Synthesis of Tetrafluoronickelate(II) and Tetrafluorozincate(II) Complexes from Aqueous Media: A Novel Route to Fluorometalates

Mihir K. Chaudhuri,* Soumitra K. Ghosh, and Zavei Hiese Department of Chemistry, North-Eastern Hill University, Shillong 793003, India

The complexes $A_2[NiF_4]$ (A = NH_4^+ , K⁺, or Rb⁺) and $A_2[ZnF_4]$ (A = NH_4^+ , K⁺, Rb⁺, or Cs⁺) have been synthesised, from the corresponding metal acetylacetonates (acac) with 40% HF and AF, in very high yields. The new method also allows the preparation of $[VOF_5]^{2^-}$, $[MnF_5]^{2^-}$, and $[CrF_5(H_2O)]^{2^-}$ from $[VO(acac)_2]$, $[Mn(acac)_3]$, and $[Cr(acac)_3]$ respectively.

Recommended methods $^{1-3}$ for the synthesis of $[NiF_4]^{2-}$ or $[ZnF_4]^{2-}$ complexes employ fusion of NiF_2 or ZnF_2 with stoicheiometric amounts of alkali-metal or alkaline-earthmetal fluorides in vacuo or in an atmosphere of dry HF. Such methods require not only MF_2 (M=Ni or Zn) but also anhydrous HF which is difficult to handle. Very recently, we described simple syntheses of acetylacetonates of nickel, manganese, chromium, and iron, and as part of a programme aimed at utilising such compounds as precursors, it was envisaged that they would react with aqueous HF and alkali-metal fluorides to provide an easy access to alkali-metal salts of fluorometalates. In this paper we report the synthesis of $[NiF_4]^{2-}$ and $[ZnF_4]^{2-}$ complexes directly from their respective acetylacetonates, and also the scope of the method as a paradigm for other such syntheses.

Experimental

Reagent-grade chemicals were used throughout. [Zn(acac)₂]·H₂O ⁸ (acac = acetylacetonate) and [VO(acac)₂] ⁹ were prepared by the literature methods. [Ni(acac)₂(H₂O)₂],⁴ [Mn-(acac)₃],⁵ and [Cr(acac)₃] ⁶ were prepared by methods developed in these laboratories. Infrared spectra were recorded on a Perkin-Elmer model 125 spectrophotometer. Magnetic susceptibility measurements were made by the Guoy method using Hg[Co(NCS)₄] as calibrant.

Synthesis of $A_2[NiF_4]$ (A = NH_4^+ , K^+ , or Rb^+) and $A_{2}[ZnF_{4}]$ (A = NH₄⁺, K⁺, Rb⁺, or Cs⁺).—A typical procedure. Freshly prepared [Ni(acac)₂(H₂O)₂] or [Zn(acac)₂]· H₂O was added to an excess of 40% HF (15 cm³ g⁻¹) followed by the addition of AF, with the molar ratio of metal acetylacetonate and AF being maintained at 1:4. The mixture was then heated over a steam-bath with stirring until the metal acetylacetonate dissolved completely (ca. 40 min). The solution was filtered, and the filtrate concentrated over a steam-bath until microcrystalline yellow A₂[NiF₄] or white A₂[ZnF₄] started to appear. The reaction container was cooled to room temperature for ca. 2 h, and A₂[NiF₄] or A₂[ZnF₄] was separated by centrifugation, dried on a filter paper, and finally dried in vacuo over phosphorus pentoxide. Yields varied between 80 and 90%. Analytical data, magnetic moments, and structurally significant i.r. band positions are summarised in the Table.

Reaction of $[M(acac)_n]$ (M = Cr or Mn, n = 3; M = VO, n = 2) with NH₄F and 40% HF.—The reaction was performed in a manner analogous to that described above. The products obtained were blue $[NH_4]_2[VOF_5]$, green $[NH_4]_2[CrF_5(H_2O)]$, and pink $[NH_4]_2[MnF_5]$ from $[VO(acac)_2]$, $[Cr(acac)_3]$, and $[Mn(acac)_3]$ respectively, with yields lying between 85 and 90%.

Table. Analytical data, magnetic moments, and i.r. bands for $A_2[NiF_4]$ ($A = NH_4^+$, K^+ , or Rb^+) and $A_2[ZnF_4]$ ($A = NH_4^+$, K^+ , Rb^+ , or Cs^+)

Compound	$\mu_{eff.}$ ^a /B.M.	Analysis b/%				
		A	Ni or Zn	F	I.r./cm ⁻¹	Assignment
$[NH_4]_2[NiF_4]$	2.0	16.7 ° (16.4) °	33.90 (34.35)	44.80 (44.50)	455	v_{Ni-F}
$K_2[NiF_4]$	1.9	36.10 (36,75)	27.85 (27.60)	35.2 (35.7)	455	$\nu_{\rm Ni-F}$
$Rb_2[NiF_4]$	2.2	(=====	19.55 (19.20)	25.15 (24.85)	460	v_{Ni-F}
$[NH_4]_2[ZnF_4]$	Diamagnetic	15.25 ° (15.80) °	37.20 (36.85)	42.35 (42.80)	440	$v_{\mathbf{Z}\mathbf{n}-\mathbf{F}}$
$K_2[ZnF_4]$	Diamagnetic	35.10 (35.60)	30.15 (29.80)	34.20 (34.60)	445	$v_{\mathbf{Z}\mathbf{n}-\mathbf{F}}$
$Rb_2[ZnF_4]$	Diamagnetic	(20.25 (20,95)	24.85 (24.35)	445	v_{Zn-F}
$Cs_2[ZnF_4]$	Diamagnetic		16.75 (16.05)	18.20 (18.65)	440	v_{Zn-F}

 $^{\circ}T = 295 \text{ K}$; 1 B,M. = 9.27 × 10⁻²³ A m². $^{\circ}$ Calculated values in parentheses. $^{\circ}$ Analysis for N.

Results and Discussion

[Ni(acac)₂(H₂O)₂] or [Zn(acac)₂]·H₂O undergo a rather facile reaction with hot aqueous HF and alkali-metal fluorides (AF) to afford yellow $A_2[NiF_4]$ (A = NH_4^+ , K^+ , or Rb^{+}) or white $A_{2}[ZnF_{4}]$ (A = NH_{4}^{+} , K^{+} , Rb^{+} , or Cs^{+}) in a very high yield. The method does not require anhydrous HF or any starting material which is difficult to prepare. The role of AF was not only to increase the F⁻ ion concentration in the medium but also to provide counter cations, A+, to enable isolation of the fluorometalates as their alkali-metal salts. In an attempt to explore the scope of the synthetic procedure, similar reactions involving [VO(acac)₂], [Cr(acac)₃], or [Mn-(acac)₃] with NH₄F and 40% HF were carried out and the products obtained were identified as [NH₄]₂[VOF₅], [NH₄]₂-[CrF₅(H₂O)], and [NH₄]₂[MnF₅] respectively, thereby supporting our contention that the method can be used as a paradigm for other such syntheses.

The room-temperature magnetic susceptibility measurements show that while the A₂[ZnF₄] compounds are all diamagnetic, as expected, the magnetic moments of the A₂[NiF₄] compounds lie between 1.9 and 2.2 B.M. in conformity with those reported in the literature.¹² The analytical data and magnetic moments suggest that the compounds are the same as those which have been prepared by other methods and characterized structurally.^{13,14} The i.r. spectra of A₂[NiF₄] and A₂[ZnF₄] (Table) also support this view. The spectra do not show any evidence for the presence of alkali-metal difluorides, A[HF₂],¹⁵⁻¹⁷ thus ruling out the possibility of contamination of the end products by A[HF₂].

Acknowledgements

We thank the Department of Atomic Energy for financial support and CSIR (New Delhi) for awarding fellowships (to S. K. G. and Z. H.).

References

- 1 D. Nicholls, 'The Chemistry of Iron, Cobalt and Nickel,' in Pergamon Texts in Inorganic Chemistry, Pergamon Press, Oxford, 1975, vol. 24, p. 1145.
- 2 W. Ruedorff and J. Kaendler, Naturwissenschaften, 1957, 44, 418.
- 3 B. J. Aylett, 'The Chemistry of Zinc, Cadmium and Mercury,' in Pergamon Texts in Inorganic Chemistry, Pergamon Press, Oxford, 1975, vol. 18, p. 211.
- 4 M. N. Bhattacharjee, M. K. Chaudhuri, S. K. Ghosh, Z. Hiese, and N. Roy, J. Chem. Soc., Dalton Trans., 1983, 2561.
- 5 M. N. Bhattacharjee, M. K. Chaudhuri, and D. T. Khathing, J. Chem. Soc., Dalton Trans., 1982, 669.
- 6 M. K. Chaudhuri, N. Roy, and D. T. Khathing, Synth. React. Inorg. Metal-Org. Chem., 1982, 12, 715.
- 7 M. K. Chaudhuri and S. K. Ghosh, J. Chem. Soc., Dalton Trans., 1983, 839.
- 8 E. L. Lippert and M. R. Truter, J. Chem. Soc., 1960, 4996.
- 9 B. E. Bryant and W. C. Fernelius, Inorg. Synth., 1957, 5, 114.
- 10 M. K. Chaudhuri and N. Roy, Synth. React. Inorg. Metal-Org. Chem., 1982, 12, 879.
- 11 M. N. Bhattacharjee, M. K. Chaudhuri, H. S. Dasgupta, and D. T. Khathing, J. Chem. Soc., Dalton Trans., 1981, 2587.
- 12 Ref. 1, p. 1146.
- 13 W. Ruedorff, J. Kaendler, and D. Babel, Z. Anorg. Allg. Chem., 1962, 317, 261.
- 14 H. G. Schnering and P. Bleckmann, Naturwissenschaften, 1965, 52, 538.
- 15 J. A. A. Katelaar and W. Vedder, J. Chem. Phys., 1951, 19, 654.
- 16 R. Newman and R. M. Badger, J. Chem. Phys., 1951, 19, 1207.
- 17 M. K. Chaudhuri and P. K. Chaudhury, Chem. Ind. (London), 1979, 88.

Received 31st August 1983; Paper 3/1519