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Abstract. Let E and F be two Borel sets of the countable product Z of the two point space
{0,1}. Assume that E and F are invariant sets for the odometer transformation R and that
E and F are of measure zero with respect (o the unique finite R-invariant measurc on Z.
We show that E and F are R-orbit equivalent in a strict sense.
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1. Introduction

Let Z={0,1}"© be the countably infinite product of the two point space (0,1}. We
equip Z with the product g-algebra (denoted by /) and the product probability
measure (denoted by P), where the two point space {0, 1} is given the discrete g-algebra
and the uniform probability measure p:p }=pi1j =172 The odometer transforma-
tion R on Z is defined as follows: If z = (z,24.23...) be a point 6Z and if n be the
first positive integer for which z, =0, then the image o = Rz of z is given by

0 if k<n
we=<1 if k=n
z, if k>n

where o, denotes the kth co-ordinate of . f z=(1, 1, 1. ), then Rz = (0,0, 0,...). 1t
is known that R is uniquely ergodic, the measure P being the unique R-invariant
probability measure on 7. Let E and F be two R invariant Borel subsets of Z each
of P-measure zero. Let U and V denote the restrictions of R to E and F respectively.
The purpose of this paper is to prove theorem 1.

Theorem 1. If the orbit spaces of U and V do not admit Borel cross-sections, then U
and V are orbit equivalent, i.e., there exisis a Borel isomorphism ¢ of E onto F such
that for each x€E,

Vo)) - = 0({U"X = - )

This result may be viewed as a contribution to the theme of descriptive ergodic
theory. (See [1], [61, (7], [9], [10], [11]). The main contribution here is lemma 1
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below, which when coupled with some known facts and Cantor-Bernstein theorem
for orbit equivalence, yields theorem 1 above.

2. Compressibility of null invariant sets in Z

Let (X, %) be a standard Borel space and T a Borel automorphism on X. For any
A< X, we write s4 to denote the T-invariant set Us . T4 generated by 4, and
we call s4 the saturation of 4. Two sets A, Be 4 are said to be equivalent by countable
decomposition if (i) we can partition A into a countable number of pairwise disjoint
sets A;e2, ieN (ii) we can partition B into a countable number of pairwise disjoint
sets B;e4, ieN (iii) we can find integers n;, ieN such that for each i, T"4;= B;. Here
and in the sequel N will denote the set of natural numbers. We write 4 ~ B whenever
A and B are equivalent by countable decomposition. If A ~ B, then the map ¢: A —+B
given by ¢ =T™ on A, (where 4;, B, n; are as above) is called a descriptive
isomorphism between A4 and B. If A ~ B we also say that 4 and B are descriptively
isdmorphic.

DEFINITION

We say that a set Ae4 is compreséible if A can be expressed as a disjoint union of
two sets B and C in 4 such that

(1) sA=sB=sC, and (ii) A ~ B.

If m is a countably additive T-invariant measure on 9, then two descriptively
isomorphic sets in 4 have the same m-measure. Further a compressible set of finite
m-measure has necessarily zero m-measure. If T is uniquely ergodic and m is the
unique T-invariant probability measure on 2, then any compressible T-invariant set
in 4 has m-measure zero. It seems natural to conjecture that if T is uniquely ergodic
then any T-invariant set in % of m-measure zero is compressible. We will verify this
conjecture for odometer transformation.

DEFINITION

Given a standard Borel space (X, %) and a Borel automorphism 7 on X, we say that
T is set periodic with period k if there is a partition

2,={D,,D,.....D,}
of X associated with T such that
D;=T"'D,, 1<igk

If for each neN, T is set periodic with period 2" and with associated partition
2,(T)={D1,...,D3.}, such that D! = pr+1, Dl i=1,2,...,2" neN, then we call
T a weak von-Neumann transformation. We call T a von-Neumann transformation
if T is a weak von-Neumann transformation and the union Uy 2,T) of the
associated sequence of partitions generates the o-algebra 4.

The odometer transformation R on Z and the restrictions of R to R-invariant Borel

sets are all von-Neumann transformations. Conversely any von-Neumann transforma-




—~—

On orbit equivalence of Borel automorphisms 257

tion is isomorphic to the restriction of R to a suitable R-invariant Borel subset of Z.
A von-Neumann transformation V on (X, %) admits utmost one V-invariant countably
additive probability measure on #.

Lemma 1. If a von-Neumann transformation V on a standard Borel space (X, %) does
not admit a V-invariant countably additive probability measure on B, then X is
compressible (with respect to V).

Proof. Let @,=(D},..., D3} be the sequence of partitions associated to ¥ as per the
definition of von-Neumann transformation. Let #, aenote the algebra generated by
%,. We have 2, 2,44 and | )2, 2, =2 is again an algebra. On 2 we define a
V-invariant finitely additive measure m by setting, for all n, m(Dj) =1 2n 1<k

We will need the following two observations:

(i) If A, Be#, and m(A) < m(B) then there is a set Ce?,, C < B, such that A~ C,
m(A) = m(C) and m(B—C) = m(B) — m(A). The sets A4 and C are in fact equivalent by
finite decomposition through sets in 2,
(i) If A,Be? and m(A) < m(B), then there is a set C< B, Ce?, such that A~C,
m(A)=m(C)and m(B—C)= m(B) — m(A). The sets A and C are in fact equivalent by
finite decomposition by sets in #. This follows (i) because for large enough n, A, Be#,.
Since there is no V-invariant countably additive probability measure on %, the
finitely additive measure m on # is not countably additive on 2. (For if m were
countably additive on . it would extend to a V-invariant countably additive
probability measure on the g-algebra generated by #2, which is #). Therefore there
exist pairwise disjoint sets 04, 5,,93,...in2suchthat X = Ure d,and 2505, m(8,) < 1.
There is no loss of generality if we assume that 8,€P |, 5,68, ,0,€P .. {Some
of the 3,’s could be empty). Let ¢ = 1 =%, m(,) >0 and choose 2 positive integer
N such that 2~V <4q. Recalling that %y = (DY,....D3x} denotes the Nth partition
associated to V., we set B= X — D¥x and C = D« The sets B, C belong to #y, hence
to +# and #. We note that sC =sB=sX = X. We now show that X ~ By < B, thus
proving the compressibility of X. We have m(8,)<1—g<1—1/2N=m(B). Hence
there exists, by observation (i), a r, & B such that r,e#, 8, ~r, and

m(B—r)=mB)—m(d)=1— 128 =m(8,) > 1 —q—m(d,)
=S m(8)>m(3,).
i=2
Again by observation (ii) there exists F, & B —ry, r €2, such that 6 ~r, and
m(B—ry — ra) = m(B = r;) — m(8;) = m(B) — m(6,) — m(32)

=1— 12N —m(5,)—m(@)>1—q— m(d,) — m(d;)
=Y m(d) = mlds).
i=3
Proceeding thus we can find ry,r,.r3,... ,inside B such that for each i, e, ri~0;

Thus X is equivalent by countable decomposition to | Ji 1S B Since B X we
see that X ~ B. (See [7] 5.3). g.ed.
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Remark. The sets E and F of theorem 1 are compressible with respect to U and ¥ _
respectively since U and V are von-Neumann transformations which do not admit
countably additive invariant probability measures in view of unique ergodicity of R.

3. A Cantor-Bernstein theorem

We need Cantor-Bernstein theorem for orbit equivalence which is as follows.
Theorem 2. Let (X,2), (Y,%) be standard Borel spaces. Let S and T be Borel
automorphisms on X and Y respectively such that T is orbit equivalent to the restriction

of S to an S invariant Borel set A< X and S is orbit equivalent to the restriction of T
to a T invariant Borel set BS Y. Then S and T are orbit equivalent.

Proof. Let f:X - B< Y be a one-one onto Borel map such that for all xe X
JUS™SE ) = {T ()} -

Similarly, let y:Y - 4 < X be a one-one onto Borel map such that for all yeY,
g Ty 2 ) = {89} - ..

We now adapt one of the proofs of Cantor-Bernstein theorem. We have for n =0
(ge/Y ™ g(Y) 2 (g fY(X) 2(gof V'g(Y).

X =g(Y), g(Y) = (g f)X),....(g2f )"~ 1 g(Y) — (go £V (X),
(g Sy (X)—(gof)'g(Y),... together with

The sets

ﬂ (92f)"(X), form a countable partition of X
n=0
into S-invariant Borel sets. We define #: X — Y as follows:
J on (gof)'~*g(Y) — (gof (X)
pd 971 on(gefy(X)~(gofYg(Y)
£ on () (6o/r0)

where nz 0. The map h is clearly one-one, Borel and takes an S orbit onto a T-orbit.
It remains to show that 4 is onto. Forn>0,

H(G° Y™ 4(Y) = (g2 1'(X) = (f-0(¥) — (o4 £ (1) U
W1V () = @ 9D) = (£29 ™10 - (f26)' () @
W 0= f (rarsen - 0 (Farm) o

The sets on the right hand side of (1) and (2) for all n>0 together with the set on

the right hand side of (3) give a partition of Y. This proves that his onto, and completes
-the proof of the theorem.




On orbit equivalence of Borel automorphisms

4. Equivalence of tower with the base

Let T be a Borel automorphism on a standard Borel space (X, %) and assume that
T is free, i, T has no periodic points. A set W in 4 is said to be wandering if
T"W nT"W = (J whenever m # n. The o-ideal generated by wandering sets is denoted
by W and called the Shelah-Weiss ideal (see [7]). If 4e, and, A, be the set of all
those points xeA such that T"x return to A for infinitely many positive values of n
and also for infinitely many negative values of n, then 4 — A, belongs to W. If 4 = 4,

and 4 is compressible then the sets B and C needed in the definition of compressibility
can be so chosen that B= B, and C=C,,.

Lemma 2. 1f A= A, and A is compressible then sA ~ A.

Proof. Since A is compressible and 4 = 4,, we can writt A=BuC, BnC=(,
B:= B, C = C, where further s4 =sB=sC and A~ B. Let S:4— B be a descriptive
isomorphism. Then C=A — B=A—S§A. The sets C, SC, S2C,... are all pairwise
disjoint and contained in A. Further, since

C=Co 5C= | TC.

n=0

Put C, = TC, — C,,and inductively, C;=TC;_, —Cy,jeN. Thesets C;,j=0,1,2,....
are pairwise disjoint and U};o Ci= Uf=o T" C,=sA. Indeed Cis are the levels of
the Kakutani sky scraper construction with base C = C,. (See [2]). We now define
the map S*:sCy—B= A — C as follows:

S*x=S§*'"T Ix, xeC;, j=0,1,23,....
Then
S*CJSS’-HCO. Since Cj,j=0,1,2,...

are pairwise disjoint and make up sA4, and, since St Co,j=0, 1_, 2,..., are pairwise
disjoint and contained in A, we have sA descriptively isomorphic to a subset of A.
Since A < sA, we have A ~ sA. (See [7] Lemma 5.3 and [3] corollary 1.7). ‘

If 4=A, one can dcfine a transformation T, on A, the so-called mducﬁ
transformation, by T,x = T"* x, where n(x) is the first positive integer such that T
xeA. Of course, X, to begin with is in A. If, for any two sets 4, Be&?_, A= 40, B=B,
and A and B are descriptively isomorphic, then T, and Ty are orbit equivalent, the
transformation S which establishes the descriptive isomorphism between A.anq B
also establishes the orbit equivalence between T, and Tp. We sce ther;fo_re, in view
of lemma 2, that if A= Ay and 4is compressible then T, and the restriction of T to
sA4 are orbit equivalent. ‘

5. Proof of theorem 1

We are now in a position to prove theorem 1. A theorem onhmm and Effrosdcm];plte?f
with a result of Ramsay and Mackey (see [107,[7]) permits one to conclu, ;t sl .
the orbit space of a Borel automorphism T on a standard Borel space t(jgth t)To >
not admit a Borel cross section, then there exists @ Borel set A < X such that 14
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orbit equivalent to the odometer transformation R on {0,1} ' . Passing to a subset
we conclude that if the orbit space of T does not admit a Borel cross section then
there exists a set A < X, A Borel, such that T, is orbit equivalent to U of theorem 1.
Applying this fact with T =V and X = F, we see that there is a Borel subset F,.cF
such that V¢, is orbit equivalent to U. Since E is compressible by lemma 1, we conclude
that F, is compressible. Since F, is compressible, lemma 2 shows that Vy, is orbit
equivalent to the restriction of V' to sF,. Thus U is orbit equivalent to the restriction
of V'toa Vinvariant Borel subset of F. Similarly V is orbit equivalent to the restriction
of U to a U-invariant Borel subset of E. The Cantor-Bernstein theorem of §3 yields
now theorem I-

Remarks. 1f m is an atom free probability measure on a standard Borel space (X, :4)
and T a Borel automorphism on X which preserves m-null sets and is ergodic with
respect to m, then it is known (see [8]) that the restriction of T to a suitable T-invariant
Borel set (say Y) of full m-measure is orbit equivalent to the restriction of the odometer
R to an R-invariant Borel set, say E. Further if there is no finite T-invariant measure
on .# with same null sets as m, then the R-invariant set E has P-mea: ure zero. Since
m is atom free and T is ergodic with respect to m, the orbit space of T' (restricted
to Y) does not admit a Borel cross section, a fortiriori, the orbit space of R restricted
to £ does not admit a Borel cross section. These facts together with theorem I permit
us to conclude that if S and T are two non-singular ergodic automorphisms on
(X,.#,m) neither admitting finite invariant measure with same null sets as m, then
there exists an S-invariant Borel set Y, of full m-measure and a 7 invariant Borel set
Y of full m-measure such that Sly, and Ty are orbit equivalent. This result does not
contradict Krieger's work ( [41,[5]) on weak equivalence via ratio sets because the
Borel isomorphism between Y, and Y which implements the orbit equivalence is not
claimed o preserve the m-null sets.

?t seems natural to conjecture that any two compressible and free Borel automor-
phisms S and T (ie. X is compressible with respect to both S and T) whose orbit
spaces do not admit Borel cross sections are orbit equivalent. In [7] it is proved that
any suf:h Borel automorphism is orbit equivalent to a weak von-Neumann trans-
gglrlr::'uf(:g;nlft ;Qgrzvn(ir(li ‘;\t)v::;(” in t?is rlesult can be removed, the conjecture would
automorphism are orbi.t equnverlrlinrz:iif:r?i tolcc')fnjgcmre,'alsc')! that any two’ f'rce B’OFCI
probability measures they admit is t?le 22 e tI ecardfn'dllty 'Ofthe e invariant
uniquely ergodic free Borel automorphi i n'pamCUIar Bora that any thJ
equivalent withoyt discarding an nunp;eismpon a standard Borel space are orbit
of these questions, but it should 3l;e re tod ey [ and [?] ore relfevant for some

, corded here that there is a gap in the proof of

theorem 2 of paper [17 and that a cor i i
er rect proof is available und addition:
condition (*) stated in §3.of the same paper. Hnder the addidonal
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