ENKEPHALIN ANALOGS. INTRODUCTION OF STEREOCHEMICAL CONSTRAINTS, METAL BINDING SITES AND FLUORESCENT GROUPS R. NAGARAJ, T. S. SUDHA, S. SHIVAJI and P. BALARAM Molecular Biophysics Unit and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India ## 1. Introduction There has been considerable speculation on the biologically active conformations of the enkephalins and their possible structural similarity to the opiates [1–41. A number of models have been proposed on the basis of theoretical calculations [2] and computer modelling [3]. Recent NMR studies suggest a high degree of conformational flexibility at Gly² and Gly³ implying that a favoured conformation does not exist in aqueous solution [5]. The replacement of the Gly residues by Aib residues will greatly restrict the available conformations at positions 2 and 3 of the pentapeptides and may thereby allow a better definition of the steric requirements for biological activity. This approach appears particularly attractive in view of the extremely well defined conformations adopted by Aib containing peptides [6-10]. An earlier report described the synthesis of Aib²-Met⁵-enkephalinamide [11]. Here we present the preparation and compare the biological properties of the Aib², Aib³ and Aib²-Aib³ Met⁵-enkephalin derivatives. The properties of 3-nitro—Tyr analogs, designed to bind paramagnetic NMR shift probes and a fluorescent Aib² analog developed for studies of receptor interactions, are also described. # 2. Experimental procedures Peptides listed in table 1 were synthesised by solution phase methods using DCC or DCC/1-hydroxy- Abbreviations: Aib, a-aminoisobutyryl; Boc, t-butyloxy-carbonyl; DCC, dicyclohexylcarbodiimide; DNS, 1-dimethylaminonaphthalene-5-sulfonyl; TLC, thin-layer chromatography benzotriazole-mediated couplings. Boc groups and methyl esters were used for amino and carboxyl protection, respectively. Removal was effected with HCl-tetrahydrofuran or trifluoroacetic acid for Boc groups and saponification in 2 N NaOH-CH₃OH for the esters. Analogs with Aib at residue 2(2,3,6,7)were prepared by 2t3 condensation, while Gly² analogs (4,4,5) were obtained by 1+4 coupling. The DNS group was introduced by coupling Boc-Met to DNS-NH-CH₂-CH₂-NH₂ [12] followed by Boc removal and condensation with Boc-Gly-Phe to yield the fluorescent tripeptide fragment. The 3-nitro— Tyr and DNS analogs (5.6.7) were purified by preparative TLC on silica gel using 8:2CHCl₃-CH₃OH for 5 and 6 and 9:1 CHCl₃-CH₃OH for 7. All analogs were checked for homogeneity by TLC on silica gel using 8:2 CHCl₃-CH₃OH or **4:** 1:1 n-butanol-water-acetic acid systems. Faint iodine positive but ninhydrinnegative spots with higher $R_{\rm F}$ were present in 2 and 3. 1,2,5,6 and 7 gave 270 MHz ¹H NMR spectra fully consistent with their structures, while 3 and 4 yielded satisfactory 60 MHz spectra. The biological activity of enkephalin analogs was tested by microinjection of the peptides into the lateral ventricle of the brain of adult albino mice in groups of 4. Mice were anaesthetised by brief exposure to ether prior to injection. The control mice received an equal volume of the diluents, alcohol and water without the peptide. Alcohol was necessary to solubilise certain analogs at neutral pH. Injection of enkephalins immediately immobilised the mice and also had a pronounced sedative effect. The mice assumed abnormal postures during the period of sedation, salivated profusely and in a few teeth chattering was evident. Subsequently the mice overcame | Table 1 | | |------------------------------------|----| | Effect of enkephalin analogs on mi | ce | | Samples injected ^a | Dose (µg) | Mean recovery
time (min) ^b | |---|-----------|--| | Control(1:7 alcohol-water) | | 2 | | Control(1:2 alcohol-water) | _ | 4 | | Tyr-Gly-Gly-Phe-Leu-NH, 1 | 100 | 43 | | Tyr-Aib-Gly-Phe-Met-NH, 2 | 50 | 140 | | Tyr-Aib-Aib-Phe-Met-NH, 3 | 50 | 140 | | Tyr-Gly-Aib-Phe-Met-NH, 4 | 100 | 21 | | (3-NO ₂)Tyr-Gly-Gly-Phe-Met-NH, 5 | 100 | 25 | | (3-NO ₂)Tyr-Aib-Gly-Phe-Met-NH ₂ 6 | 100 | 63 | | Tyr-Aib-Gly-Phe-Met-NH-fCH,),~DNS 7. | 50 | 100 | ^a Injected volumes were 6 μ l except for 2 where it was 3 μ l. All samples were injected in 1:7 alcohol–water solution, except 7 which was dissolved in 1:2 alcohol–water this effect but appeared drowsy and moved very sluggishly or in jerks with a completely inactive or limping hind leg. A time lag persisted before the mice attained normal Coordinated limb movement. In the present investigation the biological activity of the various analogs was monitored by comparing the recovery time of the mice from the effect of enkephalins. Recovery time is the interval that lapses from the point of administration of the enkephalins to the complete recovery of the mice, as judged by the attainment of normal coordinated movement of the limbs, as seen in normal mice. ## 3. Results and discussion Table 1 summarises the biological activity of the peptides, as measured by the recovery of coordinated movement in mice. It has earlier been demonstrated that direct injection of β-endorphin into the brain of rats results in marked behavioral effects. Enhanced salivation [13], pronounced sedation and a state of immobility without motor paralysis [13–15] have been observed. The state of catatonia was reversed by the opiate antagonist, naloxone [14]. We have therefore chosen to follow the mean recovery time for normal movement, after direct injection into the brain of mice, as a parameter for comparing the activity of the synthetic peptides. The results in table 1 clearly demonstrate that the Aib^2 and Aib^2 — Aib^3 3 analogs are significantly more active than Leu⁵—enkephalinamide 1. The replacement of Met' for Leu⁵ has only a small effect on activity. While all peptides were tested upto a concentration of $100 \mu g$, the injection of 3 at these levels led to death of the animal. Consequently the more active analogs were also examined at the lower dose of $50 \mu g$. The pronounced enhancement in the activity of the enkephalins on replacement of Gly² and Gly³ by Aib residues suggests that the active conformations of the natural peptides are indeed accessible to the more hindered synthetic analogs. Earlier studies have established the tendency of Aib residues to initiate β-turns [6–10]. X-Ray diffraction [6–8], infrared [9] and NMR [10] studies have shown that -Aib-Aib- and -Aib-X- sequences favour β-turn structures, stabilised by intramolecular $4 \leftarrow 1$ hydrogen bonds, in non-aqueous solution. Theoretical studies suggest that ϕ , ψ values [16] close to the 3₁₀ and a-helical regions of the conformational map are preferred for Aib residues [17,18]. An examination of crystal structures of Aib containing peptides [6-8,19,20] yielded a total of 11 Aib residues all of which had ϕ , ψ values confined to the regions $\phi -60 \pm 20^{\circ}$, $\psi -30 \pm 20^{\circ}$ or $\phi +60 \pm 20^{\circ}$, ψ t30 ± 20". It is therefore likely that the Aib analogs adopt a well defined backbone conformation. Preliminary evidence for a $4 \leftarrow 1$ hydrogen bond b Recovery times are averaged for groups of 4 mice in 2 involving the C=O group of Tyr' and the N-H group of Phe⁴ has been obtained from 'H NMR. The temperature coefficient of the Phe NH chemical shift in $(CD_3)_2SO$ is found to be 2.77 X 10^{-3} ppm/°C whereas the corresponding values for the Gly-NH and Met-NH groups are 5.55×10^{-3} and 4.63×10^{-3} ppm/°C, respectively. The value obtained for Phe NH in Met⁵-enkephalinamide is 4.63 X 10⁻³ ppm/°C (T. S. Sudha, unpublished results). Interestingly, such a hydrogen bond is indeed observed in the crystal structure of Leu⁵-enkephalin, with conformational angles of $\phi = 59^{\circ}$, $\psi = 25^{\circ}$, # = 97'' and $\psi = -7^{\circ}$, for residues 2 and 3 [21]. These values are generally stereochemically favourable for D-amino acids and the optically inactive Aib residues can indeed adopt these values. The β -turn has also been proposed in earlier studies [1]. The conformations possible for the Aib²-Aib³ analog 3 are further restricted relative to 2. The dramatic enhancement in biological activity of 3 compared to 1 suggests that the active conformations may require values of ϕ_2 , ψ_2 and ϕ_3 , ψ_3 in the range $\phi = +60 \pm 30^{\circ}$ and $\psi = +30 \pm 30''$. The choice of the positive ϕ , ψ values is made in view of the very low receptor affinity of L-Ala²-enkephalinamide compared to the D-Ala² or Gly² peptides [22]. Studies fitting the enkephalin structure to a proposed opiate pharmacophore suggested a biologically active conformation having $\phi_2 = 160^{\circ}$, $\psi_2 = -87^{\circ}$, $\phi_3 = -118''$ and $\$3 = 98^{\circ}$ [3]. These values represent significantly higher energy conformations for both $\frac{2}{3}$ and $\frac{3}{3}$. It is unlikely that favourable receptor interactions will offset this destabilisation. Modelling studies have also predicted that the Aib³ analog 4 will be inactive [23]. The results in table 1 show that 4 possesses substantial activity, though in this test system the activity is lower than Leu⁵-enkephalinamide. From conformational considerations the high activity of the derivatives 1, 2, and 3 implies that 4 should also exhibit activity. In view-of the known lability of the Tyr¹-Gly² bond to enzymatic degradation [22] a direct comparison of the analogs with Aib² and Gly² may not be strictly valid, under the conditions of testing. The binding of metal atoms at specific sites in biomolecules permits application of the NMR shift probe method to the study of solution conformations in aqueous solution [24]. It has been proposed that 3-nitro—Tyr can serve as a metal binding site in pro- teins [25] and an application of the method to the study of bovine pancreatic trypsin inhibitor has been reported [26]. In order to explore the potential of this method we have synthesised the nitrotyrosine analogs 5 and 6. It is seen from table 1 that introduction of nitro group ortho to the phenolic hydroxyl, reduces activity by a factor of two compared to 1 and 2. The retention of substantial activity suggests that the nitro group does not completely impede the receptor interaction of the phenolic sidechain. The *ortho* nitro group would also reduce the pK_a of the phenol from a value of 10.1in Tyr to a value of 7.2 in nitrotyrosine [27]. As a consequence ionisation of the phenolic function is possible at physiological pH. Whether such a process is responsible for the observed attenuation in activity remains to be established. Preliminary NMR studies suggest a gross overall conformational similarity between 2 and 6. The nitrotyrosine derivative may therefore be used to further develop details of the three-dimensional structure of the Aib² analogs in solution. Fluorescent enkephalin derivatives may prove useful in probing opiate receptors and enkephalin binding sites in subcellular fractions from brain tissue. Table 1 shows that introduction of a dansyl group, coupled via an ethylene-diamine spacer to the Met⁵ carboxyl group leads to an active, fluorescent derivative 7. This derivative may also be used to probe molecular conformation by monitoring energy transfer [4] from Tyr¹ to the dansyl moiety. During the course of our studies a report on the synthesis of active fluorescent analogs of the Gly²-Gly³ and D-Ala²-Gly³ Met⁵-enkephalins appeared [28]. A comparison of energy transfer efficiencies in the Gly² and Aib² derivatives may yield further information on peptide folding. Detailed conformational analysis of the peptides reported here together with a more comprehensive study of their biological activity may be of value in establishing structure—function correlations for the enkephalins. #### Acknowledgements Financial support for this research was provided by the University Grants Commission. R.N. is the recipient of a fellowship from the Department of Atomic Energy, Government of India. #### References - [1] Bradbury, A. F., Smyth, D. G. and Snell, C. R. (1976) Nature 260, 165–166. - [2] Loew, G. H. and Burt, S. K. (1977) Proc. Natl. Acad. Sci. USA 75, 7-11. - [3] Gorin, F. A. and Marshall, G. R. (1977) Proc. Natl. Acad. Sci. USA 74.5179-5183. - [4] Schiller, P. W., Yam, C. F. and Lis, M. (1977) Biochemistry 16, 1831–1838. - [5] Fischman, A. J., Riemen, M. W. and Cowburn, D. (1978) FEBS Lett. 94, 236-240. - [6] Shamala, N., Nagaraj, R. and Balaram, P. (1977) Biochem. Biophys. Res. Commun. 79,292-298. - [7] Shamala, N., Nagaraj, R. and Balaram, P. (1978)J. Chem. Soc. Chem. Commun. 996-997. - [8] Prasad, B. V. V., Shamala, N., Nagaraj, R., Chandrasekaran, R. and Balaram, P. (1979) Biopolymers 18,1635–1646. - [9] Pulla Rao, Ch., Nagaraj, R., Rao, C. N. R. and Balaram, P. (1979) FEBS Lett. 100, 244–248. - [10] Nagaraj, R., Shamala, N. and Balaram, P. (1979) J. Am. Chem. Soc. 101, 16–20. - [11] Nagaraj, R. and Balaram, P. (1978) FEBS Lett. 96, 273–275. - [12] Narayanan, R. (1979) PhD Thesis, Indian Inst. Science, Bangalore. - [13] Li, C. H. (1977) Arch. Biochem. Biophys. 183, 592-604. - [14] Jacquet, Y. F. and Marks, N. (1976) Science 194, 632-635. - [15] Bloom, F., Segal, D., Ling, N. and Guillemin, R. (1976) Science 194,630-632. - [16] IUPAC-IUB Commission on Biochemical Nomenclature (1970) Biochemistry 9,3471-3479. - [17] Marshall, G. R. and Bosshard, H. E. (1972) Circ. Res. suppl. II 30-31, 143-150. - [18] Burgess, A. W. and Leach, S. J. (1973) Biopolymers 12, 2599-2605. - [19] Aubry, A., Protas, J., Boussard, G., Marraud, M. and Neel, J. (1978) Biopolymers 17, 1693–1712. - [20] Smith, G. D., Duax, W. L., Czerwinski, E. W., Kendrick, N. E., Marshall, G. R. and Mathews, F. S. (1977) in: Peptides Proc. 5th Am. Pept. Symp. (Goodman, M. and Meienhofer, J. eds) pp. 277–279, John Wiley, New York. - [21] Smith, G. D. and Griffin, J. (1978) Science 199, 1214-1216. - [22] Pert, C. B., Pert, A., Chang, J. K. and Fong, B. T. W. (1976) Science 194,330-332. - [23] Marshall, G. R. and Gorin, F. A. (1977) Peptides Proc. 5th Am. Pept. Symp. (Goodman, M. and Meienhofer, J. eds) pp. 84–87, John Wiley, New York. - [24] Barry, C. D., North, A. C. T., Glasel, J. A., Williams, R. J. P. and Xavier, A. V. (1971) Nature 232, 236–245. - [25] Marinetti, T. D., Snyder, G. H. and Sykes, B. D. (1975) J. Am. Chem. Soc. 97,6562-6570. - [26] Marinetti, T. D., Snyder, G. H. and Sykes, B. D. (1976) Biochemistry 15,4600-4608. - [27] Riordan, J. F., Sokolovsky, M. and Vallee, B. L. (1967) Biochemistry 6, 358–361. - [28] Fournie-Zaluski, M. C., Gacel, G., Roques, B. P., Senault, B., Lecomte, J. M., Malfroy, B., Swerts, J. P. and Schwartz, J. C. (1978) Biochem. Biophys. Res. Commun. 83, 300–305.