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1. INTRODUCTION.
The purpose of this note is to give an example of a Borel automorphism T

on a standard Borel space (X,B) such that (i) T does not admit any invariant
probability measure, (ii) there is no weakly wandering set W ∈ B such that
union of T nW over all integers n is all of X. This shows that a natural
descriptive version of the Hajian-Kakutani Theorem on the existence of a
finite equivalent invariant measure (explained below) is false. This answers
a question raised in [10].

Let m be a probability measure on B and assume that null sets of m are
preserved by T . Call a set W ∈ B weakly wandering if there exists a sequence
of integers (ni), i = 1, 2, 3, ..., such that T niW ∩ T njW = ∅ whenever i 6= j.
It is easy to see that if there is a weakly wandering set of positive m- measure
then there is no probability measure on B invariant under T and having same
null sets as m. A well known theorem of Hajian and Kakutani (see [4 ],[3])
states that the converse of this observation holds,i.e., if there is no weakly
wandering set of positive m measure then there exists a probability measure
on B invariant under T and having the same null sets as m. This result was
further improved by Jones and Krengel [7] who showed that if there is no
T -invariant probability measure on B absolutely continuous with respect to
m then there exists a set W in B and a sequence of positive integers (ni),
i = 1, 2, 3, ... such that T niW∩T njW = ∅ whenever i 6= j and

⋃∞
i=1 T niW = X

(mod m). (The qualification mod m cannot in general be removed as the
result of this paper will show.However, as pointed out to us by U. Krengel,
if we take the completion M of the σ-algebra B with respect to m then the
requirement mod m can be dispensed with. See remark end of section 2.)
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Let us dispense with the measure m and consider only the standard Borel
space (X,B) and the Borel automorphism T on X. Say that a set A ∈ B is of
full saturation if

⋃∞
n=−∞ T nA = X. We note that if T admits a weakly wan-

dering set of full saturation then T does not admit a T -invariant probability
measure. It is natural to ask, in analogy with the Hajian-Kakutani theorem
mentioned above, whether the non-existence of a weakly wandering set of
full saturation implies the existence of a T -invariant probability measure on
B. As stated in the beginning, the answer to this question is in the negative.

2. THE MAIN CONSTRUCTION
Definition. Given a non-singular system (X,B, m, T ) a sequence of natural
numbers n1, n2, n3, · · · is said to be weakly wandering for T if there exists a
set W in B of positive m measure such that T nkW, k = 1, 2, 3, ... are pairwise
disjoint.

Definition. A sequence r1, r2, r3, · · · of natural numbers is said to be recur-
rent for T if its intersection with every weakly wandering sequence for T is
finite.

Clearly a recurrent sequence for T can not be a weakly wandering se-
quence for T and vice-versa. The notion of weakly wandering, recurrent and
other related sequences were investigated by Hajian and Ito [5].

Theorem 1. Let T be an ergodic measure preserving transformation on a
σ-finite measure space (X,B, m). A sequence r1, r2, r3, ... of natural numbers
is recurrent for T if and only if there is a set A of positive finite measure such
that lim(T rnA∩A) > 0.

For a proof of the above theorem we need the following two lemmas. We
state and prove them for the sake of completeness; see [5].

Lemma 1: Let W = {wi} be a weakly wandering sequence for the ergodic
measure preserving transformation T. Then limi→∞m(TwiA ∩ A) = 0 for
every set A ∈ B with m(A) < ∞.

Proof: Let A be a set with m(A) < ∞, and let W ∈ B be a weakly wandering
set of positive measure under the sequence W = {wi} for T . For any integer
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k > 0 it is clear that T kW is again weakly wandering under both {wi} and
{−wi}. Since

m(A) ≥ m(
∞⋃
i=1

T−wi(T kW )∩A) =
∞∑
i=1

m(T−wi(T kW )∩A) =
∞∑
i=1

m(T kW∩TwiA),

it follows that

lim
i→∞

m(TwiA ∩ T kW ) = 0 for any integer k > 0.

Since m(A) < ∞ and T is ergodic it follows that for any ε > 0 there exists
an integer N > 0 and a set C with m(C) < ε such that

A ⊂ C ∪
N⋃

j=0

T jW.

Then

m(TwiA ∩ A) ≤ m(TwiA ∩ C) +
N∑

k=0

m(TwiA ∩ T kW ),

and this implies
limi→∞m(TwiA ∩ A) < ε.

Lemma 2: Let {ni} be a sequence of integers such that limi→∞m(T niA ∩
A) = 0 for every set A ∈ B with m(A) < ∞ . Then {ni} contains a weakly
wandering subsequence.

Proof: Let C and D be two sets of finite measure. Since limi→∞m(T niA ∩
A) = 0 for every set of finite measure and m[T ni(C ∪ D) ∩ (C ∪ D)] ≥
m(T niC ∩ D) it follows that limi→∞m(T niC ∩ D) = 0 for any two sets C
and D of finite measure.

Let C be a set with 0 < m(C) < ∞, and let ε > 0 be such that ε < m(C).
We show that C contains a subset W ⊂ C, with m(C −W ) < ε, and such
that W is weakly wandering under a subsequence {wi} of the sequence {ni}.

Put w0 = 0 and choose εi > 0 for i = 1, 2, · · · such that
∑

εi = ε. Since
limi→∞m(T niC ∩C) = 0 we choose w1 ∈ {ni} such that m(Tw1C ∩C) < ε1.
We let D = C ∪ T−w1C, and since limi→∞m(T niD ∩ C) = 0 we choose
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w2 ∈ {ni} such that m[(Tw2C∪Tw2−w1C]∩C) < ε2. We proceed inductively;
having chosen the integers w0, w1, · · · , wk satisfying

m[(
i−1⋃
j=0

Twi−wjC) ∩ C] < εi, 1 ≤ i ≤ k

We put D =
⋃k

j=0 T−wjC and choose wk+1 ∈ {ni} such that m(Twk+1D ∩
C) < εk+1 or

m[(
k⋃

j=0

Twk+1−wjC) ∩ C] < εk+1.

Next we let

C ′ =
∞⋃
i=1

i−1⋃
j=0

Twi−wjC ∩ C.

It follows that the set W = C − C ′ has positive measure, m(C −W ) < ε
and since W ⊂ C and Twi−wjW ⊂ Twi−wjC ⊆ C

′ ∪ (X − C) for i > j. We
conclude TwiW ∩ TwjW = ∅ for i 6= j. Thus {wi} is a subsequence of {ni}
which is weakly wandering sequence for T . Q.E.D.

Proof of Theorem 1: Since a subset of a weakly wandering sequence is
again weakly wandering, the sufficiency of the condition follows from Lemma
1; the necessity follows from Lemma 2. Q.E.D.

Let I = [0, 1) and let V denote the von Neumann transformation (also
known as the adding machine) acting on I. If x = x1x2x3... is the binary
expansion of x ∈ I then V (x) = 000...01xk+2xk+3... where k + 1 is the first
integer i for which xi is zero. V is unambiguously defined except for count-
ably many points which admit two distinct binary expansions. V preserves
Lebesgue measure on [0, 1) and is uniquely ergodic.

For each sequence α = (k1, k2, k3, ...) of non-negative integers construct a
tower over V with ceiling

fα(x) =



0 if 0 ≤ x ≤ 1/2
k1 if 1/2 ≤ x ≤ 1/2 + 1/4
k1 + k2 if 1/2 + 1/4 ≤ x < 1/2 + 1/4 + 1/8

.

.

.
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In other words let

Xα = {(x, n) : x∈ [0, 1), 0 ≤ n < fα(x)}

equipped with the natural Borel structure Bα as a subset of [0, 1)×{0, 1, 2, 3, · · ·}.
Let mα be the measure on Bα which agrees with m on [0, 1)×{0} and which
is invariant under Tα defined on Xα by:

Tα(x, n) =
{

(x, n + 1) if 0 ≤ n < fα(x)
(V x, 0) if n = fα(x)

The map Tα can also be viewed as a rank one transformation where at
stage n of the construction the stack obtained at stage (n−1) is divided into
two equal columns and we add k1 +k2 +k3 + · · ·+kn spacers on the left hand
column. Observe that if J is one of the intervals in the (n)th stack of height
hn and if J is divided into two equal intervals J1 and J2 , J1 to the left of
J2, then T rn

α J1 = J2 where rn = hn + k1 + ...kn+1. This at once shows that
m(T rn

α I∩I) ≥ 1/2. (Observe that I is partitioned into disjoint intervals in the
nth stack . The left half of each of these intervals coincides with the right half
on application of T rn

α .) By a slight refinement of this argument, if one chooses
the sequence {kn} carefully, it is possible to construct an ergodic measure
preserving transformation T which is of type 1/2. By a transformation of
type α, 0 ≤ α ≤ 1, we mean an ergodic measure preserving transformation T
with the property that limsupn→∞m(T nA∩A) = αm(A) for every set A ∈ B
with m(A) < ∞. We do not need this additional refinement.

Theorem 2. Given an increasing sequence of natural numbers {ni} there
exists an increasing sequence α = {kn} of natural numbers such that for the
constructed space m(Xα) = ∞ and further there exists a subsequence {ri}
of {ni} which is recurrent for Tα

Proof: Let us suppose that an increasing sequence of positive integers {ni}
is given. We choose inductively a subsequence {ri} of {ni} and construct
a sequence {ki} of non-negative integers as follows. We choose r1 ∈ {ni}
such that r1 > 0 and let k1 = r1 − 1. Next we choose r2 ∈ {ni} such that
r2 > 4r1 and let k2 = r2 − r1 − 1. We continue this way; having chosen
the integers r1, r2, · · · , ri−1 and constructed the integers k1, k2, · · · , ki−1, we
choose ri ∈ {nj} such that ri > 4(r1 + r2 + · · · + ri−1) and let ki = ri −
(r1 + r2 + · · · + ri−1) − 1. We note that the sequence of integers {ki} thus
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constructed satisfies
∑

kn/2
n = ∞ . Thus, if we build the transformation

Tα with α = {kn} just chosen, then it follows from the above construction
that m(Xα) = ∞ and m(T ri

α I ∪ I) ≥ 1/2 for all i. By Theorem 1 {ri} is a
recurrent sequence for Tα Q.E.D.

We now give an example of a Borel automorphism T having properties
(i) and (ii) stated in the beginning.

Let R denote all sequences of natural numbers equipped with its product
Borel structure. The set α of points in R for which mα is finite is given by
F = {(k1, k2, k3, ...) :

∑
ki2

−i < ∞} which is clearly a Borel subset of R. Let
E = R−F . Let Ω = E × [0, 1)×{0, 1, 2, 3, ...} equipped with the product σ
- algebra and set

X = {(α, x, n) ∈ Ω : n ≤ fα(x)}.

Then X is a Borel subset of Ω since (α, x) → fα(x) is jointly measurable
on E × [0, 1). Define T on X by requiring it to be Tα on the α section of X

T (α, x, n) = (α, Tα(x, n)).

T is Borel measurable and leaves each α section invariant.
Clearly T does not admit a weakly wandering set of full saturation since

for any sequence of natural numbers there exists a Tα which does not admit
the chosen sequence as a weakly wandering sequence. Also T does not admit
a T-invariant probability measure, for if it did then the regular conditional
probabilities (see K.R.Parthasarthy [11]) of this measure with respect to the
measurable partition given by the α sections of X would be invariant with
respect to Tα for almost every α.But no Tα admits an invariant probability
measure on Bα since α is in E and V is uniquely ergodic. This contradiction
shows that T does not admit an invariant probability measure .

Remark. As mentioned in the introduction if we replace B by M the
completion of B with respect to a finite or σ-finite measure µ then it is
possible to find a set W ∈M and an increasing sequence of positive integers
n1, n2, ... such that⋃∞

i=0T
ni(W ) = X.We see this as follows.Since there is no invariant proba-

bility measure for T , by the theorem of Jones and Krengel mentioned in the
introduction we can find a Borel set A and a sequence of positive integers
n1 < n2 < ... such that the union of iterates of A under this sequence is an
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invariant set Y with µ(X−Y ) = 0. Moreover the sequence n1 < n2 < ... can
be so chosen that for a suitable subset E of integers the union

⋃∞
i=0

(E + ni)

is the set of all integers. Since we are in a completed σ-algebra every
subset of X − Y is in M. We can find set B, if necessary by use of axiom of
choice, such that every orbit of a point in X − Y intersects B in exactly one
point. Let

C =
⋃

i∈ET i(B). The union of A and C is the required set W .

3. HOPF’S THEOREM AND RELATED PERSPECTIVE
An old expository paper of G.D. Birkhoff and P.A. Smith [2] sets forth

nearly all the basic notions of classical ergodic theory (albeit in a slightly
weak form) : wandering sets, decomposition into conservative and dissipa-
tive parts, weakly wandering sets and compressibility, ergodicity (under the
name of metric transitivity), equivalence and singularity of ergodic measures
etc. The question of existence of a finite invariant measure was discussed by
Birkhoff and Smith in section 4 of their paper. They discussed the question
for a continuous invertible mapping of a surface. The two notions, namely of
weakly wandering sets and compressibility introduced there have remained
important in subsequent discussions of this problem in the measure theoretic
setting. Birkhoff and Smith begin by observing that even if a continuous
transformation does not admit a non-empty wandering open set W , it may
yet admit a non-empty open W whose iterates under T over a subsequence
of integers are pairwise disjoint. This forbids the existence of a finite T -
invariant measure which gives positive mass to every open set. No concrete
example of such a situation is exhibited however. Instead they introduce
their notion of compressibility. From this they are able to formulate a neces-
sary and sufficient condition for the existence of a finite invariant measure.
Their definition of compressibility was constrained by the requirement that
partitions of the space into only finitely many sets were allowed. On the sug-
gestion of Birkhoff, E. Hopf considered the question of existence of a finite
invariant measure for a non-singular transformation [6]. He modified their
definition of compressibility by allowing countable partitions of the space and
by analyzing the problem in a measure theoretic setting. We report his work
below.
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Let (X,B) be a standard Borel space and T : X ↔ X a Borel au-
tomorphism. Two sets A, B in B are said to be equivalent by countable
decomposition, A ∼ B, if we can write (i) A as a countable union of pair-
wise disjoint sets Ai in B, i = 1, 2, 3, · · ·, (ii) B as a countable union of
pairwise disjoint sets Bi ∈ B, i = 1, 2, 3, · · · and (iii) there exist integers ni

such that T niAi = Bi, i = 1, 2, 3, · · ·. This notion of equivalence by count-
able decomposition is basic to the theory of orbit equivalence. (Equivalence
by countable decomposition of two sets essentially means that the induced
transformations on the two sets are orbit equivalent.) Suppose that m is
a finite measure on B whose null sets are preserved by T . We say that a
set A in B is compressible in the sense of Hopf if there exists a set B ∈ B,
B ⊂ A such that m(A − B) > 0 and A and B are equivalent by countable
decomposition. It is easy to see that if there is a finite T invariant measure
µ having the same null sets as m, then X is not compressible in the sense of
Hopf. Hopf proved the non-trivial converse of this. He showed that if X is
not compressible in his sense then there is a finite T invariant measure µ on
B whose null sets agree with those of m.

Hopf’s proof of his theorem was difficult. A simpler proof of his result
and also simpler necessary and sufficient conditions for the existence of a
finite equivalent invariant measure were therefore sought. The best known
result in this connection is the theorem of Hajian and Kakutani mentioned
above. Since there exists ergodic measure preserving transformations on
a non-atomic infinite σ-finite measure space, such transformations always
admit weakly wandering sets of positive measure. Thus Hajian and Kakutani
proved not only the non-trivial converse of the observation due to Birkhoff
and Smith but also that weakly wandering sets of positive measure exist in
abundance in suitable non-dissipative systems.

There is a simple connection between weakly wandering sets and com-
pressibility in the sense of Hopf. Suppose W in B is weakly wandering
under T and of positive measure, T nkW , k = 1, 2, 3, · · · being pairwise dis-
joint. Then we can compress X into X − W simply by mapping W →
T n1W, T n1W → T n2W · · · , T nkW → T nk+1W, · · · and letting the identity
map act on X − ⋃

T nkW . Thus we see that X is compressible in the sense
of Hopf and a simple compression can be effected by means of iterates of a
weakly wandering set of positive measure. Therefore, if X is not compressible
in the sense of Hopf then T can not admit a weakly wandering set of positive
measure and so by the Hajian-Kakutani Theorem admits a finite invariant
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measure having the same null sets as m. Hopf’s Theorem follows.
G.W.Mackey has emphasized the importance of considering group ac-

tions on standard Borel spaces free of any measure on the space.(see [8],[9]).
There has been renewed interest in this aspect of classical ergodic theory in
recent years (see H.Baker and A.Kechris[1] and references therein). In this
spirit, Hopf’s theorem has the following descriptive formulation proved in
Nadkarni[10]: Given a standard Borel space (X,B) and a Borel automor-
phism T on X call X compressible if we can write X as a disjoint union of
two sets C and D in B such that (a) C and D have the same saturation and
(b) X is equivalent by countable decomposition to C. We note that if X is
compressible then it is compressible in the sense of Hopf with respect to any
probability measure quasi-invariant under T . Also it is easy to see that if X
is compressible then there is no T -invariant probability measure on B. The
converse of this holds: if X is not compressible then T admits an invariant
probability measure on B. This is the descriptive version of Hopf’s theorem
proved in [10].

It is clear that if X admits a weakly wandering set in B of full saturation
then X is compressible. The example of this paper shows that converse of this
is not true: The T constructed above does not admit an invariant probability
measure and so X is compressible under T , but T does not admit a weakly
wandering set of full saturation.

Our analysis raises the following two problems of some interest: (i) When
does a Borel automorphism T on a standard Borel space admit a weakly
wandering set of full saturation? (ii) If X is descriptively compressible under
T is there a countably generated partition of X into invariant sets on each
of which T admits a weakly wandering set of full saturation?

Remark. The authors would like to take this opportunity to express their
appreciation of the long forgotten paper of Birkhoff and Smith [2] which
atonce sets forth, albeit in slightly weak form, nearly all the basic notions
of classical ergodic theory: wandering sets, decompotition into conservative
and dissipative parts,weakly wandering sets and compresibility, ergodicity
(metric transitivity), equivalence or singularity of two ergodic measures, etc.
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