucleopolyhedrosis virus; SeNPV, Spodoptera exigua
nucleopolyhedrosis virus.
**The identity is for the 70 amino acids present in both strains.
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tubulin (Volkman and Zaal 1990; Cheley et al. 1992). It is

signi®cant that ®brillar structures are not generally seen in

BmN cells infected with BmNPV (Inoue and Mitsuhashi

1984). The absence of the hydrophobic, positively charged

carboxy-terminal domain in BmNPV P7.5 thus supports the

suggestion that this region of P10 is indeed involved in the

protein±protein interaction required for its assembly into

®brillar structures.

The amino-terminal region of P7.5 also harbours such

a domain. The middle domain of P10, from amino acid

residue 52 to residue 78, is involved in nuclear disintegra-

tion and polyhedra release. In case of BmNPV P7.5 with a

total size of 70 amino acids, the nuclear disintegration

domain should thus be limited within residues 52±70 to

achieve the same function.

The P7.5 from BmNPV-BGL harbours a leucine zipper

dimerization motif (amino acid residues 31±59), bearing five

Leu repeats (except one which is Leu=Ile=Val) with a

periodicity of seven residues. Helical wheel analysis of this

region generated with an axial angle of 100� and a window

of 29 residues (figure 6) showed the distribution of hydro-

phobic amino acids on one phase of the helix (marked with

a dot in figure) and negatively charged residues on the other

phase of the helix. This stretch of 29 residues had a very

high hydrophobic moment of 8.49, with total hydrophobi-

city of 3.67. The amphipathic nature of the helix would

facilitate the dimerization of P7.5 as well as interaction with

other proteins necessary for its aggregation and nuclear

membrane disintegration. The biological relevance of this

domain is obvious considering the fact that it is conserved

across 10 baculovirus P10 protein sequences reported so far

in the literature (figure 4).

Transcription of baculovirus late genes

Analysis of the BmNPV DNA in the conserved p10

promoter region, from positions ÿ72 to ÿ42 nt with respect

to ATG, when aligned with conserved untranslated leader

sequence elements from other baculoviruses (Zanotto et al.

1992), indicated that both the consensus elements (TAAG

and TTTGTA) were located on the same face of the double

helix (®gure 7). The core TAAG element was separated by

two complete turns of the DNA helix from the conserved

motif TTTGTA. The conserved elements in the polh pro-

moter were also similar in sequence and orientation (Zanotto

Figure 5. Phylogenetic tree of baculoviruses. A phytogenetic
tree based on the P10 sequence similarities of several baculo-
viruses has been generated. Alignments of the P10 were generated
using CLUSTAL protein alignment. Phylogenetic relationships
were inferred by a distance method using the PHYLIP program
(version 1.6.1). Bm denotes the different BmNPV isolates.

Figure 6. Helical wheel analysis of P7.5. The helical wheel
analysis of P7.5 from BmNPV-BGL was done with a window size
of 29 residues at a 100� axial angle. The hydrophobic residues
(marked with a dot) aligned on one phase of the helix while the
negatively charged residues assembled on the opposite phase. The
amphipathic helix had a hydrophobic moment (M) of 8.49 and
total hydrophobicity (H) of 3.67.

Figure 7. p10 promoter consensus elements viewed on the DNA
helix. The element TAAG harbouring the transcription start site of
BmNPV-BGL p10 is separated from the TTTGTA element by two
turns of the helix. Only the partner strand is shown. Nucleotide
numbering is in relation to the ATG initiation codon, with A as �1
(not shown).
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et al. 1992). They resembled the universal consensus of the

internal control regions, comprising boxes A and C of the

5S rRNA, or boxes A and B of the tRNA genes (Lassar et al.

1983), which foster transcription by RNA polymerase III.

The hypertranscribed baculovirus late genes (polh and p10)

are in fact transcribed by a unique, �-amanitin-resistant

RNA polymerase (reviewed by Blissard and Rohrmann

1990; Huh and Weaver 1990). There is no consensus among

baculoviruses in the region upstream to the conserved 12-

mer associated with the mRNA start site in the polyhedrins

and granulins. Their promoters were predicted to be internal,

as is the case of class III genes, and transcribed by a

modi®ed or virus-encoded polymerase, or a modi®ed

transcription factor ± polymerase-III-like complex (Yang

et al. 1991). More recently, however, a puri®ed preparation

of RNA polymerase has been isolated from AcMNPV-

infected Sf9 cells (Guarino et al. 1998). This polymerase

preparation initiated transcription from the viral very late

(polh) and late (39K) promoters but not from the viral early

promoters. The polymerase was essentially made up of four

virally encoded proteins (LEF8, LEF9, LEF4 and P47), but

these results await con®rmation from other systems.

Compiling the sequence and transcription analyses, it is

evident that the BmNPV-BGL p10 upstream sequences did

harbour a strong promoter that could be exploited for

heterologous gene expression in the BmNPV-based system

because the p10 promoter was functional in B. mori-derived

cell lines as well as in the larval caterpillar (Palhan et al.

1995; Sriram et al. 1997; Sehgal and Gopinathan 1998).

Reporter gene fusion constructs under the BmNPV p10

promoter also showed high levels of expression in BmN

cells in transient transfection assays (unpublished observa-

tions). Thus, in combination with the polh promoter, the p10

promoter can also be utilized for simultaneous expression of

multiple genes, in B. mori-derived cell lines or in silkworm

larvae for economic large-scale production of biomolecules

of commercial importance.
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