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it is shown that if the ordinary Coulomb forces between the ions is
used, under certain assumptions, his treatment is valid. Owing to his
use of a special generalized ensemble, a correction is necessary which is
small for low-valency symmetrical electrolytes but which may be quite
considerable for the non-symmetrical cases. The deviations from the
inverse square law, due to the saturation and hydration effects on the
water dipoles and to the polarization, van der Waals and exchange forces
between two typical ions i and j is accounted for by means of a
correction term E,; in the expression for their energy of interaction.
1t is shown that the addition of this term is equivalent to a modification
of the dielectric constant D to D — 3, where & depends on E,;, and is a
function of the concentration and temperature. The extension in
Kramers’s theory as a result of this new type of force is given, and it is
seen that with the proper form for § the method proposed here should
satisfactorily describe the properties of electrolytic solutions at strong
concentrations. Definite numerical results cannot be obtained until
3 is known. The attempt has been made to avoid the essential difficulties
in the original Debye-Hiickel theory.
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INTRODUCTION

We shall discuss in this paper the creation of electron-pairs by the
collision of fast charged particles. This calculation goes farther than
other calculations on this subject in considering the effect of screening,
and in investigating the probability of the creation of a pair as a function
of impact parameter, i.e., the least distance of approach between the
two colliding particles. We shall also treat certain other cases which
have not been considered before, among them the creation of very slow
pairs such that the kinetic energies of the electron and positron of the
pair are small compared to their rest energy. When the energy of one
of the colliding particles is large compared with its rest mass, we shall
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also show that to a certain approximation most of the formulae given by
the direct calculation can be obtained quite simply by a method similar to
that given by Weizsicker for calculating the emission of radiation by fast
electrons on colliding with nuclei.

The procedure consists in calculating the probability of the transition
of an electron from its initial state of negative energy to a final state of
positive energy under the perturbing influence of the two colliding
particles, the electron and resulting hole then appearing as the electron
and positron of the created air. We shall throughout use the Born
approximation, in which the interaction between the particles is treated
as a perturbation. The transition from the initial to the final state of
the system can then happen in two ways. The electron in the negative
energy state may either interact with one of the colliding particles and jump
at once to its final state, the colliding particle going over into an inter-
mediate state. This particle can then interact with the other colliding
particle and both jump to their final states. Or, the electron in the
negative energy state may interact with one of the colliding particles and
jump to an intermediate state, after which its interaction with the other
colliding particle causes it to jump to its final state. Both processes
are strictly of the second order, but for brevity we shall call the former
process a “first-order process,” only in the sense that it involves just
one matrix element of the interaction of the electron of the created pair
with the colliding particles. The second process involves two matrix
elements of the interaction of the electron of the created pair with the
colliding particles, and we shall call it a * second-order process.”

In the collision between two heavy particles, moving with kinetic
energy small compared with their rest energy, the “ first-order process” is.
much larger than the second. This is easily seen as follows. We con-
sider the process in a system in which one of the colliding particles is.
initially at rest, and the other moving with kinetic energy T = P2/2M,
where P is its momentum and M its mass. Then its change of momentum
AP is given by '

ap Mt ME +B)= M0+,
where E, p, E_, p, are the total energies and momenta of the electron.
and positron respectively. Since

P <€ Mg,
AP > (p + py)

The total change in momentum of all three particles must be zero, so-
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that the change in momentum of each heavy particle is large compared
with the change in momentum of the electron of the created pair. The
matrix element for each jump is just the matrix element of the Born
approximation for a Coulomb field, and is roughly proportional to
1/(AP)? where one heavy particle goes straight from its initial to its final
state, and is proportional to 1/(p + p,)? where the electron jumps straight
from its initial to its final state. In the “ second-order process,” both the
heavy particles jump successively from their initial direct to their final
states, so that this process is roughly proportional to 1/(AP)%. In the
“first-order process,” the electron and only one of the heavy particles
jump direct from their initial to their final states, so that this process is
proportional to 1/(AP)?.(p + p.)? and it follows directly from the
inequality AP > p + p, that the “first-order process” is much greater
than the second. For fast particles where Pz Mc, AP is no longer
much greater than (p + p.) and the above considerations do not hold.

The ¢ first-order process ” depends on the acceleration of the colliding
particles, and with increasing energy, the “second-order process” be-
comes larger than the first. This means that with increasing energy of
the colliding particles those processes which depend on the deflection
of one of the colliding particles due to its interaction with the other
colliding particle eventually become negligible compared with those
processes which depend on the interaction of the electron of the created
pair with both the colliding particles at once. This is also shown by the
results, since the “ first-order process * calculated by Heitler and Nordheim
for slow heavy particles decreases with increasing kinetic energy of the
colliding particles, and is more than a thousand times smaller than the
* second-order process  calculated by us for fast heavy particles. We may
then neglect the interaction between the two colliding particles, and in
consequence the deflection of either caused by the other.

If we restrict ourselves to the creation of pairs of total energy small
compared with the relative kinetic energy of the colliding particles, we may
neglect the deflection of the colliding particles caused by the reaction of
the electron of the created pair. Further, one may treat the two colliding;
particles classically. One may regard one as fixed at the origin and the
other as moving along a straight line with uniform velocity V =~ ¢. The
condition under which one may do this is as follows. If 8P, be the
uncertainty in the momentum of the fast particle and 38X, the uncertainty
in its position, then we must have

Py > 3P, > 7/8X,,
1 Heitler and Nordheim, “ J. Phys. Rad.,” vol. 5, p. 451 (1934).
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so that
Xy > 2Py, )

and we cannot consider the particle localized in a region smaller than
dX, given by (1). (For cP; ~10%e.v., 3X;> 10~ cm.) This distance
is much smaller than the order of the distances at which most of the
processes of pair creation take place.

We therefore proceed in this paper as follows. The heavier of the two
colliding particles, which we shall call the particle 2, and which may be a
bare nucleus or a neutral atom of nuclear charge Z,e, we shall consider
as fixed at the origin of co-ordinates. The other colliding particle of
charge Z,e, which we shall call the particle 1, we shall describe as moving
‘classically with uniform velocity V along a straight line, passing the
particle 2 at minimum distance 5. We now calculate the probability
of the transition of an electron from its initial state of negative energy to
a state of positive energy under the combined influence of the two
colliding particles. To get the total effective cross-section we must
integrate this probability over all values of the 1mpact parameter b of
the two colliding particles.

This procedure will give a good approximation under the two con-
ditions stated above, firstly that the particle 1 has kinetic energy com-
parable with or larger than its rest energy, and secondly that the change
in energy of this particle, which must be at 1east 2mc?, be small compared
with its initial energy.

In the special case in which the particle 1 is an electron, our method
implies a neglect of the effect of exchange of this electron with the electron
of the created pair. For the Tegion where our calculations are strictly
valid, namely, where the energy of the created pair is small compared with
the initial energy of the electron 1, it may easily be seen that the effect
of exchange is small. Its effect, however, may not be small in the total
integrated cross-section, and we shall discuss this point further with the
final results.

In § 1 we give the general theory of the pair creation. In § 2 we
give the differential and integral cross-sections. The effect of screening
will be considered in § 3, and the dependence upon impact parameter
‘investigated in §4. 1In § 5we shall show that to a certain approximation
most of the formulae can be derived by a method analogous to that
due to v. Weizsiicker for calculating the radiation emitted by fast electrons
on colliding with nuclei. The results are discussed in § 6.
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1—GENERAL THEORY

We regard the heavier particle, of charge Z,e, as fixed at the origin of
co-ordinates. Its field will be described by a scalar potential G (r).
(If it is an unscreened nucleus, this will be Z,e/r.)

The motion of the other particle, of charge Z,e, co-ordinates X, Y, Z,
will be described by

X =b,; Y=1b,: Z=Vt—1 )

where b is the impact parametef, and [ is large compared with atomic
dimensions and to b. Its field in the system in which it itself is at rest
will be described by a scalar potential F (r) = Z,e/r. In the system we
are considering, its field will be described as usual by a scalar and vector
potential

b= LF( A w—bp 0=+ S vitry

AFa: = AFu =0 4 (3)
A%
AFz = ? ¢F
where
v =4/1— V?/c

We write the Dirac equation in the form
{E:—_!;ﬂs—l—<a,p—l——iA>+oc4mc}np:0. @)

We are not interested in the spin of the electron or positron, and we
shall have to sum over both directions of spin of the initial, intermediate,
and final states. It is here convenient to use a method given by Dirac
where this summation is performed automatically.t Our ¢ will be a
matrix of four rows and columns and a function of x, y, z, ¢, and hence
may be expressed as a linear combination of the «’s multiplied by functions
of x, 9, z, t.

The density will be given by

spur [{ . ¢*].

We expand ¥ in a series
b= do+ ¢+ o+ ..,

t Dirac, ¢ Proc. Camb. Phil. Soc.,” vol. 26, p. 361 (1930),
2Q2
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where ¢, then satisfies
(E omel 4 — €| v,
S+ @n) + aimef 4= = (GO +(1+ Y aa) ) o )

We take the unperturbed initial state {,, which satisfies (5) with the
right-hand side put equal to zero, to be of the form

Yo = E‘O_%_E_Q e x)~Ed}/h ©)
where

H, = ¢ (o, po) + agmc® 7

¢, will now consist of two parts ¢;% and ¢,¥, corresponding to the two
perturbation terms G and ¢y in (5). We write

lG = j“j bG (pl) . e’i{(p,’x)_Eot}/ﬁﬁ%p;—' . (SA)
Substituting this in (5), multiplying from the left by
(E, — H') exp ;2{ — (0, X) + Eot}/(E2 — H),

and integrating over all space (x), we easily find that

be ) = — B = HIEo— Ho) g1y p2), (88)
EO - H
where
7 (0= pof) =< | f | G @ ettty ©)
c

H’ is defined in a similar manner as H, in (7) and is a matrix. HZis a
number.
$, will now consist of four terms corresponding to the four terms

- {G ) + <1 T ‘z’ oc3> ¢F} (0" 4+ $,%) on the right-hand side of

(5). We are interested only in two of these, $,"® and ¢,°, corresponding
to the terms — €<1 -+ \C—[%\ ép % and — —i G{," in the perturbation.
c > Y
The other two contain the field of one particle only, and cannot lead to
the creation of pairs.
We let

’

$pFG = ”‘j b¥¢ (p, B”) ot {0 =Bt} H dp;iE
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and get as before by substituting in (5), and using (8),
. (14 ¥ ) (B — HY) (B — HY)
E + H bFG (p E/,) — C N 0.
C ? E02 — H/2
’ " ! d !
x & (10— Bl F (0, E", 1", Eo) 5.

with

F .00 B = £ [[[[F( A/ =%+ 0 = v+ 5 - 2]

e —0,0—E—E4/E gy df

= 2" PV =20 0+ e~ 2]

X e =px=Xk (g — X). \“’ & [(0/—D, X)— (Be—E) 11/ gy
o 00

=P — PP 2, — PP+ (2~ P
X h3{V (p', — p) — B + E"} eir—px)
using (2). Here
“2/')’ (!p - pllz) = J{(px —'p/ac)2 + (p'w - pu)2 + Y2 (p,z - pz)z}
=¢ jjj F (r) ') o+(2y=py) vty (2'p=P,) 2/ dx, (10)
c

and X, denotes the value of X at t=0 (b,, b,, — ). Owing to the
presence of the 3 function in F (p, E”, p’, E,) the integration with respect
to p’, may be carried out, and we obtain

A @ w1 Y - 1) By - HY
bFG (paE ) == v . . (E//2 — Hg) (E02 - le)
X Ty (Ip — 0D & (|0 — pol?) X dp’, dp’,, (11)

E" — E,
v
has two singularities at E”2 = H2. In ¢,"¢ the E” integration extends
from — oo tooo. We deflect the path of integration above the singularities,
and for large ¢ the integral then reduces to the residues at these points.
Only the one with E"’ positive is of interest to us here.

We finally get

taken at the point p’, = Py = — < — pz>. We notice that b¥¢
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with .

= —HyE—H(1+ Y o) (L~ (L) — ale) B — H, (D
where

(LO, L.l L4) = - '}2 “jw (EO’ cp,wa Cp/w CPO: mcz)

X TPy — PP+ (py — P + ¥ (. — Po)?}
G ([p” — 1o[%) i ('—po, X% gJpy! ('
. ; s €0 Xk dp’ dp’,
PR P
and our notation means that E, is to be taken in the integral for L,, cp’,
for L,, etc. Writing p’, for p’, — p,, We get
1

Lo Ly, .., L) = — EH {Eo, ¢ (p'y + Do), ¢ (D', + P), Py, mc?}

GO — Dor + D+ T @2+ &) v gy gy e

X r Ll k! z ¢t W I dp' dp’, e, (12
(p/r =+ pr)2 + P02 - p02 ‘ PPy ( )
(For definition of 3, ¢, see (15).) The suffix r will be used to denote a

two-vector with components along the x and y axes.
We similarly find for {,%*

g0 = L [[etonmn e,

with
Iz_%ém_ﬂnmpw%m-wxg@+¥%N%—mxaa
and

(Ko, Ky, Ky, Ky Ko) = %ﬁj J {E, —c(p's—Pe)s — ¢ (P'y—DPoy), cP, mc?}

AN R R SR O
(0, — Do)* + P2 — 1
ei(p/rrbr)/ﬁ dp,x dp,«y eiel/ﬂ‘y.

P0=_<E;E0"pz>; Pf——E——'Eo‘i‘POz

i
IP—p.d = [Py~ po| = B 50 4 po, —p. =
YIP —pul =y [Po—pf =+ E }E" = . (15)
P2 — p? = (E—”E°+p0z~p><E—VE“+pm+p>
POZ—P02=<E =.c —pz—po><E ’{,E"—pﬁpo)
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The initial state ¢, given by (6) corresponds to an electron density of
8E,?/c? instead of 2, so that we must divide the density given by spur
[$a. §y*] by 4E2/c? to get the final probability. We thus find that the
probability of the creation of a pair, the electron of which has a momentum
lying in an element dp and the positron a momentum lying in an element
d('—' pO)’ is

dp dpo

spur (I + J) (I* + J*) 24P (16)

4E2E 2
I, J are given by (11) and (13) and I + J may be written in the form

I+ 7 = “:T::\CZ(E — H) {M, — (&, M) — %, M, — (5, N)
— 0(40(3N4} (Eo - Ho)a (17)

where o represents the matrices ay0;, 50, ooy, and the M’s and N’s
are given by

MO’ Mla Msa M‘za cees N4 = c_1_2 ([ 52 {(p,r_DOr + pr)z + 82} ﬁ{p’rz + 82}

X {M,m Mlla LERE] N,4] ei @' - bl dplw dplll ei/ﬁ el/y: (1 8)

with

r _By—Vpy,, , E—Vp, )
My ==5"+ D,
‘P =) (D D)
M’ D * D,
o _c@y—=po) et p)
M, - D + D,
G YE—Eo+ Vpo, | ¥ EO—E-J.—sz}
M’s V‘{ D + D,

o >, (19)

— 2
M’y = mc<D+D0>
[ c(pw" p01/) C(pq/_l'pu)
N4 c{ D T D, J
’ :_ij(pm pOx) C(p +pm)}
Na= 2 D T D,
\_f 2<1 1
N’y =05 N'y= Lmet (& Dﬁ)
and
D = (', — po,)* + P2 — p*
o) L. (20)
:(pr+pr)+P0 _p()
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The spur in (16) may then be evaluated by the usual methods if one
remembers that the spur of all the Dirac matrices is zero, and also of
their products, excepting those giving the unit matrix, whose spur is 4.
The final probability (16) may then be written in the form

dp d
LT O @n
with

= 5t | IMf? (EEq ¢ (b, Do) + it} + M {EE, — (0, By) — et}

+ {IM4* + INP}HEE, — c*(p, o) + mc*}

+ [Ny*{EE, + ¢ (D, Do) — 2¢*p.py. — m*c*}

+ {Emc® MM * + M;3N,*) + Egnc® (MM *— M;3N,*)
+ ¢ (Epy + Eop, M) My* + ¢ (Epy — Eob, M x N¥)

— ¢ (Epy, — Eop) MyN* + ¢ (D, M) (Do, M*)

+ (0, N) (Do, N*) + ¢* (Do x b, N) M¥,

+ ¢(p. — Po) MoNy*me® + ¢ (bo + p, M) M *mc?

— ¢ (N X [p + Do), Ny*mc?} + conj. complex_i . (22)

We see at once that this expression is quite symmetrical in p and p, if we
remember that the M’s go over into M* and the N’s into — N* on inter-
changing p and p,.

(21) gives the probability of the creation of a pair as function of the
impact parameter b,. To get the effective cross-section for the production
of such a pair, we must integrate over all b,. This is easily performed as
follows. b, only occurs in the M’s and N’s, and in S we have only products
of two of these. Then, for example,

H: M. M*, db, db, — H:) {_ (_}EHCQ{(DIT bk D) )
X F(p?+ M, (p',) @iy, a’p’”}
: { - clz H: G{(®", — Dy, + D) + 3}
X5 (074 ) MYy () e M dp”, dp”, | b db, . (23)

We interchange the order of the integrations and carry out the b, integra-
tion first. This immediately gives us two 3 functions, #23(p’, — p"’,)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on January 19, 2011

Creation of Electron Pairs 569

3(p', —p",), so that the integrations with respect to p,”, p”, may be
performed, and we are finally left with

th © ,

b U_w |2 {(®", — Do, + 2)* +

I A+ SEM L (0') M () dp’. dp’, . (234)
Thus the differential effective cross-section dQ for the creation of a

pair, the electron of which has a momentum between p and p -+ dp, and

the positron a momentum between p, and p, + dp,, may be written

X

2 a0 ©
dQ = %5 U ( S| {®'r — Por + B)* + 3%

P2+ B dp, dp'y} ddny (4

H10 ’

where S’ is the same expression as (22) with the M’s and N’s replaced by
the M”s and N”’s respectively

When both colliding particles with charges Z, and Z, are unscreened, we
get for .% and &

27,2
\95(!1) — D'Iz) = — Zieh ——l—,2
S (25)
Z.e2h? 1
cg - 2 = 2 T 7o
(Ip—1'P®» o =7

Screening will be considered in § 5.

2—THE DIFFERENTIAL AND INTEGRAL CROSS-SECTIONS

The integrals (24) can only be evaluated approximately in certain cases.
The rather complicated calculations have been performed in another
paper.t These calculations involve no further physical assumptions. We
shall give only the results here, together with the conditions which lie at the
bottom of the mathematical approximations.

1. We first consider the case where the electron and positron of the
created pair have momenta small compared to mec, so that we may neglect
terms of the order p?, p,? compared with m?2c?

P, py <mc. (26)
We henceforth write E, = — E, for the energy of the positron, and
P, = — D, for its momentum. The differential cross-section for the

creation of a pair, the electron of which has a momentum between p and

1 ¢ Proc. Camb. Phil. Soc.,” vol. 31, p. 394 (1935). Referred to here as B.
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p -+ dp, lying in a small solid angle dw, and the positron a momentuny
between p, and p, + dp,, lying in the solid angle dw, is then (B, § 1,
formulae (12) and (13)).

7,27,

—_ 2 2 el 7 }
aQ = 1287:3( 137 > <mc2> [(p“ + 77 11°g g T €
+ @+ 0 {5+ Cl+ (et p )2{—'—+CH
+7r 7. llO r +z +2z %
ppilidpdp, dodo,
X oy , (27
where
_ Y2 14,1, )
— Y _ __1_>___1_§ o 1 a_ 9 l s «
=_§Y2<_Y2 1,4, 1., 1
C=—51—nll 1—Y21°gY2>+sY AT R +40Y

This cross-section is accurate for all values of y. The C’s tend to zero as
the energy (1/7) of the particle creating the pair increases, so that for large
energies we may neglect them in (28). For 1/y > 10, the C’s are already
less than one-tenth of the corresponding terms in curly brackets in (28).
It is also easily shown that each expression in curly brackets in (28), and
hence dQ, tends to zero as y — 1, i.e., as V - 0. By a numerical calcula-
tion we find that the coefficients of (p,2 + p.,?, (0, + p4,)% and (p, + p,.)*
in curly brackets in (28) are 0-08,0-02, and 0-03 for 1/y = 2,0-87,0-08,,
and 0-06 for 1/y = 5, and 195, 0-09, and 0-05 for 1/y = 10.

If we write E for the total kinetic energy of the pair, so that

B 5 (2 + 1) @9

then the integration of (27) gives the cross-section for the creation of a pair
of kinetic energy Ex and total energy 2mc? + Ey, namely,

(220 (0 oy L 161 C}EK3dEK %
‘3“2<——137“> <ch> log5— % tCHC+C e - GO

2. We next consider the case where
mc2 < E,E,; mc/y>EE,, (€28

the fulfilment of which necessarily requires that v <1. In accordance
with (31), we neglect terms of order Y*E?, v*E?%, (m?c*/E)* and (m*c*/E,)?
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compared with m2ct. The differential cross-section for the creation of a
pair, the electron of which has an energy between E and E + dE, and
the positron an energy between E, and E, + dE_, is now (B, § 2 (23))

_ 8/2,Z,¢( & E.+ E? 4 3 EE, k EE,
aQ <137> <mc2> ETDT S EIE)me

k'mc?

x log TETED dEdE,.. (32)

We shall use k, k' to denote numbers of the order unity, but not always the

same numbers. This formula disagrees with that given by Fury and

Carlson in having an extra logarithmic term. It has also been obtained

recently by Landau and Lifschitzt by a similar method to that given here.
If we write E;, for the total energy of the created pair, i.e.,

E,=E+E,, (33)

then the cross-section for the creation of a pair whose total energy lies
between E; and E; + dEq is

__56 21Z2>2 < e >2 kEq |, k'mc® dE,
aQ 91c< 137) \me2) 198 208 TE- £ (34)

subject to the condition Eq > mc?®. In deriving (34) we have integrated
(32) over all E from mc? to E,, whereas (32) is accurate only subject to the
condition (31). One may show, however, that the accurate formula in
the region E ~ mc? gives a cross-section smaller than that given by (32), so
that the error we make in carrying the E integration down to mc? is small if
E; > mc ‘

To get the total cross-section, we notice that the integral of (34) with
respect to E; varies as log? Ey, so that it is not very sensitive to the limits
of integration. We may then, without appreciable error, carry the inte-
gration from 2mc? to mc?/y, and get

_ 28 le> < >2 sk
Q=7 < 137) \ma2) 1085 (35)
The formula (35) will give the total cross-section accurately provided
that in those regions where (34) fails, namely, when E.~ 2mc® and
E, ~ mc?[y, the accurate formulae do not give cross-sections larger than

(34) by an order of magnitude. It can now be shown, provided that
exchange effects play no part, which is certainly true if the particle 1 be not

+ ¢ Phys. Z. Sowjet.,” vol. 6, p. 244 (1934). The formula (32) is the only result of
this paper derived by Landau and Lifschitz.
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an electron, that the accurate formulae in every case given results smaller
than (34) in those regions where (34) is inaccurate (one can see this for the
region E;~ 2mc* by a comparison of (34) and (30)). It is therefore
justifiable to integrate (34) from E, = 2mc? to E; = mc?/y when y < 1.
We shall discuss the effects of exchange in § 6.

In deriving (32), (34), and (35) we have neglected the effect of screening
of the nucleus 2. It will be seen in § 3 that this is legitimate when

EE, 137

(E + E.) mc* < 2

Zy5. (36)
The formula (32) is thereforeaccurate, subject to (36). It will appear in the
next section that the effect of screening is only to change the expression
under the first logarithm in (32) so that the deviations from (32) when (36)
is not fulfilled are not very large. For lead, 137 Z,~ ~ 31, so that from
(36) we must have E ~ E, < 31 mc?.  Since (32) is further subject to the
condition (31), the region of validity of (32) is small. In the next section
we shall give the formulae which are not subject to the restriction (36).
For a given E, = E + E_, the left-hand side of (36) is greatest when
E =E,, and a large contribution to (34) comes from just these regions
where E ~ E,, so that the accuracy of (34) is subject to the condition
E; <€2.137Zy"% Hence (35) will represent a fairly good approximation,

provided
1y <2.137Z,75. (44)

3. When the particle 1 is a heavy particle with rest mass large compared
with that of the electron, a further case is of interest, namely,

me/y <E,E,.; Myc®/y>EE,. (37)

We now neglect terms of order mc? compared with YE, YE,, and consider
v2small compared withunity. The differential cross-section for the creation
of a pair, the electron of which has an energy E, and the positron an energy
E, is then (B, § 3 (33))

8 (7, Z,\2 / €% \? m2ct 2k
=2 (%57) (e @FE yplos T BN O
subject to the further condition vy €1 and |E — E,| < (E + E,). As
regards the term y? in the denominator of (38), we note that (38) is valid
only when Ey, E. v > mc% If we write E = E, = mc?/y in (32) and
(38), i.e., extrapolate both formulae into regions where the conditions for
their validity (31) and (37) respectively are not fulfilled, we find that the
two formulae go over into each other except that (32) is larger than (38) by
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a factor 8/3. This means that when (38) is extrapolated down to the
region E ~ E, ~ mc?/v it is not in error by more than a factor three.

To get the total cross-section for the creation of a pair with E, E, >
mc?[y, we integrate (38) over all E, E from mc?/y to M,c?/y. We get

1 (2,Zs) e2>2 2%
Q 3?%(137)(‘%5 log = S

The largest contribution to (39) comes from the region E, E,. ~ mc?/vy, so
that from what has already been said above regarding the error in extra-
polating (38), (39) represents no more than the correct order of magnitude.
It should not be in error by more than a factor three. We notice that Qg
increases with the logarithm of the energy of the particle 1.

3—THE EFFECT OF SCREENING

We shall now suppose that the fixed nucleus of charge Z, is surrounded
by a distribution of electrons so as to form a neutral atom. The screening
effect of this distribution of electrons may easily be taken into account if
we write for the matrix element & (¢?) instead of (25)

Z,e?h? 1 — F (¢?
G@)=—"£2. |QI2(q)

40y
by a usual transformation. F (¢?) is the atomic form factor defined by

F (@)= 5 [oc'® dx (41)
Z,
integrated over the whole of space. ¢ is the density of electrons at a
distance 7 from the nucleus. We shall assume that the electron density is
that given by the statistical method of Fermi. Now p is considerable only
inside a region of about 137 Z, %% /mc, which is roughly the radius of the
Fermi atom, so that by (41) F (¢?) will be small compared with unity if
% Zy :
3= e tre—— =22 mc.

129 = 7 me — 137" “42
By (18) ¢* = {(p’, — Dy, + D,)? + 32}, so that the smallest value of g that
occurs is 3. Screening is therefore negligible if

=13 mc, 43)

in which case (40) goes over into (25).
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1. In the creation of slow pairs, given by (27) 3 = 2mc by (15), so that
screening has no effect even for the heaviest atoms.

2. For the case of fast pairs given by (32), the particles of the pair are
ejected within small angles of the order mc?/E, mc?/E . about the Z axis,
so that by (15)

s mc (E + E,) me
2 EE,

Screening is therefore negligible if

T <zt et (36)
+

as already stated.

As E, E_ increase, 3 decreases, and eventually becomes less than 3.
Screening has now an appreciable effect. It may then be shown (B, § 4 (45))
that for complete screening, namely,

EE, . 137, _
s T N 5 mc?
CESRE Z, 5 mc?, 45)

2
the differential cross-section is given instead of (32) by

dQ =8 (ZZsf (£ BT But S SER,

=\137 /) \me2 E, T By
\ k'mc?
log (k137 Z,"%) log ————— dEdE_,. (46

To get the total cross-section roughly, we integrate (34) over all E, up to

2.137 Z,7%mc% and then integrate (46) from E, ~ 2.137 Z, imc? to
mc?/y. The result may be writtent

28 (7,7, & >2 L K’
m<137> <n75é log (k2.137 Z, ){3logY_
%

2 p—
log 537 + log? (k2.137 2, )}, 47)

which we may use for 1/y >2.137 Z,~* We have neglected terms like
log k compared with log (2 . 137 Z,~%) consistently with our approximation.

1 [Note added in proof, October 15,1935. 1In a recent paper Nordheim (¢ J. Phys.
Rad.,” vol. 6, p. 135 (1935) ) has given a formula for the pair creation cross-section
with screening, where the term log3k/y of (35) is replaced by log? (k 137 z,—%). This
is incorrect, as the considerations of § 5 make clear, since only one of the two
colliding particles is screened. The correct formula should continue to increase with
increasing 1/y as log? k/y for very large 1/y (as, indeed, (47) does). I have Dr.
Nordheim’s authority for stating that he agrees with this.]
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Since k is a number of the order unity, and 2.137 Z,~% > 60 for all
atoms, the error is about 25%,. The formula (47) goes over into (35) for
1/y = 2.137 Z,} to this approximation.

3. In the case when (37) is fulfilled, it may be shown that screening is
effective only when

E+ + E y? __f
c 271377 (“48)

which by (37) becomes for lead, Z, = 82,

_1?1 137 Z,~ (E‘ZF.___%LY ~ 30. (484)
Screening is therefore appreciable only for very high energies of the
particles 1, and its effect is to replace the logarithmic term in (38) by
log {k 137 Z,~% (E+ + E) y/mc?*} which by (48A) is smaller than log k/v.

For a given v, therefore, such that for the smallest (E,. + E) subject to
(37) the condition (484) is satisfied, the logarithmic term increases as
log {k 137 Z,~* (E, + E) y/mc?} with increasing (E - E. ) until it becomes
equal to log k/v, and then remains constant. For larger (E, + E), the
pair is produced too near the nucleus for screening to have any effect.
(See §4.2.) The total cross-section for pairs with E, E, > mc?/y is now

Q] <zlz

3 137> <mcz> lo g(k2 137Z,79), 49)

which should be used instead of (39) for 1/y > 137 Z,~%

4—PROBABILITY AS FUNCTION OF IMPACT PARAMETER

The probability of the creation of a pair, the electrons of which have
definite momenta, when the particle 1 of charge Z, passes at a distance b,
from the fixed nucleus, is given by (21) with the M’s and N’s given by (18).
The term exp {i (p’,, b,)/%} in the integrals (18) gives the dependence on b,.
For our present discussion it is convenient to choose our axes so that
b, = 0. Using (20) and (25), all the integrals (18) are of the form

Yl 1
“—m{(l)'r — Do+ D)+ 3*H{D'F + &}

A B ’ i0..’bl% ’ ’
X ; Pt dp' dp’,,
|i(p,r pOr2 + p2 _p2+(pr+ pr)z + 1:)02 - Poz] PPy

(50
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where A and B are the corresponding numerators of the quantities M or
N given by (19).
1. We consider first the case (31), namely,

m2 < EE, ; m/y>E E,.

It may now be shown (B, § 2 (16)) that the electron and positron emerge at
angles of the order mc?/E, and mc?/E , respectively, so that by (15)

5§ ~ (E. + E) m2c3
2EE,

E,+E . (51

€= v p

P2 — p?, Pt — pgt ~ m3c?

and hence
3, 2 < P2 — pt P — pi.

Most of the integral (50) therefore comes from two regions of the order &
and ¢ round the points b, — p, and O respectively. Suppose ¢ < 3,
then the important region is of the order ¢ round the point 0, and as b
increases from O to'eo, the integral will start decreasing rapidly due to the:
oscillation of the exponential term when

: bmax ~ ﬁ/eg
i.e., by (51) when
V28
b]n{,l»x I — 52 A
. Y(E: T D) &2
This is for the case € < 9, i.e.,
1 . 2EE
- > = ,
5" e (524)

Thus the creation of pairs of total energy (E, -- E) takes place up to-
distances of the order (52) when (52A) holds.

When € > 9, i.e.,
2 EEi

= <
the production of pairs of energy (E, + E) takes place up to distance.
given by
o R 2EE,
buux ~ 5~ o (E, + E) mc® 33y
When € ~ 3, 1/y ~ 2 EE  /m?c%, and (52) and (53) become the same. We:
shall see in the next paragraph that these results have a direct physical

significance.
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2. We now consider the case (37), namely,

2 2

me < g E,; MESEE,.
Y Y

It may now be shown that the particles of the pair emerge at angles of the

order v (B, § 3 (28)), so that from (15)

35~ E++E ¥
c 2

and
B <t PP — p% Pyt — pit

The important contribution to the integral (50) now comes from a region
of order 3 round the point p,, — p,. The production of a pair, the
particles of which have energies E, E ., therefore takes places at a maximum
distance given by v

7 %c
bmax NI TR 54
5~ FE, T 68

From this we see that if 1/v2 << (B, + E)/mc?% by.x < %/mc. In the
reverse case it is greater than 7/mc.

5—CONNEXION WITH PAIR CREATION BY y-RAYS

We shall now show that there is a very close connexion between the
creation of pairs by one charged particle (1) passing through the field of
another (2), the process we have been considering above, and the pair
creation by y-rays in the field of the latter particle (2). This is due to the
following reason. When the particle 1 (of charge Z,) moves with a
velocity very near that of light, its field suffers a Lorenz contraction, and
the electric force perpendicular to its path is 1/ times larger than its value
when the particle is at rest. To a certain approximation, therefore, the
electric field may be considered as perpendicular to the path of the particle.
Further, the field has now a magnetic force perpendicular and nearly equal
to the electric force, and perpendicular to the direction of motion. In some
region, then, small compared with its distance from the path of the particle,
the field of the particle is very similar to that of electromagnetic waves, so
that we may make a Fourier analysis of the field of the particle and con-
sider each component as a y-ray. The error in doing this is of the order v,
as has been shown by v. Weizsidcker.tf @ We now use the appropriate
formulae, giving the pair production by this y-radiation in the field of the

t Cf. v. Weizsidcker, ¢ Z. Physik,’ vol. 88, p. 612 (1934),

VOL. CLII.—A. 2R
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stationary particle (2) to get the total pair production by the moving
particle (1) in the field of the stationary one.

The analysis of the field of the moving particle into monochromatic
waves may be schematized according to v. Weizsickert thus. If n, be
the number of quanta of frequency v per unit frequency range which cross
unit area at a distance » from the path of the moving particle 1, then

_2Z2%dv . c
nvdv—;?.c_m 1fv<km
» (55)
ndv =0 if v >k

2nry

where k is a number of the order unity. To get the total number of
quanta N, of frequency v due to a state in which one particle crosses unit
area per unit time, we must integrate n,dv over all r from ry, tO Frox.
Fmax 18 given by (55), because for larger distances the frequency v no
longer occurs. rpy, we take as usual to be the Compton wave-length.
We find

e _ 222 [ome\ d(w)
Nodv = 2 j (nav dr — 22 tog <k,Y_hv>. ) (56)

"min

To get the effective cross-section for the creation by the colliding particles
of a pair, the electron of which has energy E, and the positron an energy
E., we must multiply N,dv by Q (E) dE, the effective cross-section for the
creation of a pair, the electron of which has an energy E by a photon of
energy hv = (E, + E) in the field of the stationary particle 2.

We consider first the case (31). Then, according to Bethe and Heitler, {

—aZd € B2+ E.2+ 2EE, 2EE, _ 1l
Q(E)dE =4 13 <m02> E, + By {bg mEE, 1B 2

137
If we multiply this by (56) we get

_ 8 (2,2, & E*+ E.® + 3EE,
dQ”‘E'<137><mc2> (E, + E)*

2EE

[ _
x llog mc®(E,. + E)

1 kmc?
2} log " JE dE..

This is just formula (32), if we remember that there and here the coefficients
of order unity inside the logarithms are indeterminate.

+ Cf. v. Weizsicker, ¢ Z. Physik,’ vol. 88, p. 612 (1934).
1 ¢ Proc. Roy. Soc.,” A, vol. 146, p. 83 (1934).
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Formula (57) holds according to Bethe and Heitler if

S = (mc®? (E, + E) l s, me

2EE, ¢~ 3 (58)

IfE, E, are larger, so that the inequality (58) is reversed, screening becomes
important, and we must use for Q (E/dE)
(E? + E.? + 3EE,) log 183Z,} — BB~
. + 3bk,)log 2 5 JE
& T Ey 59)
Multiplying this by (56) gives just (46) if we remember that EE_ /9 in (59)
is a term of the order of the error we make in this approximation.

To get the variation with impact parameter b, we remark that the
maximum distance ., at which the frequency v occurs is given by (55)

_ 4232 e
Q(E)dE = 4 137 <mcz>

c
o~ K g (60A)

Further, according to Bethe and Heitler, a quantum of frequency v can
produce a pair at distances from the fixed nucleus of the order 4 given by

g B _ & 2BE,

~ el e (608)

for E, E,. > mc?. Therefore b,y will be of the order rpay if Fmax > d, i.e.,

sic

k"¢

. Er+EBE)~y

if _ , (61)
_1_ S 2EE,

Y m2ct

bmax ~

which is identical with (52). Similarly, we get (53) when r. < d.

We now consider the creation of slow pairs under the condition (26).
According to Nishina and others, one may write Q (E,)dE, forE_, E =
mc? in the form (« = e?/7%c)

Q(E)dE, = o Eh (az,y 1

64 m2c3 (e‘&ml.ba/53+ — 1) (1 — e‘-’fﬂ-zz/.ﬁ)

.[2 (B,2sin2 0, + B%sin? 0)

1 (o Zo)? <%2 + 1+ cos 0, cos e)] 8, dB, do, de, (62)

which is valid for B8, = v, /c L1, B =v/c L], aZ, L 1.
: 2R2
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6., 0 are the angles of ejection of the positron and electron with respect
to the direction of motion of the light quantum.
If, further,
O(ZZ < 1 O(.Zg < 1’ (63)
By B
which is also the condition for the validity of the Born approximation,
(62) reduces to

1
1283 m263

( aZy)? (B2 sin®0, + p* sin®6) B.% BdB, do,dw. (64)

This is the formula of Bethe and Heitler calculated by the Born approxi-
mation for the case when B, , 8 < 1. If we multiply (64) by (56) we get
the effective cross-section for the production of slow pairs by the collision
of the two particles,

L le2>2<_€2_>2 (P2 + ) p.2pidpdp, do do,
1287 ( 157) \mat) 108 <Y> moP - (69)

This is just formula (27), keeping only the term which predominates as
1/y - o<, i.e., the logarithmic term. Since (27) is correct for all v, a com-
parison of (65) with (27) gives us the error we make by using the Weizsdcker
method. For example, the neglect of the term 17/6 in (27) which does not
occur in {(65) causes (65) to be nearly three times larger than (27), even for
1/y = 10. For 1/y = 100, the error is about 20%,.

We have thus shown that an adaptation of the Weizsidcker method will
to a certain approximation give the same results as the direct calculation.
We may then use this method to supplement our results in those regions
where the direct calculation cannot be carried out, i.e., for the case
E~E, ~2mc®. Inthis way we may establish that for E ~ E, ~ 2mc?, the
accurate formula gives a result smaller than that given by (32), which is
what was required to justify our method of deriving (34) and (35). In
general, one can say that the effective cross-section for the production of a
pair, the electron and positron of which have an energy E and E, re-
spectively, is got by multiplying the formula (21) of Bethe and Heitler’s
paper by (56) above. (Cf. also their fig. 5.)

In passing, we may remark that a comparison of (62) and (64) shows us
the error in the formulae of Bethe and Heitler for slow pairs due to the use
of the Born approximation. Integrating (62) and (64) over all angles we

have
Quishina 4n® («Zo)*/B . B 1+ (aZ2) < i + 1>J

Qpetne and Heitler (92""‘Z’/"3 +— 1) (1 — e2retalf) [ B2+ (32
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This ratio is less than  for
Ly _ oy . )
s e '

This means that when the condition (63) is not fulfilled, the Born approxi-
mation gives a cross-section too large by a factor two. For fast pairs,
B, = B = 1, but (63) may still not hold if Z, is too large. For lead, instead
of (63) we have (66), so that the above analogy seems to indicate that even
for fast pairs, where the above argument does not strictly hold, the Born
approximation may have given a result too large by a factor two. This
would reduce somewhat the discrepancy between theory and experiment
found for the stopping of fast electrons.” The good agreement between
theory and experiment for the production of pairs by vy-rays is, perhaps, to
be regarded as fortuitous.

All our results have also been based on the Born approximation, so that
our formulae, if applied to lead, may also be too large by about a factor
two on this account.

6—RESULTS

The Magnitude of the Cross-Sections—(a) We start by giving the cross-
section calculated by Heitler and Nordheimt for the creation of pairs by
a particle of charge Z,, mass M, moving with velocity small compared with ¢,
- on colliding with a particle of charge Z, mass M,, initially at rest. They get

~ (] >2 SN M 54y 01 _ MiZs)?
Q= <'1‘377 <mc2> M,T, 225 (1 M221> ’ (67)

where T; is the kinetic energy of the particle 1. For slow heavy particles,
the “first-order process” is far greater than the “second-order,” and it is the
former which is given by (67). From (67) we see that it decreases inversely
as the kinetic energy T; of the particle creating the pair. If the particle 1
is a proton with T ~ 108 e.v., and the particle 2 a lead nucleus, Q ~ 2-8
x 10780 cm? If the particle 1 is an «-particle of the same energy, Q ~1:3
X 1073 cm?, the decrease being due to the term (1 — M;Z,/M,Z,)®. The
pair production by slow heavy particles is therefore negligible.

(b) We now consider the creation of slow pairs by fast particles subject
to the condition (26). The differential cross-section is given by (27). The
positron and electron emerge at angles independent of one another, and the
probability is greatest for their being ejected perpendicular to the path of
the particle 1. The angular distribution is also symmetrical about a plane

T ¢J. Phys. Rad.,” vol. 5, p. 451 (1934).
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perpendicular to this path. The integration of this cross-section leads to
(34), which increases as the cube of the kinetic energy Ey of the pair. The
formula (30) is valid only for Ex << mc% We cannot get an estimate of the
partial cross-section for the production of a pair with any kinetic energy
less than mc? by just integrating (30) from Ex = 0 to Ex = mc?, for we
make a considerable error in extrapolating (30). We may see this by
writing Ex = mc? in (30) and E; = 3mc? in (34), when it appears that (34)
is nearly ten times larger than (30). We can, however, use (30) in con-
junction with the method of the last section to get a good estimate of the
partial cross-section for the creation of a pair with any total energy E, less
than 3 mc® We find that this partial cross-section is in lead of the order
1028 cm?, and 102" cm2, for a proton with 1/y = 2 and 1/y = 10 respec-
tively. Itincreases like (30) logarithmically with the energy of the colliding
particle. The cross-section is still extremely small, but is nevertheless
about a hundred times larger than the cross-section for pair creation by
slow heavy particles.

(¢) The cross-section for the creation of pairs with energy E, E, > mc?/y
by heavy particles is given by (38). One sees from this that roughly the
probability varies inversely as the fourth power of the total energy of the
pair. The mean angles at which the particles of the pair are ejected are of
order v. Also, by integrating (38) over all E, we see that the probability
of the electron having an energy E, irrespective of that of the positron is

TABLE I—PARTIAL CROSS-SECTION FOR THE CREATION OF PAIRS WITH
E, E, > mc*/y BY PROTONS IN LEAD

Energy 1/y Qs
~10%e.v. 2 ~ 2 x 1072 cm?
~ 10%%.v, 10 ~ 7 x 10727 cm?
~ 10%e.v. 100 ~1-2 x 1026 cm?.

proportional to E-3.  The total cross-section for the creation of a pair, each
particle of which has an energy greater than mc?/v, is given by (39), which
gives only the order of magnitude. When the particle 1 is a proton and 2
a lead nucleus we get the values given in Table I. The value given in the
third row is obtained by using (49) instead of (39), for screening is now
effective.

These cross-sections are again about ten times larger than the corre-
sponding cross-sections for the creation of slow pairs by protons of the
same energy, so that if a proton produces a pair at all it will be a fast pair.
The effect is still very small.
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(d) The cross-section for the creation of pairs subject to the condition
(31) is given by (32) and (46). The distribution of energy between the
particles of the pair, and the dependence of the probability on the total
energy of the pair is almost exactly the same as for the creation of the same
pair by a y-ray, multiplied by the factor log {mc?/y (E, + E)}/(E, + E), as
indeed the considerations of § 5 make clear. The term log{mc?/y (E, + E)}
varies but little. For pairs with E; = (E. + E) large, i.e., greater than
100 mc?, there is a tendency for one particle to get more energy than the
other. This tendency increases as the total energy E. increases. For
E; ~ 20 mc? there is a very broad maximum when both the particles get
about the same amount of energy, and this maximum becomes more pro-
nounced as E; decreases. The distribution curves are like those given in
the paper by Bethe and Heitler (p. 107). The mean angles at which the
electron and positron appear are roughly mc?/E and mc?/E . respectively,
and the two particles tend to emerge on opposite sides of the z axis. The
_effect of screening is also exactly the same as for y-rays, and has been
considered in § 3.

The integration of (32) over all energies of the positron E, gives, under
the condition mc? < E < mc?/vy, just the expression (34) with E substituted
for E;. This shows that the probability of the electron having an energy
E, independently of the energy of the positron, is roughly proportional to
1/E.

The total cross-section is roughly given by (35) for 1/y < 2.137 Z,3,
and by (47) for 1/y > 2.137 Z,~%. The resulting values of Q for different
energies are given in Table II.  Another quantity of interest is Q/Q, where
Q is the cross-section for the creation of a pair by an electron; and Q, is
the cross-section for the creation of a pair by a y-ray of the same energy.
This ratio is approximately

Q 1 1y
Q, 3r 1377
where
log21/y for1/y << 2.137Z,7%

Y = 1 1 2 —1 —L1
{310g;10g2—.——137—zz—:;—y-+10g 2.137 Zz }forl/Y>2.13722 3.

It is given in the third row of Table II.

TABLE IT—CROSS-SECTIONS IN CM2 FOR THE CREATION OF PAIRS IN LEAD

1)y 10 50 100 500 1000

Q 11 x 1026 56 x 10-%6 0-9 x 10-** 2-2 x 10-2* 2:9 x 10-2¢
Q/Qy~ (0-004) 0-01 0-02 005 0-06
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The cross-sections up to 1/y = 100 apply to protons as well as electrons,
and will be relatively accurate for them. 1/y = 100 corresponds to a
proton of ~ 10 e.v. For electrons of energy 10mic? the value of Q given is
likely to be too large, since for such low energies the deflection of the
electron by the nucleus as well as the reaction of the electrons of the
created pair may no longer be neglected. The values become progressively
more accurate with increasing energy.

The Effect of Exchange—We shall now consider qualitatively the
effect of exchange, when the particle creating the pair is an electron.
Our calculations are accurate only in the region E, E, <mc?/y = E,
and E; > mc% :

E, denotes the initial energy of the electron 1. The electron after the
pair creation is left with an energy E, very nearly given by E; =~ E; — E,,
since in all important cases the energy communicated to the particle 2 is
small compared with mc®. Since E, < E, by our assumptions, E; ~ E;,
> E. Let P (p; > p,, po -~ p) be the matrix element without exchange
for the transition in which the electron 1 jumps from a state of momentum
p; to a state of momentum p,, and the electron of the created pair jumps
from its initial state p, to a final state p. Then |P (p; - ¢, o~ P) |2
integrated over all final states p, of the electron 1 is just the process we
have calculated, and is given by (32) under the conditions (31). Let
P(p, - p,po— py) denote the matrix element for the process in which the
electron 1 jumps from its initial state p; to a final state p, and the electron
of the created pair jumps from an initial state p, to a final state p,. Then
[P (p; - p, po —~ Py)|? integrated over all final states p is given very roughly
by (32) if we there write E, instead of E, since (32) is not accurate when
the electron creating the pair loses a large fraction of its initial energy.
More accurately, | P (p; - p, po — p,) |* would be still smaller. Hence
|P(@:~>p, o) | <|P(pi>psspo—>p) | if E,~E,>E. If we
had taken exchange into account accurately, then the cross-section for the
process in which one electron was in a final state p,, and the other in a
final state p would have been proportional to

| P (p:— Ps Do~ D) — P (D~ P, po—~ o) |

which, on account of the inequality given above, is very nearly |P (p; - p;,
Po— D). For those cases where E, ~ E, both matrix elements are of the
same order, and the effects of exchange are not so simple. We may thus
sum up by saying that exchange has but a small effect on formulae (27),
(30), (32), and (34) in the region where they are valid, i.e., Eyx < mc?/y.
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Cross-Section as Function of the Total Energy of the Pair—For a given large
energy of the particle creating the pair, the differential cross-section as
function of the energies of the particles of the pair behaves as follows.
For p, p, < mc, the cross-section for the creation of a pair of total kinetic
energy E, increases as E,2, as shown by (30), reaches a maximum for some
total energy E, of the order 3mc2, and then for E; > mc? decreases nearly
as E;L, as seen from (34). If the particle creating the pair be a heavy
particle, then the further case E; > mc?/y is possible, and in this region
the cross-section decreases approximately as E, =3, as one may see by
integrating (38).

Comparison of Pair Creation by Protons and Electrons—One sees from the
above cross-sections that if a particle of energy 10%° e.v. is observed to create
a pair in its passage through a plate, the chance of its having been a heavy
particle, i.e., with rest mass comparable to that of the proton, is less than 47,
whereas for a particle of 10° e.v. the chance is less than 0-2%,. Further,
the angles at which the particles of the pair emerge are much larger for
creation by protons than by electrons. For example, for a particle of
~ 10%e.v. v, if it be a proton, is 1/2. For a pair with E, E, > mc?/y
~ 2mc?, the mean angles at which the electrons of the pair emerge are
roughly y. If the particle creating the pair had been an electron, the mean
angles would have been of the order r_nE£2, r_g_cz respectively, which are much
smaller than v. ’

In conclusion, we remark that the errors which may be caused by the
use of the Born approximation are exactly the same here as in the creation
of pairs by vy-rays, calculated by Bethe and Heitler. For the reasons given
in § 5, the results for lead for slow pairs are liable to be too large roughly
by a factor two on this account.

SUMMARY

The creation of electron pairs in the collision of particles moving with
relative velocity very near the velocity of light is calculated. The effect of
screening is considered, and the variation of probability of pair creation as
function of impact parameter is investigated. It is shown that to a certain
approximation most of the formulae can be derived by a method similar
to one due to v. Weizsidcker, where the field of the moving particle is con-
sidered as a superposition of vy-rays.

The effective cross-section for the pair creation by fast protons in lead is
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more than a thousand times larger than the cross-section for pair creation
by slow protons calculated by Heitler and Nordheim. For the collision of
electrons of 10® e.v., with a lead nucleus, the cross-section is of the order
10~2%cm?, and is about one-fifteenth of the cross-section for the creation of
a pair by a y-ray of the same energy. It increases with increasing energy
of the electron.

On the Instability of a Fluid when Heated from Below
By R. J. Scamipt, Ph.D., and S. W. MILVERTON, Ph.D., D.I.C.

(Communicated by S. Chapman, F.R.S.—Received June 7, 1935)

[PLATE 15]

INTRODUCTION

It has been known for some time that when a horizontal layer of fluid is
heated from below the fluid remains stationary, if initially at rest, until a
certain temperature difference, depending on the physical constants of the
fluid and the depth of the fluid layer, is reached. The equilibrium, which
becomes less and less stable as the temperature rises, then becomes unstable
for infinitely small disturbances, so that the fluid begins to move.

Rayleigh,* in 1916, put forward a theory which gave the temperature at
which motion first occurs when the top and bottom layers are free surfaces.
The results agreed qualitatively with previous experiments due to Bénard.f
Later Jeffreysi calculated a critical temperature for the stability of a fluid
between two rigid horizontal conducting planes'.'_‘f The investigation has
since been revised by Jeffreys§ and also by Low.

The mathematical work involves certain not yet fully established
assumptions, and it appeared desirable to investigate the problem experi-
mentally to test the theoretical result. The mathematical investigations
have not so far shown whether any sudden increase occurs in the heat
transfer when motion begins, but this appeared probable and is also
investigated in the present work. It was decided to suspend two plates

* ¢ Phil. Mag.,” vol. 32, p. 529 (1916).

+ ¢ Ann. Chim. Phys.,” vol. 23, p. 62 (1901).

1 ¢ Phil. Mag.,” vol. 2, p. 833 (1926).

§ ¢ Proc. Roy. Soc.,” A, vol. 118, p. 195 (1928).
€ ‘ Proc. Roy. Soc.,” A, vol. 125, p. 180 (1929).
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