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Abstract. We propose here a multidimensional generalisation of the notion of link
introduced in our previous papers and we discuss some consequences for simplicial
measures and sums of function algebras.
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0. Introduction

Let X4, X2, ..., X, be non-empty setsand I@t= X1 x X5 x - - - x X,, be their Cartesian
product. For each, 1 < i < n, IT; will denote the canonical projection 6f onto X;.
A subsetS c Q is said to begoodif every complex valued functiorf on § is of the
form:

fx,x2, .00, x0) = ur(xy) +ua(x2) + - +up(xp), (x1, X2, ..., X,) €S,

for suitable function&s, uo, ... ,u, on X1, X», ..., X, respectively.

A necessary and sufficient condition for a subsef X1 x X» x --- x X,, to be good
was derived in our paper [7] and some consequences for simplicial measures and sums of
algebras were discussed. ko= 2 these questions are well-discussed in [1-3,5-7,10—
14,17]. The notion of a link or path between two points plays a crucial role in all these
papers. For > 2 a natural notion of link between two points$fvas so far not available,
a difficulty mentioned on p. 82 and 84 of [7]. So natural analogues of resulis for2
were not available for the cage> 2. This paper attempts to remove this difficulty. Here
we define, fon > 2, what we call full sets in terms of which a notion of geodesic between
two points of a good set is formulated. This allows us to prove some results on simplicial
measure and sums of algebras in terms of geodesics in analogy with the €a®eFor
n = 2 a geodesic between two points is a link as defined in [3], and for2 a geodesic
has nearly all the properties of this object. For question concerning sums of algebras for
n > 2 we refer to the papers [18,19] where the notions of uniformly separating families
and uniformly measure separating families are introduced and applied both for questions
of sums of algebras and in dimension theory, and to paper [16].
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1. Examples

(1) A singleton subset aR is always a good set. Also any subsetbho two points of
which have a coordinate in common is a good set.

(2) The subses = {(0,0), (1,0), (0, 1)} of {0, 1} x {0, 1} is a good set. For lef
be any function or§ and letu1(0) be given an arbitrary value, say and define
u2(0) = (0, 0) — c. With u2(0) thus defined, we writa1(1) = f(1, 0) — u2(0).
Finally we getux(1) = (1, 1) — u1(1). Clearlyu; + u» = f onS. Note that once
u(0) is fixed, the solution is unique.

(3) Let S C X1 x X». Say that two pointgx, y), (z, w) in S are linked if there
is a finite sequencéxs, y1), (x2, ¥2), ..., (xa, y») In S such that (i)(x1, y1) =
(x,y), (xu, yn) = (z, w), (ii) for eachi,1 < i < n — 1, exactly one of the two
inequalities holds; # x;+1, yi # yi+1, (i) ifforany i, x; # x;+1thenx;; 1 = x;42
and ify; # yir1theny;i1 = yiy2, 1 <i <n—2.1f (x, y) and(z, w) are linked we
write (x, y)L(z, w) and observe thdt is an equivalence relation. If there is only one
link between two pointgx, y) and(z, w) € S, then we say thatr, y) and(z, w) are
uniquely linked. We note tha is good if and only if any two linked points ifi are
uniquely linked. IfS is good andC is a set which meets each equivalence class of
L in exactly one point, then the solution @f(x1) + u2(x2) = f(x1, x2) iS unique
once we prescribe the valuesigfon I11C (see [3]).

(4) These{(0,0,0),(1,0,0),(1,1,0),(1,1,1),(2,1,1), (2,2,1), ...} where starting
at (0, 0, 0) one moves one unit at a time, first along thaxis, then along the-
axis and then along the-axis and continuing similarly with the next movement
along thex-axis, is a good set. For an§ on this set, the solution af1(x1) +
u(x2) +usz(x3) = f(x1, x2, x3) is unigue once we prescribe the values of0) and
u2(0).

(5) S = {(0,0,0), (1,0,0),(0,1,0), (0,0, 1)} is a good set ir{0, 1}3 while the set
SU{(4,1,1)}is not agood set.

(6) S ={(1,1,0),(1,0,1),(0,1,1), (0,0,0)} is a good set if0, 1}3. This example is
different from example 4 in that no two elementsSodiiffer from each other in only
one coordinate, yet for ang, the solution ofiq (x1) +u2(x2)+uz(x3) = f(x1, x2, x3)
is unique once we prescribe the values of0) andu2(0).

(7) {(1,2,3),(4,5,6),(7,8,9), (1,5,9)} is agood set. For a givefion S, the equation
ur(x1)tuz(x2)+us(x3) = f(x1, x2, x3), (x1, x2, x3) € Sgivesfourlinearequations
in nine variables. If we fix the values of some suitable five variables, then the solution
is unique, but not any choice of five variables would do.

(8) Leta; € X;,i =1,2,3. Then

S = X1 x {a2} x {az} U {a1} x X2 x {az} U {a1} x {az} x X3

isagood set i1 x X2 x X3.
(9) The embedding of the-dimensional unit cube” into R%*+1 obtained in Kol-
mogorov's solution of Hilbert's thirteenth problem [8] is a good set.

(10) If Sisagood setirk1 x X2 and(xg, yo) € S thenU, V which satisfyu(x) + v(y) =
Li(xov0)) (X, ¥), (x,¥) € S,u(xg) = Oare necessarily boundedin absolute value by 1.
However, this can fail ift > 2 as the following example, obtained jointly with Gowri
Navada, shows: Consider the $éto, yo, zo0), (x1, Yo, z0), (X0, ¥1, z0), (X1, ¥1. 21),

(-x2s Yo, Zl)v ()CO, Y2, Zl)! (-x21 Y2, Z2)1~ ce (-xi‘ls Yn, Zl’l)v (-xn+la Yo, Zn)v (-x07 Yn+1, Zl’l)!
(Xn+1, Yn+1, Zn+1), - - - 1IN X x Y x Z, whereX, Y, Z are infinite sets. This is a good
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set since each point admits a coordinate which does not appear as a coordinate of any
of the points preceding it. Further it is easily seen that the soldfiovi, W of

u(x) +v(y) + w@ = Yo, yo.z00) X ¥, 2),  (x,¥,2) €,

satisfyingu(xg) = 0, v(yo) = 0, is given by,W(zg) = 1 and forn > 0, U (x,) =
V(yn) — _2n—1’ W(Zn) — on.

2. Characterisation of good sets; consequences

Given any finitely many symbols, 1o, ... , # with repetitionsallowed and given any
finitely many integerai, no, ... , ng, we say that the formal sumz¢ + noto + - - - + ngty
vanishes if for every; the sum of the coefficients of vanishes.

DEFINITION

An element(xq, x2, ... , x,) of Q will be denoted byx. A non-empty finite subset =
{xX1, X2, ..., x;} of Qis called doopif there exist non-zero integers, no, ... , n; such

that the sunﬁf‘zl n;X; vanishes in the sense that the formal sum vanishes coordinatewise,
and no strictly smaller non-empty subsetlohas this property.

We haveS c Q is good if and only if there are no loops t This characterisation of a
good set, proved in [7], implies:

(1) Sisgood if and only if every finite subset 6fis good,

(2) union of any directed family of good sets is a good set, where a family of sets is said
to be directed if given any two sets in the family there is a third set in the family which
includes both. In particular, any union of a linearly ordered (under inclusion) system
of good sets is a good set,

(3) in view of (2), by Zorn’s lemma, we conclude that every good set is contained in a
maximal good set, where a good subseRiis said to be maximal if it is not contained
in a strictly larger good subset 6.

Note thatifS c Q2 is maximal then, foreachI1;S = X;, for if X; —I1;S is non-empty for

somei, and if¥ € © hasith coordinate notirl; S, thenS U {X} is a good set bigger thah

3. Full sets

The following refined notion of maximal set, called full set, will be crucial for our discus-
sion.

DEFINITION
A subsetS of Q is said to be full ifS is a maximal good set ifl1S x IT2S x - -- x I1,S.

Clearly every good sef is contained in a full good sef’ such that the canonical
projections ofS andS’ on the coordinate spaces coincide.

Theorem 1. LetS C €2 be given. Assume thatthere exiSte I11S, xJ € IS, ..., x0 ;
€ I1,,_15 such that for allf: § — C the equation

ui(xy) +u2(x2) + -+ - +up(xy) = f(x1,x2, ..., xp),
(x1,x2,...,x,) €S, Q)
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subject to
() =0, u2(x3) =0,... up-1(xp_1) =0 @
admits a unique solution. Thehis full.

Proof. Before we proceed with the proof we remark that the solution is unique only in the
sense that the functions|r, s, 1 < i < n, are uniquely determined and how any of the
defined outsid&X; — IT1; S is immaterial.

Clearly S is a good set since for aff: § — C, (1) admits a solution by assumption.
We show that under the given hypotheSiss full. If S is not full, then there existg =
(a1, az, ... ,ay) inthe Cartesian product ai;S,1 <i < n, such thatt’ = SU {a} is a
good set. Consider the functighon S’ which vanishes everywhere ¢hand equals one
ata. LetU;, 1 < i < n, be a solution of

u1(xy) +ua(x2) + - 4+ up(xn) = f(x1,x2, ..., Xp0),
(x1,x2, ... ,xp) € S, 3)

Then the system of functions
n—1
Vi=Ui—UiD)., 1si<n—1 Vy=Ui+ Y UiGD),
i=1

is also a solution of (3). In particular, this system, when restrictef, tis the unique
solution of (1) subject to (2) for the identically null function Srfobserve thay vanishes
onS), whence we hav®;(x;) = 0,x; € I1;S,1 <i <n.Sinceq; € I;S,1 <i <nwe
see thad)_"_; Vi(a;) = 0 # 1, which is a contradiction. S8 is full, and the theorem is
proved.

Theorem 2. LetS c © be full and fix;cfJ e I1;S,1 <i < n— 1 Then the equation
ug(x1) +uz(x2) + - +up(xn) =0, (x1,%x2,...,%) €S, (4)
subject to
ul(x?) =0, uz(xg) =0,..., u,,_l(x,?_l) =0 (5)

admits a unique solution which is necessarily the trivial solufigix;) = 0, x; € I1; S,
1<i<n.

Proof. We have to showthatany solutiéh, U, ... , U, of (4) subjectto (5) is necessarily
the trivial solutionU; (x;) = 0, x; € I1;S, 1 < i < n. If not there is a non-trivial solution
Vi,1 < i < n, of (4) along with (5), which means that there exists an eleriert
(a1, az, ... ,a,) € S with at least one (hence two or morg)(ai), V2(a2), ... , Vi(a,)
non-zero an® _;_; Vi(a;) = 0.

Without loss of generality assume tHat(a,) # 0. SinceZ?;ll V; (x?) + V,(a,) # 0,
b=9x9,...,x% 1 a,) ¢ S. Alsob is in the Cartesian product @1,;S,1 < i < n.
ConsiderS’ = S U {b}. Note thatS’ and S have the same canonical projections on the
coordinate spaces. We show tl$atis a good set, conflicting with the fact théiis full.
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To this end letf: S — C be given. Writef(l;) = k and letWq, W5, ... , W, be a solu-
tion of

u1(xy) +ua(x2) + - +up(xy) = f(x1,x2, ..., xp),
(x1,x2,...,x,) €S,

subject tou1 (x9) = 0, u2(x9) = 0,... ,u,_1(x2_;) = 0 which exists since is good.
Write ¢ = 4552 Then

Ri=Wi+cVi, Ro=Wo+cVo,... , R, =W, +cV,
is a solution of

ui(xa) +u2(x2) + -+ +un(xp) = fx1, x2, ..., %),
(xla x25 ey xn) € Slv

which shows thas’ is a good set, a contradiction. The theorem is proved.
We can combine Theorems 1 and 2 as:

Theorem 3. A good setS C Q is full if and only if for any choice ofio ell;S,1<i <
n — 1, the equation

u1(xy) +up(x2) + -+ up(x,) =0, (x1,x2,...,x,) €5,

subject toug (x?) = 0, up(xd) = 0, ... ,u,—1(x?_;) = 0 has a unique solutigmamely
the trivial solution.

Note that in Theorem 3 the words ‘any choice’ can be replaced by ‘some choice’.

COROLLARY 1

LetS c @ be given. Thef is full if and only if for any choice o»fl.o ell;S, 1<i<n-1,
for all complex valued functiong on S, for all complexcy, c2, . .. , ¢,—1, the equation

ui1(x1) +u2(x2) + - - +up(xn) = f(x1,x2, ..., xn),
(-xlax25 ... 7xn) e Sa
subject tou (x9) = c1, u2(x9) = c2, ... ,us—1(x0_;) = c,—1 has a unique solution.

Remarkl. There is nothing special about the choice of the first 1 coordinates

x9,x9, ..., x0_, inthe sense that we could just as well have chosemang coordinates

x; € I;S,i # ip, and modified the ‘boundary condition” accordingly.
COROLLARY 2
LetS c @ be full and letU1, U, ... , U, be a solution of

ur(x1) tuz(x2) + - +up(xy) =0, (x1,x2,...,x0) €S

thenUq, Uo, ..., U, are constant o115, I1,S, ... , I, S respectively with the sum of
the constants equal to zero.
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A corollary of the above corollary is:

COROLLARY 3

LetS c Qbefull. Let{1,2,... ,n} = AUB,ANB = . LetUy,Us,...,U, be a
solution of

ui(xy) +up(x2) + -+ up(x,) =0, (x1,x2,...,x,) €5,

subject tou; (x%) = 0,i € A. ThenU;(x;) = Ofor all x; € I1;S,i € A, while ifc; =
Uj(xj),xj € I1;S, for j € B, then}_ ;g c; = 0. More generallyif Uy, Ua, ... , Uy
andVy, Vo, ..., V, are two solutions of

ui(xa) +u2(x2) + -+ +up(xp) = fx1, x2, ..., x0),
(xlax25 AR 7xn) € S’

subjecttay; (x0) = ¢;, i € A, thenU;(x;) = V;(x;) forall x; € I1; S, i € A, whileU;(x;)
—V;j(x;) is constant orf1; S for j € B, and if this constant bé;, then >, 5 d; = 0.

If A andB are two subsets &2 and if [1; A N IT; B # @ then we say that andB have
a common coordinate of thi¢h kind.

DEFINITION

Two subsetsSy, S» of Q are said to have a common coordinate if at least one ofithe
intersectiond; S1 N I1;S2, 1 < i < n, is non-empty. We say thay, S, havek distinct
coordinates in common drdifferent kinds of coordinates in common, if at leastf the
aboven intersections are non-empty.

We now make a series of set theoretic observations on full sets:

(1) If S7 andsS; are full, S1 U S7 is good, ands; andS, haven — 1 distinct coordinates in
common, ther§y U Sz is full.

(2) If Sy, a € I, is an indexed family of full sets such that (i),¢; Sy is a good set, (ii)
given Sy, Sg in the family, there exisfSy, So, ... , S, in the family such thatS; =
Sa, Sn = Sg,andforeach, 1 <i <n—1,5; andS;+1 haven — 1 distinct coordinates
in common, therJ,<; S, is a full set.

(3) The union of a totally ordered (under inclusion) family of full sets is a full set.

(4) If S is a good set and € S, then the union of all full subsets &f containingx
is a full set. It is the largest full subset 6fcontainingx. We denote it byF (¥) or
F(x1,x2,...,xp).

(5) Ify € F(¥)thenF(y) = F(X), forthenF (¥) andF () haven coordinates in common
all of different kind.

(6) Forx,y € S, eitherF(x¥) = F(y) or F(X) N F(y) = @. Further, sincel is always
an element ofF (X), we see that the collectioRi(x), X € S, is a partition ofS,
which we call the partition of into full components and calf (x) a full component
of S.

(7) Two distinct full components of a good setan have at most — 2 different kinds of
coordinates in common.
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4. Boundary set and its existence

As a matter of convenience we will assume henceforth that theXsefis< i < n, are
pairwise disjoint.

DEFINITION

LetS C Q be a good set. A subsBtC U?_,I1; S is said to be a boundary set f§rif for
any complex valued functioti on B and for anyf: S — C the equation

ui(xg) +u2(x2) + -+ - +up(xy) = f(x1,x2, ..., xp),
(‘x17 ‘x21 .. "xn) E S’

subject tou; | pnm; s = Ulpnm,s. 1 < i < n, admits a unique solution.
Examples

() If Sis full then any set ofi — 1 different kinds of coordinates ¢f is a boundary set
of S.

(2) If notwo distinct full components df have a common coordinate th8n= u;’;lln,-c
is a boundary set fo§, whereC is any set which intersects each full component in
exactly one point.

(3) In casen = 2, the full components of are the same as the equivalence classes of
the relationL defined in Example 3 of §1, the so-called linked components in the
terminology of [3]. In this case two distinct linked components have disjoint canonical
projections and the boundary set is easily describ@th@SwhereC is a cross-section
of the linked components. The difficulty for the higher dimensional gase- 2)
results from the fact that two distinct full components can admit common coordinates
(although no more tham — 2 of distinct kind).

PROPOSITION 1

LetS ¢ Q be a good set which is not full. Assume that there exists a fulFsétc F,
such thatF — Sisfull, IT;S = TI; F, 1 < i <n.ThenB = U!_,TI;(F — S) is a boundary
set forS.

Proof. Let U;, 1 < i < n, be any complex valued functions &h (F — S),1 <i < n,
respectively. Letf: S — C be arbitrary and extend to all of F by setting

fx,x2, .00, %) = Ur(x1) + U2(x2) + - - - + Up(x),
(x1,x2,...,x,) € F—S.

Fix (x2,x9,...,x9) € F — §. SinceF is full, the equation

ui1(xy) +up(x2) + - +up(xy) = f(x1,x2, ..., xp),
(x1,x2,...,x,) €F, (6)

subject to

ur(x?) = U129, ua(xd) = Un(xd), ... Ly 1(:2_p) = Up_1(x%_),

)
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admits a unique solution, sa¥, Vo, ..., V,,.SincelU;, 1 < i < n, is already a solution of

ui(xy) +u2(x2) + -+ - +up(xy) = f(x1,x2, ..., xp),
(x1,x2,...,x5) € (F—9),

subject tou1(x9) = U1(x9), u2(x9) = U2(xd), ... ,up—1(x? ) = Up1(x? ), and
sinceF — S is full, this solution is unique and we see that

Vilm,(p—sy = Ui, 1=<i=<n.

We now show tha¥; |, s, 1 < i < n, is the unique solution of

ur(xy) +u2(x2) + -+ +up(xy) = f(x1,x2, ..., %), (x1,%2,...,%) €S,
(8)

subject to
uilmyr—sy = Ui, 1=<i=<n. 9)

For, if W;, 1 < i < n, is another solution of (8) subject to (9) distinctfram 1 < i < n,
thenW;, 1 <i < n, is also a solution of (6) subject to (7), which is a contradiction, since
this system has a unique solutionfss full. The theorem follows.

We see from this theorem that to prove the existence of a boundaByfeet non-full
good setS C €, it is enough to prove the existence of a full $&tontainings, having
the same canonical projections$sand such that” — § is also full. We have:

Theorem 4. Let S C Q be a good set which is not full. Then there exists a full et
containingsS such that(i) I1;(S) = I; F, 1 < i < n, (i) F — Sis full.

Proof. SinceS is notIuII there exists & = (b1, b2, ... ,by) ¢ S,b; €I1;S,1<i <n,
such thatS’ = § U {b} is good. Note thats’ — S is a singleton, so a full set, and the
canonical projections of andS’ on coordinate spaces agree.

Let F be the collection of good supersdiof S such that

(i) IM;(F)=T11;S,1<i <n,
(i) F— Sisfull.

Note thatF is non-empty sinceS’ belongs to it. We partially ordeF under inclusion
and observe that every chainfhadmits an upper bound, namely the union of the members
of the chain. By Zorn’s lemm& admits a maximal set. L&t be one such maximal set.
Clearly F satisfies conclusions (i) and (ii) of the theorem sifits in 7. What remains to
be proved is thaf is full. If F is not full, there exist a non-trivial solutidiiy, Uo, ... , U,
of

u1(xy) +up(x2) + -+ up(x,) =0, (x1,x2,...,x,) € F,

subjecttary (x9) = 0, u2(x9) =0, ..., u,_1(x°_,) = 0 (hence als@/, (x0) = 0), where
(. x9, ..., x0) e (F-29)isfixed. Letq = (a1,az, ... , a,) be apointinF such that for

somei, U;(a;) # 0. Such a point exists sinég s form a non-trivial solution. Moreovex;,
cannot be inF — S sinceF — S is full and there the solution is the trivial solution. Assume
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without loss of generality thal/1(a1) # 0. Consider the poinE = (al,xg, ,x,?),
which is not inF. The setH = F U {13} can be shown to be a good set as in Theorem 2.
Alsoll;H =TI; F =TII;Sforl <i <n.Finally H — Sisafull setforifVy, Vo, ..., V,

is a solution of

ul('xl) + u2(x2) +---+ un(xn) = oﬂ (-xlv X2y o ens -xl’l) € H— S7

subject tauy (x9) = 0, u2(x9) =0, ..., uy—1(x°_;) = 0 (hence alsoU, (x0) = 0), then
it is also a solution orF — S, and sinceF — S is full, the V;’s are identically zero on
I1,(F — S),1 <i < n. Clearly, sinceV; (x?) =0,for2<i < n, we see thaV1(a1) =0,
sothatV;, 1 <i < nisatrivial solution onH — S as well, so thatf — S is a full set. Thus
H belongs to the familyF, and is strictly bigger than the maximal a contradiction. So
F is a full set. The theorem is proved.

Remarks

(1) Let B be a boundary of a good s8twhich is not full and assume that for each
B; = I1; BNX; # ¥. Such aboundary always exists for a non-full goodss€br eacti
choose &; € B;,andletR = U?_;{b1}x{b2}x---x{bj_1} x{B;}x{bj11}x---x{by}.

It is easy to verify that (1R is a full set, (2)F = S U R is a full set withI1; F =
I1;5,1 < i < n. We will denote the full set’ thus obtained by (S, B) and call
F(S, B) afull set associated t6.

(2) If Bis aboundary of then no proper subset &f can be a boundary ¢, hence also
no proper superset @ can be a boundary of.

(3) Corollary 3 suggests an equivalence relatiron IT; S, which is related to the notion
of boundary.

Write x E; y if there exists a finite sequenda, Ry, ... , Ry of related components such
thatx € Ry, y € Ry andIT; R; NII; Rj41 # Y forl < j < k—1. We call the equivalence
classes ofF; the E;-componentsf IT; S. It is clear that a boundar® of S can intersect
an E;-component of1; S in at most one point.

We will write E for the equivalence relation asf'_, IT; S which, for eachi, agrees with
E; onTIl;S. For any setA C I1;S we writes; (A) for the saturation oA with respect to
the equivalence relatioR;, the symbols(A) denotes the saturation df with respect to
the equivalence relatioA.

In a discussion with Gowri Navada it emerged that the boundary of a godccset be
described in terms of the equivalence relatiéhsi = 1, 2, ... , n as follows:

Let S be a good setand,, « € I be its related components. L&t, J, ... , J, denote
the set of equivalence classeskf, E», ... , E,. Let C be a set which meets ead,
in exactly one point and letxy, x5, ... , x;/) denote this point ink, N C. Note that
Ji={si(x) : ael}.

Let U1, Uy, ..., U, be a solution for the zero function o ThenU; is a constant
ons;(x) and if we denote this constant b, then we can identify:* with s; (x) and
think of s; (x*) as a variable, which satisfies the relatigné_; a* = 0. The set of formal
finite linear combinations (with complex coefficients)pfx)’s, which is the same as the
finite linear combinations af}’s is a linear space for whicta”,i = 1,2, ... ,n, forma
generator but not a basis in view of the relatidn$_; a;* = 0. But we can choose a basis
from among the generators andAfdenotes such a basis, a selection of one point from
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each element oB forms a boundary of. This way of getting the boundary is more in
line with the case = 2, sinceC plays a role here.

Let D be a set which meets each elemenBoih exactly one point. We show thd
forms a boundary fo$. LetU be any function oD andU; the restriction ot/ to DNII; S.

We show that zero function afihas a unique solutiobiy, U, . .. , U, which agrees with
U;onDNIL;S. If x; € DNIL;S andy; € s;(x;) then definel; (y;) = U; (x;). We may
view U as defined oB. Letz = z; € I1;S and suppose;(z;) = ) cxby whereb; € B.
We defineU;(z;) = Y ck Uk (by). This extendd/ to all of UIT; S.

Now formal relation,y";_; s; (x{*) = O, implies that when we replasg(x{*) by a finite
linear combination ob;’s, that sum of the coefficients vanishes, this in turn implies that
> Ui(x¥) = 0, and this solution of the zero function is unique subject to the prescribed
boundary values.

5. Relation, paths and geodesics
DEFINITION

Two pointsx, y in a good setS are said to beelatedif there exists a finite subset ¢f
which is full and contains botk andy. If X andy are related then we writéRy.

TherelationR is obviously symmetric and reflexive. Itis transitive in view of observation
1 about full sets, so that is an equivalence relation, whose equivalence classes we call
the R-components of. Note thatR-components of are full subsets of. However we
do not know if R-components are the same as full components. Gowri Navada [15] has
shown that ifS has finitely many related components then these components are also the
full components.

DEFINITION

Let X, y be two related points of a good setAny finite full setF C S containing bothk
andy is called a path joining andy. Any path joiningx andy of the smallest cardinality
is called a geodesic. Cardinality of a path joiniigndy is called the length of the path.

Lemma. A, B, AU B are full sets andd N B # @, thenA N B is full.

Proof. If AN B = A or AN B = B then there is nothing to prove singeand B are
full. Assume therefore that — B # #andB — A # . Letx® = (x,x9, ..., x0) be an

A n
element ofA N B. Let f be a complex valued function ohnN B. LetU1, Us, ... , U, be
a solution of

ur(xy) +uo(x2) + -+ +up(xy) = f(x1,x2,...,x,), x€ANB, (10)
subject to
ul(x?) =0, uz(xg) =0,..., u,,,l(xr?fl) =0. (12)

We show that this solution is unique. Recall that the uniqueness (to be proved) of
U;,1<i <n,isonly with regard to its values on the s€ts(A N B), 1 <i < n. Define

g(x1, x2, ..., xp) = Ur(x1) + U2(x2) + - - + Uy (xn),
(x1,x2,...,x,) € B.
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Defineh(X) = f(¥), X € ANB,h(X) =0,X € A — AN B. Note that: depends only on
f and not on thé/;'s. Note thatg andz agree om N B, so we can define a functighon
A U B which equalsi on A and equalg on B. Let Wy, Wo, ... , W, be a solution of

u1(x1) +u2(x2) + -+ +up(xy) = d(x1, x2, ..., Xp),
(x1,x2,...,x5) € AUB,

subject tou1(x9) = 0, u2(x9) = 0,... ,up_1(x0_;) = 0.
This solution is unique sinc& U B is full. The functionsW;, 1 < i < n, when restricted
toIl;B,1 <i < n, form a solution of

ur(xa) +u2(x2) + - +up(xp) = g(x1, x2, ..., Xn),
(x17x25 e 7xn) e Bv

subject tou1(x9) = 0, u2(x9) = 0,... ,up_1(x0_;) = 0.

SinceB is full, this solution is unique, and so if agrees with the already known solution,
namelyU; onI;B, 1 <i < n.

Now W;, 1 <i < n, when restricted tdl; A, 1 < i < n, is the solution of

ui(xy) +ua(x2) + - +up(xy) = h(xy, x2, ..., Xp),
(x1,Xx2,...,x5) €A, (12)

subject to
0y _ Oy _ 0 \_
u1(x1) =0, wua(x3) =0,... ,u,—1(x,_1) =0, (13)

and this solution is unique sincé is full. Moreover, since: depends only ory and
not onU;’s, we see thaW;|m, 4,1 < i < n, remain the same no matter what solution
Uy, Uy, ..., U, of (10) subject to (11) is chosen. LB |i;(4) = Vi, 1 < i < n. We have
foranyx; € I1;(AN B)

Uixi) = Wi(xp) = Vi(x)), 1=<i<n.

We see therefore that for eachthe original functionl; defined onlT;(A N B), 1 <
i < n,Iis unique being the restriction of the unique solutignl < i < n, of (12) subject
to (13). This proves the lemma.

Note that we have proved that, under the hypothesis of the letifnall; (A N B) is a
boundary ofA — (AN B), B— (AN B),andalsoofA — AN B)U (B — AN B).

Theorem 5. If two pointst andy in a good set are relatedhen there is only one geodesic
joining them.

Proof. Letk be the minimum of the cardinalities of the paths joining y, and letA and
B be two paths of cardinality joining x to y. By the lemma above we see thah B is a
full set containingc andy, hence a path joining andy. If A # B, thenA N B will be a
path of smaller cardinality thaty a contradiction. This proves the theorem.

Remark. Itis interesting to note that the full sgtl, 0, 1), (1, 1, 0), (0, 1, 1), (0, 0, 0)} has
the property that any two distinct points are at a geodesic distance four from each other, a
situation which does not arise when= 2.
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6. Procedure for solution

We now discuss a procedure for obtaining a solutibnl < i < n, of the equation

ur(xa) +u2(x2) + -+ +up(xp) = f(x1,x2, ..., xp),
(-xla-xZa e 7xn) € Sa

for a given functionf on a good se§.

Casel. Assume that any two points Fare related so thatis itself theR-component of
S.Let f: S — C be given. Fixt = (xl,xz, ooxdeS. Lety = (1, y2, ..., ) €S.
SetU1(x9) = 0, Uz(x9) = 0, ..., Uy—1(x?_;) = 0. We would like to obtain{/1(y1),
Uz(y2), ..., U,(y), so that

Uiy +U2(y2) + -+ Up(yn) = fO1, Y2, -+ 5 Yn)-

To this end let

=L 70, =3t y=xk
beageodesicjoinin@otoy.Let(x{,xé, ... ,x,{)denotethe coordinatesof, 1 < j < k.
Let
Ai=TLG, l<i<n, C=U"14)—{x2x9,...,x% ).

A function defined orG x C will be calledG x C matrix. Consider th& x C matrix M
defined by

MGE L e)=1 if cefxd,xb,...,x}NnC, M@, c) =0 otherwise
To solve
ur(x]) + up(x) + -+ up () = fxfxh. . oxh), 1< j <n,
subject tcul(xl) =0, uz(xz) o,... ,u,,_l(x,}_l) = 0, means to solve for a functign

on C which satisfies" .. M(¥/, c)g(c) = f (/).

Since the solution is known to exist and is unique (siacis a full set), we see that
has the same number of points@snamelyk, and thek x k matrix M is invertible (since
the solution exists for alf on G). Finally U; (y;) = g(y;) = g(xf), 1<i<n.lfwe
write M for the system oG x C matrices wheré& runs over the geodesics beginning at
%0, andC the associated set as above, then we may write the solution of

ur(x1) +uz2(x2) +- -+ un(xp) = fx1,x2, ..., xn),
(-xla-xZa e 7xn) € Sa

subject taug (x9) = 0, ..., u,_1(x%_;) = 0, formally asMm 1 f.

Case2. If no two distinct related components fadmit a common coordinate, then we
could repeat the above procedure in each related component and get a solution.
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Case3. If there is a pair of related componentsSo#ith a common coordinate then the
solution as in Case 2 will yield solutions only on related components, but solutions on
different related components may not match on a common coordinate. We therefore make
use of the boundary and the full set associatefi (eee Remark 1, §4).

Let S be a good set and le® be the boundary of, and F = F(S, B) the full set
associated t@. If f is a complex valued function ofi, we extend it toF by setting it
equal to zero orR = F — S. If F, which is a full set, is also its own related component
then we can solve for

ui(xy) +u2(x2) + - +up(xy) = f(x1,x2, ..., X0),
(‘x17‘x21"' 7xn) e F’

subject tauy (x?) = 0, u2(x) =0, ..., up—1(x0 ) = 0with (x9,x2,... ,x%) e F,and
restrict the solution td.

7. Remarks on convergence

Let S be a good set in which any two points are relatedylfk = 1, 2, ... is a sequence
of functions onS converging pointwise to a functiofiand if, for eactk, Uy ;, 1 <i < n,
is a solution of

ui1(xy) +up(x2) + - - +up(xy) = filxy, x2, ..., xp),
(‘x17 ‘x2! A ,.xn) E S’

then, in general the functiorig ;, k = 1, 2, ... need not converge &s— oo. However, it

is clear from the above discussion that if the solutions are required to satisfy the boundary
condition Uk,i(xio) =0,1<i=<n-11c<k < oo, then for each, the sequence

Uri, k=1,2,... converges pointwise on the d9@{S to a functionU; and thesd/;, 1 <

i < n give the unique solution of

ui1(xy) +up(x2) + - +up(xy) = f(x1,x2, ..., Xn),
(xla x25 LECRLIN | xn) € S’ (14)

subject to
0y _ 0y 0 _
ur(x7) =0, wu2(xy) =0,...,u,-1(x,_1) =0. (15)

If fx,k =1,2,... converge uniformly tof and if there is a uniform bound, s&yfor the
lengths of geodesics ifi, then, for eacli, the convergence dfy ;,k = 1,2, ... is also
uniform assuming of course that the solutidis;, 1 < i < n, satisfy for each andk,
Uk.i (le) = 0. (Note that for a fixed there are only finitely mani/x [ zero-one invertible
matrices, so their norms are bounded away from zero.)

Thus, if S is its own related component and geodesics are of bounded length then for
boundedf the solution of (14) subjectto (15) consists of bounded. < i < n.If Sisnot
arelated component but the géissociated t§ is a related component whose geodesics
are of bounded length, then also (14) admits bounded solution whejlfiegdsounded.

This sufficient condition for bounded solution is more in line with the condition for two-
dimensional case, than the necessary and sufficient condition of uniform separability due
to Sternfeld [18] or conditions discussed by Sproston and Strauss [16].
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8. Descriptive set theoretic considerations

NowletX1, X», ..., X, be Polish spaces equipped with their respective Bowabebras.
LetQ = X; x X2 x -+ x X,, be equipped with the product Borel structure. Set Q2
be a good Borel set. We will show that the equivalence relakios a Borel equivalence
relation. To this end les* = §1.2--K} be thek-fold Cartesian product of with itself.
Let(¥1,x2, ... x5 e Sk, X' = (xl,xb, ... X)), 1<i <n,

=% .3, ¢ =UZ{(L6 — (x}) UTLG.

Let M(x1, %2, ..., x*) denote thes x C matrix (see §6)

ME,c)=1 if ce {xi,xé, ,x,’;} NC, M, c)=0 otherwise
The mapping

K:GLR2 008 > ML 2L R9)
is a Borel map frons* into the space of finite matrices. An elemént, X2, ... , ¥) e s*
is called an ordered geodesic of lengtietweery® andx if {x1, X2, ... , ¥} isageodesic
betweerx! andx*.

For a proper subset of {1, 2, ... , k}, [T, will denote the canonical projection 6f

onto §”. In the definition ofM; below, J runs over all proper subsets ¢f, 2, ... , k}

which contain 1 and.
My = {(ZL %%, ... 7% e sk v, M1, (7L, X2, ..., #5)) is not invertiblg,

Ly = {(GL %2, 5 e sk - ML, 32 ---2") is invertible},
Gr = LN M.

We note thaG, is the set of vectors i* which are ordered geodesics of lengthetween

its first and the last coordinates. It is a Borel set siéieand L; are Borel sets. Since
there argk — 2)! ordered geodesics between two points when the geodesic length between
them isk, the maps defined by (fér= 1,2, ...)

oL 32 =L, k=2, ¢h = @LEY

from G, to S x S are finite to 1 Borel maps, so that for edchy, (Gy) is a Borel set. The
equivalence relatio® = U2 ;¢ (Gy) is thus a Borel equivalence relation.

We mention here some observations du&tM Srivastava and H Sarbadhikari on the
nature of the relation® andE;.

Let S be compact, second countable and good. Then

(1) The decompositior of S into related components as well as the equivalence relations
E; defined in terms of related components areompact.

(2) Iffor each related componentthere is a positive intege¥; such that every geodesic
in L is of length at mostV;, thenL is compact. Hence, in this case, there i€a
cross-section for equivalence classe®of

Assume, moreover, thaf; is independent of . ThenR is compact. Further, l&t be an
E; equivalence class that is of bounded type, in the sense that there is a positiveMyteger
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such that for every, y € C, one needs at mosf many related components to witness
thatx E;y. ThenC is compact. Hence, if eadfi is of bounded type, theh; equivalence
classes admit & cross-section. Further, M is independent of’, thenE; equivalence
classes itself is compact.

It is not clear how to combine these facts with the second description of the boundary
given at the end of 84 to give a good sufficient condition for the existence of a Borel
measurable boundary, a hypothesis needed in the discussion that follows. Of course if there
are only countably mang equivalence classes then the boundary is countable too, hence
Borel measurable.

If S is a good Borel set and if a complex valued Borel function af) the question
whether one can choose the functidinis1 < i < n, in (14) in a Borel fashion has, in
general, a negative answer [6]. We discuss conditions under which an affirmative answer
is possible.

Assume now that the related components admit a Borel cross-sectidn. The set
Ry, of ordered geodesics of lengttheginning at a point ifi" is a Borel set since

Ry = {GL3% ... i) e Gy 3t ey = (M7D) NGy

The setC, = TRy is the Borel set of points it§ which are joined to some point i
by a geodesic of length. Clearly S = U2 ; Cx, the union being pairwise disjoint, where
Ci1=T.

It is clear from the procedure given for the solution of (14) that

(1) if f is a Borel function and has only one related component, then the solution is
made of Borel functions,

(2) if S admits a Borel measurable boundary and the fullsassociated t§ is its own
related component, then the solution of (14) is made of Borel functions wheriever
is Borel,

(3) if no two related components ¢fadmit a common coordinate and the related com-
ponents ofS admit a Borel cross-section then the solution is made of Borel functions
wheneverf is Borel.

9. Simplicial measures and sums of algebras

Let X1, Xo, ..., X, be Polish spaces, arfd their Cartesian product equipped with the
product Borel structure. A probability measyren Q2 is called simplicial ifitis an extreme
point of the convex set of all probability measuresowhose one-dimensional marginals
are the same as those of Let ; denote the marginal gf on X;, 1 < i < n. A basic
theorem of Lindenstrauss [9] and Douglas [4] states that a probability meas@tdson
simplicial if and only if the collection of functions of the form

ui(xy) +ua(x2) + - +up(xy), w; € Li(X;, pui), 1=<i<n,

is dense inL1(2, ).

A Borel setE C Q is called a set of marginal uniqueness (briefly an MU-set) if every
probability measurg supported oif is an extreme point of the convex set of all probability
measures o012 with one-dimensional marginals same as thosg.o€learly any Borel
subset of an MU-set is an MU-set and since a loop is not an MU-se¥ @rset cannot
contain a loop, whence an MU-set is a good set.
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If S is a good Borel set in which any two points are related and there is a uniform
upper bound for the lengths of geodesics, then every bounded Borel functirisom
sum of bounded Borel functions afy, Xo, ... , X, respectively and since bounded Borel
functions are dense ih', we see thas is a set of marginal uniqueness.

More generally it can be shown, as in the case: 2 (see [5,6]), that ifS is a good
Borel set in which any two points are related and there is a uniform upper bound for
Uiy, Us, ..., U, which form the solution of (14) subject to (15) fgrwhich are indicator
functions of singletons, thefiis an MU-set. Of course one can replace the hypothesis on
S by a similar hypothesis of' (S, B) and claim thatS is an MU-set.

Assume now thaXq, Xo, ..., X,, are compact metric spaces. L®tC 2 be a compact
set withITl;S = X;, fori = 1,2,...,n. Itis easy to see, by considering annihilators,
thatC(X1) + C(X2) 4+ --- + C(X,) is dense inC(S) if and only if S is a set of marginal
unigueness. We see therefore that if any two points of th& setF (S, B) are relatedsS
has a Borel measurable boundary and if geodesics lengthsaie bounded above then
C(X1) +C(X2)+---+ C(Xy) isdenseinC(S). In fact we also have

C(X1) +C(X2) + -+ C(Xy) = C(S).

We see this as follows: Lef € C(S), and letU1 ¢, Uz, ... ,Unik, k = 1,2,... be a

sequence of continuous functions®f, Xo, ... , X, respectively, such théty  + Uz i +
-+ + Uy« converges tof uniformly. Fixx% = (9, x9,...,x9) € §. Let
n—1
Vik =Uik —Uix(x)), 1<i<n—1 Vix=Uws+ ) UjxG).
j=1

ThenV;, 1 <i < n, are continuous and their sum convergeg toniformly. But since
Vi,k(x?) =0,1<i <n-1,weseefrom ourremarks on convergence that each sequence
Vik, k = 1,2, ... of continuous functions converges uniformly to a continuous function
V; on X; and thatf is the sum of these functions.
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