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Abstract. We give a necessary and sufficient condition on a sequence of functions on a
set� under which there is a measure on� which renders the given sequence of functions
a martingale. Further such a measure is unique if we impose a natural maximum entropy
condition on the conditional probabilities.
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1. Introduction

The notion of measure free martingale is implicit in the construction of equivalent martin-
gale measures in the theory of asset pricing in financial mathematics [1, 2], but it has not
been fully isolated and made free of probability. Rather it has remained hidden by specific
processes and terminology of asset pricing theory. We define a martingale purely in terms
of sets and functions, called measure free martingale, and show that every martingale is
a measure free martingale and conversely that every measure free martingale admits a
probability measure, which may be finitely additive, under which it is a martingale. We
describe the convex set (together with their extreme points) of all probability measures
under which a measure free martingale is a martingale. Among these measures there is
one which in some sense is most symmetric or most well spread, and entirely determined
by the measure free martingale. Boltzmann’s entropy maximizing distribution is needed
here. To the best of our knowledge probabilist’s have not asked the simple question as to
when a sequence of function is a martingale under some measure. The answer is relatively
easy but has some pedagogic as well as research value.

2. Means of finite set of points

Let x1, x2, x3, . . . , x

k

be k real numbers, with repetitions allowed. Assume thatx1 and
x

k

are respectively the smallest and the largest ofx1, x2, . . . , x

k

. Let α be a real number.
Then there exists a probability vector(p1, p2, . . . , p

k

) such that

x1p1 + x2p2 + · · · + x

k

p

k

= α,

if and only if x1 ≤ α ≤ x

k

. If k = 2 andx1 6= x2, such a probability vector is unique. If
k > 2, it is not unique without some additional requirements.
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A result of Boltzmann proved using Lagrange’s multipliers says that there is a unique
probability vector(p1, p2, . . . , p

k

) which satisfiesx1p1 + x2p2 + · · · + x

k

p

k

= α, and
maximizes the entropy

−p1logp1 − p2logp2 − · · · − p

k

logp

k

.

It is given by

p

j

=

exp(λx

j

)

∑

k

i=1 exp(λx

i

)

, i = 1, 2, . . . , k,

whereλ is a constant.
We will call these probabilities the Boltzmann probabilities forx1, x2, . . . , x

k

; α.
In this connection it should be noted that for a fixedx1, x2, . . . , x

k

and variableλ, the
probabilities

p

i

(λ) =

exp(λx

i

)

∑

k

i=1 exp(λx

i

)

, i = 1, 2, . . . , k

of x1, x2, . . . , x

k

respectively have the mean
∑

k

i=1 x

i

p

i

(λ) which we denote bym(λ).
Sincex1 andx

k

are minimum and maximum ofx1, x2, . . . , x

k

, we have

lim
λ→−∞

p

i

(λ) =

δ1,i

n

i

, lim
λ→∞

p

i

(λ) =

δ

k,i

n

i

,

wheren

i

is the frequency of occurrence ofx

i

in x1, x2, . . . , x

k

. As a consequence,

lim
λ→−∞

m(λ) = x1, lim
λ→∞

m(λ) = x

k

.

A calculation shows that dm/dλ = v(λ) > 0, wherev(λ) is the variance of the sys-
tem x1, x2, . . . , x

k

with probabilitiesp1(λ), p2(λ), . . . , p

k

(λ). Thusm(λ) is a strictly
increasing function ofλ which assumes every value betweenx1 andx

k

. If m(λ) = α, then
p1(λ), p2(λ), . . . , p

k

(λ) are the probabilities which maximize the entropy for the con-
straint

∑

k

i=1 p

k

x

k

= α. (See [3], p. 172 for a related discussion of Boltzmann distribution
in the continuous case.)

Supposex1, x2, . . . , x

k

are distinct. The setC of probability vectors(p1, p2, . . . , p

k

)

such that
∑

k

j=1 x

j

p

j

= α is a convex set. It is easy to see that its extreme points are
precisely those(p1, p2, . . . , p

k

) ∈ C which have at most two non-zero entries.

3. Measure free martingales

Let � be a non-empty set. Letf
n

, n = 1, 2, 3, . . . be a sequence of real valued functions
such that eachf

n

has a finite range, say(x
n1, xn2, . . . , x

nk

n

), and these values are assumed
on the subsets�

n1, �n2, . . . , �

nk

n

. These sets form a partition of� which we denote by
P

n

. We denote byQ
n

the partition generated byP1, P2, . . . , P

n

and the algebra generated
by Q

n

is denoted byA
n

. Let A
∞

denote the algebra∪∞

n=1An

.
DefineA

n

measurable functionsm
n

, M

n

as follows: ForQ ∈ Q

n

andω ∈ Q,

m

n

(ω) = min
q∈Q

f

n+1(q),

M

n

(ω) = max
q∈Q

f

n+1(q).
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DEFINITION

The sequence(f
n

, A

n

)

∞

n=1 is said to be a measure free martingale or probability free
martingale if

m

n

(ω) ≤ f

n

(ω) ≤ M

n

(ω) ∀ω ∈ �, n ≥ 1.

Clearly, for eachQ ∈ Q

n

, the functionf
n

is constant onQ. We denote this constant by
f

n

(Q). With this notation, it is easy to see that(f

n

, A

n

)

∞

n=1 is a measure free martingale
or probability free martingale if and only if for eachn and for eachQ ∈ Q

n

, f

n

(Q) lies
between the minimum and the maximum values off

n+1(Q
′

) asQ

′ runs overQ ∩ Q

n+1.
It is easy to see that if there is a probability measure onA

∞

with respect to which
(f

n

, A

n

)

∞

n=1 is a martingale, then(f
n

, A

n

)

∞

n=1 is also a measure free martingale. Indeed,
let P be such a measure. Then, for anyQ in Q

n

, f

n

(Q) is equal to

1

P(Q)

∑

{Q

′

∈Q

n+1,Q
′

⊆Q}

f

n+1(Q
′

)P (Q

′

),

so thatf
n

(Q) lies between the minimum and the maximum valuesf

n+1(Q
′

), Q

′

∈ Q ∩

Q

n+1. The theorem below proves the converse.

Theorem 1. Given a measure free martingale(f
n

, A

n

)

∞

n=1, there exists for eachn ≥ 0,
a measureP

n

onA

n

such that

P

n+1|
A

n

= P

n

, E

n+1(fn+1|An

) = f

n

,

whereE

n+1 denotes the conditional expectation with respect to the probability measure
P

n+1. There is a finitely additive probability measureP on the algebraA
∞

, which may
be countably additive, such that for eachn, P |

A

n

= P

n

.

Proof. DefineP1 on A1 arbitrarily. Having definedP1, P2, . . . , P

n

on A1, A2, . . . ,A

n

such that

P

j

|A

j−1 = P

j−1, E

j

(f

j

|A

j−1) = f

j−1, j = 2, 3, . . . , n,

we defineP
n+1 onA

n+1 as follows: Choose an elementQ in Q

n

. LetA1, A2, . . . , A

l

be the
partition ofQ induced byf

n+1 so thatf
n+1 assumesl distinct values, saya1, a2, . . . , a

l

,
on A1, A2, . . . , A

l

respectively. Leta = f

n

(Q) (the value assumed byf
n

on Q). Since
(f

n

, A

n

)

∞

n=1 is a measure free martingale,a lies between the minimum and the maximum
values off

n+1 onQ, so there is a probability vector(p1, p2, . . . , p

l

) such that

a1p1 + a2p2 + · · · + a

l

p

l

= a.

We define

P

n+1(Qi

) = p

i

P

n

(Q), i = 1, 2, . . . , l.

Carrying out this procedure for allQ ∈ Q

n

we get a probability measureP
n+1 on A

n+1
for which it is easy to check that

P

n+1|An

= P

n

, E

n+1(fn+1|An

) = f

n

.

Induction completes the proof of the existence of the measuresP

n

. DefineP by setting,
for A ∈ A

∞

, P(A) = P

n

(A), if A ∈ A

n

. Thus the theorem stands proved. 2
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Remarks.The measureP on A

∞

may be called a martingale measure associated to the
measure free martingale(f

n

, A

n

)

∞

n=1. The totality of such measures forms a convex set
whose extreme points are precisely thoseP which have the property that for anyn and for
anyQ ∈ Q

n

, P (henceP
n+1) assigns positive probability to at most two elements in the

partition ofQ induced byf
n+1. If, for eachn and for eachQ ∈ Q

n

, Q ∩ Q

n+1 has two or
less elements, then there is only one martingale measure for the measure free martingale
(f

n

, A

n

)

∞

n=1.
Let Q be an element inQ

n

. If we assign Boltzmann probabilities of the values off

n+1
onQ to the corresponding elements of the partition ofQ induced byf

n+1, then we have
the following theorem.

Theorem 2. Let (f
n

, A

n

)

∞

n=1 be a measure free martingale. Then there is a unique prob-
ability measureP onA

∞

such that

(1) (f

n

, A

n

)

∞

n=1 is a martingale with respect toP .
(2) For eachn and for eachQ ∈ Q

n

if Q1, Q2, . . . , Q

l

are the elements ofQ∩Q

n+1, then
P(Q1)/P (Q), P (Q2)/P (Q), . . . , P (Q

l

)/P (Q) are the unique probabilities which
maximize

−

l

∑

i=1

p

i

logp

i

,

subject to the condition
∑

l

i=1 a

i

p

i

= a, where a is the value off
n

on Q and
a1, a2, . . . , a

l

are the values assumed byf

n+1 onQ.
(3) The probabilitiesP(Q

i

), i = 1, 2, . . . , l are given by the formula:

P(Q

i

) = P(Q) ·

exp(λa

i

)

∑

l

i=1 exp(λa

i

)

,

whereλ is a constant depending ona, a1, a2, . . . , a

l

.

In a certain sense this distributionP of Theorem 2 may be viewed as most symmetric
or most well spread for the given measure free martingale. It is determined entirely by
the measure free martingale. One may callP the Boltzmann measure associated to the
measure free martingale(f

n

, A

n

)

∞

n=1, and the resulting measure theoretic martingale, the
Boltzmann martingale.

In the theory of asset pricing in financial mathematics there is an important point of
existence of equivalent martingale. Here, as a consequence of Theorem 2, we have the
following:

COROLLARY

With the notation of Theorem2 above, if m is a probability measure onA
∞

for which
there exist two positive constantsC andD such that for allA ∈ ∪

∞

n=1Q

n

,

C ≤ m(A)/P (A) ≤ D,

then there is measure onA
∞

, (e.g., P ), which is equivalent tom and with respect to which
(f

n

, A

n

)

∞

n=1 is a martingale. This martingale measure is unique, and equal toP , if we
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require, for eachn and for eachQ ∈ Q

n

, the conditional distribution onQ ∩ Q

n+1 to
have maximum entropy.

A question arises. Note that we can associate the numberλ to the setQ in Theorem 2.
When we do this for allQ ∈ Q

n

we have a functiong
n

defined on�. Isg

n

, n = 1, 2, 3, . . .

a measure free martingale?
Suppose� is a compact metric space and that sets inA

∞

form a clopen base for
its topology. Then any martingale measure for the measure free martingale(f

n

, A

n

)

∞

n=1
extends to a countably additive measure on the Borel fieldB of �. The collectionC of
all martingale measures for(f

n

, A

n

)

∞

n=1 defined onB forms a compact convex set under
weak topology, whose extreme points are already described above.

4. A result on convergence

Let � be a compact metric space and let(f

n

)

∞

n=1 be a sequence of continuous real valued
functions on�. LetQ

n

be the partition of� generated byf1, f2, . . . , f

n

. Elements ofQ
n

are closed sets. Say that(f

n

, Q

n

)

∞

n=1 is a martingale of continuous functions if for eachn

and for eachC ∈ Q

n

the value off
n

on C lies between the minimum and the maximum
value off

n+1 onC. We have the following theorem.

Theorem 3. If the martingale(f

n

, Q

n

)

∞

n=1 of continuous functions is also an equicon-
tinuous sequence, i.e., the sequence of functions(f

n

)

∞

n=1 is equicontinuous, then(f

n

)

∞

n=1
converges pointwise.

Proof. Let Q

∞

denote the common refinement of all theQ

n

, n = 1, 2, . . . and assume
that Q

∞

is made of singleton sets. Letω be a point of� and letC
n

be the element of
Q

n

to whichω belongs. Then∩∞

n=1Cn

= {ω}, and sinceC
n

’s are closed, we see that the
diameter ofC

n

tends to zero asn tends to∞. By martingale and equicontinuity property
of the sequence(f

n

)

∞

n=1 we conclude that given anyε > 0 there is ann0 such that for
n ≥ n0, |f

n

(ω) − f

n0(ω)| < ε. So(f

n

)

∞

n=1 converges pointwise.
If Q

∞

is not made of singletons, then we consider� = �/Q

∞

equipped with the
quotient topology. Define forc ∈ Q

∞

, f
n

(c) = the constant value off
n

onc. We can view
Q

n

also as a partition of�. The sequence(f
n

, Q

n

)

∞

n=1 forms a martingale of continuous
functions on the compact set� and the functionsf

n

, n = 1, 2, . . . form an equicontinuous
sequence of functions. The common refinementQ

∞

of the partitionsQ
n

, n = 1, 2, . . .

when considered as partition of� is the partition of� into singleton sets. By considerations
of the previous paragraph we see that the sequence(f

n

)

∞

n=1 converges pointwise, whence
the sequence(f

n

)

∞

n=1 converges pointwise. The theorem is proved. 2

We conclude by raising a question about Boltzmann distribution. LetC be a compact
subset of the real line and letα be strictly between maximum and minimum points ofC.
Let x1, x2, . . . , x

k

ε

be anε-net inC. Let µ
ε

denote the Boltzmann distribution on thisε-
net andα. Can one say thatµ

ε

converges weakly to a unique probability measure onC as
ε → 0, independent of the choice of theε-nets?
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